
Appendix: Keypoint-Augmented Self-Supervised
Learning for Medical Image Segmentation with

Limited Annotation

Anonymous Author(s)
Affiliation
Address
email

A Additional Experiments1

Ablation on UNet Channels (Double Channels). In our implementation, we augment the convolu-2

tional UNet features by concatenating them with features learned from KAF. Introducing KAF layers3

leads to an increase in the total number of parameters of the final KAF-enhanced UNet. Specifically,4

the number of channels for the second, third, and fourth blocks in the KAF-enhanced UNet become5

twice as large as the original UNet.6

For a more fair comparison, we construct a non-KAF UNet (‘UNet(c2)’ in Tab. 1) with the same7

amount of parameters in convolutional layers as our model by duplicating the features of the first,8

second, third, and fourth blocks from the UNet baseline (‘UNet(c1)’ in Tab. 1) and concatenated9

each with itself.10

The segmentation results are presented in Table 1. UNet(c1) indicates the UNet backbone, and11

UNet(c2) denotes the larger UNet whose convolutional parameters matched our model. They in-12

dicate that widening the network’s architecture by increasing the input channel size can improve13

its performance. However, the performance enhancement is even more substantial with our mod-14

ified layer. This suggests that incorporating features beyond simple convolution into the network15

architecture can further enhance the network’s performance.16

Sample M dataset Method mean/std #params

15 CHD UNet(c1) 0.627(.05) 7.8 M
15 CHD UNet(c2) 0.646(.04) 27.9 M
15 CHD Ours 0.712(.03) 71.7 M
6 ACDC UNet(c1) 0.782(.03) 17.5 M
6 ACDC UNet(c2) 0.796(.03) 62.8 M
6 ACDC Ours 0.873(.01) 106.8 M

Table 1: Performance comparison among standard UNet (UNet(c1)), a larger UNet with duplicated
input channels (UNet(c2)), and UNet augmented with features derived from KAF (Ours). The results
indicate that using a larger UNet slightly improves the segmentation performance. Our proposed
KAF-enhanced UNet further boosts the performance significantly compared with UNet(c2).

Ablation on Correspondence Weights. To further investigate the contribution of the correspondence17

loss to the performance of the pretraining weights, we conducted a study on the various combinations18

of weights w1, w2, and w3, as defined in Sec. 3.2, in Table A.19

First, we study the effect of varying w3 by setting both w1 and w2 to 1. We experimented with values20

of 0.1, 0.01, and 0.001 for w3. Among these, 0.01 yielded the best performance.21

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



In a subsequent series of experiments, we set w1 to 0, intending to exclusively investigate the impact22

of the local correspondence loss on the global KAF self-supervised learning (SSL) loss. When only23

w2 is set to 1, the model achieves an dice of 0.701. Upon varying w3 while keeping w2 fixed at 1, in24

most instances, incorporating Llocal yields performance better than with Lglobal only. This implies25

that our local KAF correspondence SSL loss indeed offers a superior local minimum for downstream26

tasks.27

When the weights are set to 1, 1, and 0, our model’s performance, at 0.689, still surpasses that of28

a model trained from scratch (0.686). This suggests that using only Llocal could assist in finding a29

more optimal starting point for fine-tuning. However, when compared to having only local losses,30

global pretraining losses contribute more to enhancing performance.

w1 w2 w3 Dice

1 1 0.1 0.702(.04)
1 1 0.01 0.712(.03)
1 1 0.001 0.708(.04)

0 1 0.08 0.705(.03)
0 1 0.04 0.705(.03)
0 1 0.02 0.707(.03)
0 1 0.01 0.700(.03)
0 1 0.005 0.700(.03)
0 1 0.001 0.705(.03)

0 0 1 0.689(.04)
Table 2: Additional assessment of weight of Llocal in pretraining to supplement Tab. 2 in the main
text. The results are all from pretraining on CHD and finetuning at M = 15.

