
A Related Works445

Value Divergence with Neural Network. In online reinforcement learning (RL), off-policy algo-446

rithms that employ value function approximation and bootstrapping can experience value divergence,447

a phenomenon known as the deadly triad [35, 4, 36, 37, 11]. Deep Q-Networks (DQN) typify this448

issue. As they employ neural networks for function approximation, they are particularly susceptible449

to Q-value divergence [18, 13, 37]. Past research has sought to empirically address this divergence450

problem through various methods, such as the use of separate target networks [29] and Double-Q451

learning [18, 13]. Achiam et al. [1] analyze a linear approximation of Q-network to characterizes452

the diverge, while CrossNorm [6] uses a elaborated version of BatchNorm [19] to achieve stable453

learning. Value divergence becomes even more salient in offline RL, where the algorithm learns454

purely from a fixed dataset without additional environment interaction [14, 24]. Much of the fo-455

cus in the field of offline RL has been on controlling the extent of off-policy learning, i.e., policy456

constraint [12, 30, 23, 14, 40, 38, 8, 32]. Several previous studies [31, 5] have empirically utilized457

LayerNorm to enhance performance in online and offline RL. These empirical results partially align458

with the experimental section of our work. However, our study makes a theoretical explanation for459

how LayerNorm mitigates divergence through the NTK analysis. Specifically, we empirically and460

theoretically illustrate how LayerNorm reduces SEEM. In addition to LayerNorm, our contribution461

extends to explaining divergence and proposing promising solutions from the perspective of reducing462

SEEM. Specially, we discover that WeightNorm can also be an effective tool and explain why other463

regularization techniques fall short. Finally, we perform comprehensive experiments to empirically464

verify the effectiveness of LayerNorm on the %X dataset, a practical setting not explored in previous465

work. Thus, our contributions are multifaceted and extend beyond the mere application of LayerNorm.466

Offline RL. Offline RL presents significant challenges due to severe off-policy issues and extrapola-467

tion errors. Some existing methods focuses on designs explicit or implicit policy regularizations to468

minimize the discrepancy between the learned and behavior policies. For example, TD3+BC [13, 12]469

directly adds a behavior cloning loss to mimic the behavior policy, Diffusion-QL [38] further replace470

the BC loss with a diffusion loss and using diffusion models as the policy. CRR [39] and AWR [32]471

impose an implicit policy regularization by performing policy gradient-style policy updates. Mean-472

while, some other works try to alleviate the extrapolation errors by modifying the policy evaluation473

procedure. Specifically, CQL [25] penalizes out-of-distribution actions for having higher Q-values,474

while IQL [23] and OneStep RL [7] only uses in-distribution data for policy evaluation, thus avoiding475

querying unseen actions. Alternatively, decision transformer (DT) [9] and trajectory transformer [21]476

cast offline RL as a sequence generation problem, which are beyond the scope of this paper. Despite477

the effectiveness of the above methods, they usually neglect the effect of function approximator and478

are thus sensitive to hyperparameters for trading off performance and training stability. Exploration479

into the function approximation aspect of the deadly triad is lacking in offline RL. Moreover, a480

theoretical analysis of divergence in offline RL that does not consider the function approximator481

would be inherently incomplete. We instead focus on this orthogonal perspective and provide both482

theoretical understanding and empirical solution to the offline RL problem.483

B Proof of Main Theorems484

Before proving our main theorem, we first state an important lemma.485

Lemma 1. For any L-layer ReLU-activate MLP and any fixed input x,x′. If we scale up every486

parameter of fθ to λ times, namely θ′ = λθ where λ is a large number such that the bias term is487

negligible, then we have following equations hold488

fθ′(x) =λLfθ(x),

∇θfθ′(x) ≈λL−1∇θfθ(x),

Gθ′(x,x′) ≈λ2(L−1)Gθ(x,x
′).

Proof. Recursively define
zℓ+1 = W ℓz̃ℓ + bℓ, z0 = x

z̃ℓ = σ(zℓ).

13

Then it is easy to see that if we multiply each W ℓ and bℓ by λ, denote the new corresponding value489

to be z′
ℓ we have490

z′
1 =λz1

z′
2 =λ2z2

. . .

z′
L =λLzL

Hence we know fθ′(x) = λLfθ(x).491

Taking gradient backwards, we know that
∥∥∥ ∂f
∂W ℓ

∥∥∥ is proportional to both ∥z̃ℓ∥ and
∥∥∥ ∂f
∂zℓ+1

∥∥∥. There-
fore we know

∂fθ′

∂W ′
ℓ

= z̃′
ℓ

∂fθ′

∂z′
ℓ+1

= λℓz̃ℓ · λL−ℓ−1 ∂fθ
∂zℓ+1

= λL−1 ∂fθ
∂W ℓ

.

This suggests that all gradients with respect to the weights become scaled by a factor of λL−1. The492

gradients with respect to the biases are proportional to λL−l. When λ is large enough to render493

the gradient of the bias term negligible, it follows that ∇θfθ′(x) ≈ λL−1∇θfθ(x). This equation494

implies that the gradient updates for the model parameters are dominated by the weights, with495

negligible contribution from the bias terms. And since NTK is the inner product between gradients,496

we know Gθ′(x,x′) ≈ λ2(L−1)Gθ(x,x
′).497

Theorem 1 Suppose that the network’s parameter at iteration t is θt. For each transition498

(si, ai, si+1, ri) in dataset, denote r = [r1, . . . , rM]⊤ ∈ RM , π̂θt(s) = argmaxa Q̂θt(s, a). Denote499

x∗
i,t = (si+1, π̂θt(si+1)). Concatenate all x∗

i,t to be X∗
t . Denote ut = fθt(X)− (r+ γ · fθt(X

∗
t))500

to be TD error vector at iteration t. The learning rate η is infinitesimal. We have the following501

evolving equation for ut+1502

ut+1 = (I + ηAt)ut. (2)

where A = (γϕθt(X
∗
t)− ϕθt(X))

⊤
ϕθt(X) = γGθt(X

∗
t ,X)−Gθt(X,X).503

Proof. For the sake of simplicity, denote Zt = ∇θfθ(X)
∣∣∣
θt

,Z∗
t = ∇θfθ(X

∗
t)
∣∣∣
θt

. The Q-value504

iteration minimizes loss functionL defined byL(θ) = 1
2 ∥fθ(X)− (r + γ · fθt

(X∗
t))∥

2
2 . Therefore505

we have the gradient as506

∂L(θ)
∂θ

= Zt (fθ(X)− (r + γ · fθt
(X∗

t))) = Ztut. (3)

According to gradient descent, we know θt+1 = θt − ηZtut. Since η is very small, we know θt+1507

stays within the neighborhood of θt. We can Taylor-expand function fθ(·) near θt as508

fθ(X) ≈ ∇⊤
θ fθ(X)

∣∣∣
θt

(θ − θt) + fθt(X) = Z⊤
t (θ − θt) + fθt(X). (4)

fθ(X
∗
t) ≈ (Z∗

t)
⊤(θ − θt) + fθt

(X∗
t). (5)

When η is infinitesimally small, the equation holds. Plug in θt+1, we know509

fθt+1
(X)− fθt

(X) = −ηZ⊤
t Ztut = −η ·Gθt

(X,X). (6)

fθt+1(X
∗
t)− fθt(X

∗
t) = −η(Z

∗
t)

⊤Ztut = −η ·Gθt(X
∗
t ,X). (7)

Since the change of θ is small, we know X∗
t+1 ≈X∗

t . So ut+1 boils down to510

ut+1 = fθt+1
(X)− r − γfθt+1

(X∗
t+1) (8)