31

Comprehensive 5-Fold Results. Our detailed examination of the five folds in the CHD and ACDC32

datasets is exhibited in Table 3. We adhere strictly to the divisions as described in the Positional33

Coding Learning (PCL) study [7], ensuring consistency and reliable comparison of results.34

KAF Layer in FCN. To validate the general usefulness of the KAF layer, we injected KAF layer35

into a different segmentation backbone Fully Convolutional Network (FCN) [3] and compare the36

results between the original FCN versus the KAF-enhanced FCN. Note that in the original FCN37

implementation, VGG [5] was used as the encoder to gather multi-resolution features from different38

layers. However, given the small training size of our dataset and the relatively high complexity of39

VGGwe substitute the VGG encoder with a shallower CNN. More specifically, we replaced each40

block in VGG with two convolution layers, aiming to create a more efficient model that better suits41

our dataset and task.42

Dataset Sample M Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean/Std
CHD 2 0.3085 0.3292 0.4649 0.4405 0.4178 0.392(.062)

6 0.5370 0.6527 0.6707 0.7076 0.6119 0.636(.058)
10 0.6382 0.6797 0.7252 0.7326 0.6900 0.693(.034)
15 0.6668 0.6892 0.7519 0.7458 0.6844 0.712(.035)
20 0.6738 0.7204 0.7629 0.7766 0.7051 0.728(.038)
30 0.7291 0.7324 0.8001 0.8014 0.7093 0.754(.039)
51 0.7385 0.7594 0.8148 0.8234 0.8048 0.788(.033)

ACDC 2 0.7975 0.7027 0.7510 0.7097 0.7458 0.741(.034)
6 0.8827 0.8941 0.8620 0.8596 0.8682 0.873(.013)
10 0.9101 0.9086 0.8919 0.8709 0.8914 0.895(.014)
15 0.9175 0.9076 0.9140 0.8932 0.9091 0.908(.008)
20 0.9173 0.9152 0.9168 0.9101 0.9143 0.915(.003)
30 0.9224 0.9232 0.9252 0.9162 0.9187 0.921(.003)
80 0.9313 0.9285 0.9336 0.9255 0.9328 0.930(.003)

Table 3: The complete five-fold Dice results for CHD and ACDC are presented in our Table 1.

2



Sample M With KAF Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean/Std

2 - 0.2259 0.2133 0.3297 0.311 0.3516 0.286(.056)
✓ 0.2517 0.2133 0.3392 0.3034 0.3794 0.297(.059)

6 - 0.4441 0.5462 0.5427 0.5918 0.4854 0.522(.052)
✓ 0.4495 0.5603 0.5652 0.6286 0.5535 0.551(.058)

10 - 0.4866 0.5584 0.6393 0.6613 0.6094 0.591(.063)
✓ 0.5632 0.6209 0.6381 0.6718 0.6383 0.626(.036)

15 - 0.5938 0.6356 0.6702 0.6926 0.6499 0.648(.033)
✓ 0.6157 0.6163 0.7117 0.6936 0.6537 0.658(.039)

20 - 0.6318 0.6422 0.7102 0.7383 0.6356 0.672(.044)
✓ 0.6382 0.6541 0.7112 0.7309 0.6806 0.683(.034)

30 - 0.6339 0.6558 0.7498 0.7701 0.6685 0.696(.054)
✓ 0.6841 0.6671 0.7507 0.7708 0.6973 0.714(.040)

51 - 0.7125 0.7287 0.7693 0.7755 0.7559 0.748(.024)
✓ 0.7087 0.7324 0.7711 0.7813 0.7661 0.752(.027)

Table 4: Segmentation results on CHD dataset from a random initialized FCN backbone. The column
labeled ’With KAF’ indicates whether the proposed KAF layer is inserted to the backbone. The
results demonstrate that the integration of the KAF layer tends to improve the mean values across
different sample sizes, indicating an enhanced performance of the FCN when augmented with the
KAF layer.

The results of our experiment are reported in Table A. We conduct trials with different training sample43

sizes. The results verify that appending KAF layers to FCN boosts performance across all sample44

sizes, with an average improvement exceeding 1%. Interestingly, we observed that FCN outperforms45

UNet in tasks involving training from scratch. However, when we incorporated the KAF layer into46

FCN, it did not surpass the performance of our layer applied to UNet. This could potentially be47

attributed to our approach in this experiment; we did not undertake hyperparameter optimization but48

instead directly added the layer we used in our main text to FCN. Therefore, compared to UNet, the49

performance improvement is relatively smaller.50

Computation analysis. As transformers [6] also incorporate long-range dependencies by learning51

self-attention among uniformly distributed patches within the image, we compare the computational52

differences of a SwinTransformer [2] and our model. Fig. 1 displays a comparison of GFLOPs and53

GPU memory usage between our method and the SwinTransformer, given two specific variations:54

the edge length of the input image and the number of self-attentions within each transformer.55

In the left-side plot, the GFLOPs of our method vary by a constant value (around 130 GFLOPs)56

as the depth of the attention map escalates. Conversely, this metric grows exponentially in the57

SwinTransformer. The disparity arises because our method keeps the number of keypoints constant,58

meaning that even as the edge length of the input image enlarges, the computation surge in the59

attention map remains consistent. In contrast, transformer-based methods like the SwinTransformer60

require a quadratic increase in computation to generate the attention map.61

Our method demonstrates a slower growth rate in memory usage, particularly as the number of self-62

attentions increases. In the SwinTransformer, the size of the attention map correlates quadratically63

with the edge length of the image. However, our approach maintains a fixed number of input keypoints,64

which stabilizes the attention map as a constant factor in memory usage.65

B Additional Implementation Details66

Keypoint Preprocessing Details. We compute the keypoint positions on the original image using67

SIFT. To obtain the keypoint positions on augmented images, we propose three potential solutions:68

(1) Extract the translation matrix from the augmented image and apply this translation to the keypoint69

positions. (2) Recompute SIFT on the augmented image to determine the new keypoint positions. (3)70

Consider each keypoint position as a label, and augment these labels alongside the original image.71

3



Figure 1: Comparison of GFLOPs and GPU memory usage between our method and the SwinTrans-
former [2]. The x-axis indicates the size of the image. We test models with different numbers of
self-attention blocks (20 or 100) within the transformer, represented by different colors. The results
illustrate that the GFLOPs of our method vary minimally with increasing attention map depth, and
the memory usage of our method increases at a slower rate with a growing number of self-attentions.
This highlights the efficiency of our method, especially with larger input image edge lengths and
more complex attention maps. We also denote the actual input size of CHD dataset (512 × 512)
and ACDC dataset (352 × 352), where our model is more computationally efficient than using a
transformer in both the GFLOPs and memory consumption.

The first solution involves retrieving the translation matrix from the augmentation package, which72

is not easily accessible in popular data augmentation packages currently available. Moreover, this73

approach requires careful handling of the cropping of the translated keypoints. The second solution74

poses the challenge of translating the correspondence from the original image pair to the augmented75

image pair. The third solution, on the other hand, retains the index of the keypoints, thus preserving76

the correspondence from the original to the augmented image. Consequently, we choose the third77

solution as our preferred approach.78

To elaborate further, we initially assign a unique index to each detected keypoint. Subsequently,79

this index is attributed to the image space, resulting in a 2D matrix. In our implementation, the80

background is designated as 0, while the keypoint index starts from 1. This matrix is then transformed81

concurrently with the original image, resulting in a translated keypoint index matrix. We further82

process the keypoints under the following two circumstances: (1) If a keypoint is present in the83

original image gets cropped out, we simply disregard that keypoint. (2) The keypoints might project84

onto one or multiple nearby positions. In this scenario, we compute the mean of all these positions,85

and this average becomes the new keypoint position in the augmented image.86

C Additional Results87

Keypoints Detection Results. In Fig. 2 and 3, we present the input images and detected keypoints88

using the Scale-Invariant Feature Transform (SIFT) [4]. The results suggest that the majority of the89

detected keypoints are located in the foreground rather than the background. This helps the KAF layer90

to concentrate more on the regions that are crucial for segmentation tasks. Furthermore, we display91

the transformed keypoint positions after performing data augmentation on the input image in the third92

column. As described in the preprocessing details in Sec. B, during the augmentation, we transform93

the keypoint positions from the original image to the augmented one with the transformation matrix.94