= fθt(X)− η ·Gθt(X,X)ut − r − γ(fθt(X
∗
t)− η ·Gθt(X

∗
t ,X))ut (9)

= fθt(X)− r − γfθt(X
∗
t)︸ ︷︷ ︸

ut

+η · (γGθt(X
∗
t ,X)−Gθt(X,X))ut (10)

= (I + ηAt)ut. (11)

where A = γGθt
(X∗

t ,X)−Gθt
(X,X).511

512

14

Theorem 3 Given iteration t > t0, and A = γGθt0
(X∗

t0 ,X)−Gθt0
(X,X). The divergence of513

ut is equivalent to whether there exists an eigenvalue λ of A such that Re(λ) > 0. If converge, we514

have ut = (I + ηA)t−t0 · ut0 . Otherwise, ut becomes parallel to the eigenvector of the largest515

eigenvalue λ of A, and its norm diverges to infinity at following order.516

∥ut∥2 = O

(
1

(1− C ′ληt)
L/(2L−2)

)
. (12)

for some constant C ′ to be determined and L is the number of layers of MLP. Specially, when L = 2,517

it reduces to O
(

1
1−C′ληt

)
.518

Proof. According to Assumption 2, max action becomes stable after t0. It implies X∗
t = X∗

t0 := X∗.519

The stability of the NTK direction implies that for some scalar kt and the specific input X∗,X ,520

we have Gθt
(X∗,X) = ktGθt0

(X∗,X) and Gθt
(X,X) = ktGθt0

(X,X). Further, we have521

At = ktA. It equals 1 if the training is convergent, but will float up if the model’s predicted Q-value522

blows up.523

we know all the eigenvalues of I + ηA have form 1 + ηλi. Considering η is small enough, we524

have |1 + ηλi|2 ≈ 1 + 2ηRe(λ). Now suppose if there does not exists eigenvalue λ of A satisfies525

Re(λ) > 0, we have |1 + ηλi| ≤ 1. Therefore, the NTK will become perfectly stable so kt = 1 for526

t > t0, and we have527

ut = (I + ηAt−1)ut−1 = (I + ηAt−1)(I + ηAt−2)ut−2 = . . . =

t−1∏
s=t0

(I + ηAs)ut0 (13)

=

t−1∏
s=t0

(I + ηA)ut0 = (I + ηA)t−t0 · ut0 . (14)

Otherwise, there exists an eigenvalue for A satisfying Re(λ) > 0. Denote the one with the largest528

real part as λ, and v to be the corresponding eigenvector. We know matrix I + ηA also has left529

eigenvector v, whose eigenvalue is 1 + ηλ. In this situation, we know after each iteration, ∥ut+1∥530

will become larger than ∥ut∥. Moreover, to achieve larger and larger prediction values, the model’s531

parameter’s norm ∥θt∥ also starts to explode. We know ut is homogeneous with respect θt for532

ReLU networks. The output fθt
(X) enlarges pL times when θt enlarges p times. When the reward533

values is small with respect to the divergent Q-value, TD error ut = O(fθt
(X)) = O(θL

t). Besides,534

according to lemma1, we know kt = O(∥θt∥2(L−1)) = O(∥ut∥2(L−1)/L) = O(∥ut∥2−2/L).535

Denote g(ηt) = v⊤ut, left multiply v to equation ut+1 = (I + ηktA)ut. we have g(ηt + η) =536

(1 + ηλkt)g(ηt). Since we know such iteration will let ut to be dominated by v and align with v, we537

know g(ηt) = O(∥ut∥) for large t. Therefore kt = O(∥ut∥2(L−1)/L) = C · g(ηt)2−2/L. This boils538

down to g(ηt+ η) = g(ηt) + Cηλg(ηt)2, which further becomes539

g(ηt+ η)− g(ηt)
η

= Cλg(ηt)3−2/L (15)

Let η → 0, we have an differential equation dg
dt = Cλg(t)3−2/L. When L = 1, the MLP network540

degenerates to a linear function. The solution of ODE is541

∥ut∥ = g(ηt) = C ′eλt, (16)

reflecting the exponential growth under linear function that has been studied in previous works [36].542

When L > 2, Solving this ODE gives543

g(t) =
1

(1− C ′λt)
L/(2L−2)

. (17)

So at an infinite limit, we know ∥ut∥ = g(ηt) = O
(

1
(1−C′ληt)L/(2L−2)

)
. Specially, for the exper-544

imental case we study in Figure 3 where L = 2, it reduces to O
(

1
1−C′ληt

)
. We conduct more545

experiments with L = 3 in Appendix C.2 to verify our theoretical findings.546

15

C More Observations and Deduction547

C.1 Model Alignment548

In addition to the findings presented in Theorem 1 and Theorem 3, we have noticed several intriguing549

phenomena. Notably, beyond the critical point, gradients tend to align along a particular direction,550

leading to an infinite growth of the model’s parameters in that same direction. This phenomenon is551

supported by the observations presented in Figure 12, Figure 13, and Figure 14, where the cosine552

similarity between the current model parameters and the ones at the ending of training remains close553

to 1 after reaching a critical point, even as the norm of the parameters continually increases.554

C.2 Terminal Time555

Theorem 3 claims ∥ut∥ = O(fθt(X)) = O
(

1
(1−C′ληt)L/(2L−2)

)
, implying the relation556

1/q(2L−2)/L ∝ 1− C ′ληt. (18)

Beisdes, it implies the existence of a “terminal time” 1
C′ηλ that the model must crash at a singular557

point. When the training approaches this singular point, the estimation value and the model’s norm558

explode rapidly in very few steps. We have run an experiment with L = 2 in Figure 3, from which we559

can see that Q-value’s inverse proves to decay linearly and eventually becomes Nan at the designated560

time step. When L = 3, from our theretical analysis, we have 1/q
4
3 ∝ 1− C ′ληt. The experimental561

results in Figure 10 corroborate this theoretical prediction, where the inverse Q-value raised to the562

power of 4/3 is proportional to 1−C ′ληt after a critical point and it eventually reaches a NAN value563

at the terminal time step.564

400 600 800 1000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1/
q4 3

y = -0.00270 * x + 2.83

R-squared = 0.99855
1/q4/3 v.s. step

Figure 10: Linear decay with SGD and L=3.

C.3 Adam Case565

In this section, we will prove that if the algorithm employs Adam as the optimizer, the model still566

suffers divergence. Moreover, we demonstrate that the norm of the network increase linearly, of567

which the slope is η
√
P , where P is the number of parameters and η is the learning rate. Also, the568

Q-value prediction will increase at Lth-polynomial’s rate, where L is the number of layers of model569

fθ . Experimental results in Figure 4 verified our findings. Besides, we show that all runnings across570

D4RL environments represents the linear growth of the norm of the Q-network in Figure 12, Figure 13,571

and Figure 14.572

Theorem 4. Suppose we use Adam optimizer for Q-value iteration and all other settings are the same573

as Theorem 3. After t > t0, the model will diverge if and only if λmax(A) > 0. If it diverges, we574

have ∥θt∥ = η
√
Pt+ o(t) and ∥ut∥ = Θ(tL) where P and L are the number of parameters and the575

number of layers for network fθ, respectively.576

Proof. We only focus on the asymptotic behavior of Adam. So we only care about the dynamics for577

t > T for some large T . Also, at this regime, we know that the gradient has greatly aligned with the578

16

model parameters. So we assume that579

∇L(θt) = −C · θt. C > 0 (19)

Recall that each iteration of the Adam algorithm has the following steps.580

gt = ∇L(θt), (20)
mt = β1mt−1 + (1− β1)gt, (21)

vt = β2vt−1 + (1− β2)g2t , (22)

m̂t =
mt

1− βt
1

, (23)

v̂t =
vt

1− βt
2

, (24)