Keypoint Correspondence on Images. In columns (b) and (d) of Fig. 2 and Fig. 3, we provide a95

visual representation of the detected image correspondence. The results indicate that our heuristic96

distance metrics effectively identify correspondences between neighboring slices in biomedical97

images. During data augmentation, rather than recomputing the correspondences between the98

augmented slices, we translate the found correspondences from the original slices to the augmented99

ones, similar as the keypoint processing above.100

Additional Self-attention Map. In Fig. 4, we provide a visualization of the self-similarity maps from101

two neighboring slices derived from various layers of our UNet. Similar to Fig. 3 in the main text, the102

4



Figure 2: Visualizatin of the detected keypoints and their correspondence on images sampled from
CHD dataset. The green dots represent the keypoints detected by SIFT. In column (a), we illustrate
two adjacent slices. In column (b), we showcase the correspondence between these two slices,
applying the heuristic described in section 3.2 from the main text. For the actual training, we apply
data augmentation into the input image, and examples are shown in (c) with the augmented keypoints.
We also display the transferred correspondence in column (d). Please zoom in to view the details.

similarity map of our method demonstrates better resilience to augmentations and maintains localized103

consistency among keypoints, compared to other pretrained models such as PCL and GLCL [1].104

Additional Segmentation Results. To supplement Sec. 4, we present additional segmentation results105

comparing our method with other baselines in Fig. 5. Models trained and/or finetuned with different106

numbers of subjects from both ACDC and CHD datasets are present.107

5



Figure 3: Visualization of slices, keypoints, and correspondences on the ACDC dataset.

6



PC
L

S(F3(T1(x1)) S(F3(T2(x2)) S(F4(T1(x1)) S(F4(T2(x2))

G
LC

L
O

ur
s

Self-similarity 
1/4 resolution

Self-similarity 
1/8 resolution

(a) (b) (c) (d)

Query point 
Ti: random data augmentation

Fi: feature map from the i-th layer output

S: Self-siimlarity between the query point and the image

T1(x1)

T2(x2)

Figure 4: Learned self-similarity from two adjacent slices. Each map indicates the feature similarity
between the query point feature (star) and other points within the image. We display similarity
at two different scales within the UNet encoder. The comparison between (a) and (b), (c) and (d)
indicates that ours is more resilient in maintaining the self-similarity of the features under various
transformations.

7



Figure 5: Additional segmentation results to supplement Fig. 2 in the main text.

8



References108

[1] Krishna Chaitanya, Ertunc Erdil, Neerav Karani, and Ender Konukoglu. Contrastive learning of109

global and local features for medical image segmentation with limited annotations. Advances in110

Neural Information Processing Systems, 33:12546–12558, 2020.111

[2] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining112

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings113

of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.114

[3] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic115

segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,116

pages 3431–3440, 2015.117

[4] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal118

of computer vision, 60:91–110, 2004.119

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale120

image recognition. arXiv preprint arXiv:1409.1556, 2014.121

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,122

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information123

processing systems, 30, 2017.124

[7] Dewen Zeng, Yawen Wu, Xinrong Hu, Xiaowei Xu, Haiyun Yuan, Meiping Huang, Jian Zhuang,125

Jingtong Hu, and Yiyu Shi. Positional contrastive learning for volumetric medical image126

segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:127

24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings,128

Part II 24, pages 221–230. Springer, 2021.129

9


	Additional Experiments
	Additional Implementation Details
	Additional Results