θt+1 = θt −
η√
v̂t + ϵ

m̂t. (25)

Instead of exactly solving this series, we can verify linear growth is indeed the terminal behavior of581

θt since we only care about asymptotic order. Assume that θt = kt for t > T , we can calculate mt582

by dividing both sides of the definition of mt by βt
1, which gives583

mt

βt
1

=
mt−1

βt−1
1

+
1− β1
βt
1

gt. (26)

mt

βt
1

=

t∑
s=0

1− β1
βs
1

gs. (27)

mt = −C
t∑

s=0

(1− β1)βt−s
1 ks = −kCt+ o(t) (28)

, where gt is given in Equation (19). Similarly, we have584

vt = kC2t2 + o(t2) (29)

Hence we verify that

θt+1 − θt = −η ·
mt

1− βt
1

·

√
1− βt

2

vt
→ η · kCt√

k2C2t2
= η

therefore we know each iteration will increase each parameter by exactly constant η. This in turn585

verified our assumption that parameter θt grows linearly. The slope for the overall parameter is thus586

η
√
P . This can also be verified in Figure 4. When we have θt = η

√
P θ̄, where θ̄ is the normalized587

parameter, we can further deduce the increasing order of the model’s estimation. According to lemma588

1, the Q-value estimation (also the training error) increase at speed O(tL).589

D LayerNorm’s Effect on NTK590

In this section, we demonstrate the effect of LayerNorm on SEEM. Our demonstration is just an591

intuitive explanation rather than a rigorous proof. We show that adding a LayerNorm can effectively592

reduce the NTK between any x0 and extreme input x down from linear to constant. Since each593

entry of Gram matrix G is an individual NTK value, we can informally expect that G(X∗
t ,X)’s594

eigenvalue are greatly reduced when every individual NTK value between any x0 and extreme input595

x is reduced.596

We consider a two-layer MLP. The input is x ∈ Rdin , and the hidden dimension is d. The parameters
include W = [w1, . . . ,wd]

⊤ ∈ Rd×din , b ∈ Rd and a ∈ Rd. Since for the NTK value, the last
layer’s bias term has a constant gradient, we do not need to consider it. The forward function of the
network is

fθ(x) =

d∑
i=1

aiσ(w
⊤
i x+ bi).

17

Proposition 1. For any input x and network parameter θ, if∇θfθ(x) ̸= 0, then we have597

lim
λ→∞

kNTK(x, λx) = Ω(λ)→∞. (30)

Proof. Denote zi = w⊤
i x+ bi, according to condition∇θfθ(x) ̸= 0, we know there must exist at598

least one i such that zi > 0, denote this set as P . Now consider all the i ∈ [d] that satisfy zi > 0 and599

w⊤
i x > 0 (otherwise take opposite sign of λ), we have600

∂f

∂ai

∣∣∣
x
=σ(w⊤

i x+ bi) = w⊤
i x+ bi, (31)

∂f

∂wi

∣∣∣
x
=aix, (32)

∂f

∂bi

∣∣∣
x
=ai. (33)

Similarly, we have601

∂f

∂ai

∣∣∣
λx

=σ(λw⊤
i x+ bi) = λw⊤

i x+ bi, (34)

∂f

∂wi

∣∣∣
λx

=λaix, (35)

∂f

∂bi

∣∣∣
λx

=ai. (36)

So we have∑
i∈P

〈
∂f(x)

∂θi
,
∂f(λx)

∂θi

〉
= λ

(
(w⊤

i x)
2 + biw

⊤
i x+ a2i ∥x∥2

)
+O(1) = Θ(λ).

Denote N = {1, . . . , d} \ P . We know for every j ∈ N either ∂f(x)
∂aj

= ∂f(x)
∂bj

= ∂f(x)
∂wj

= 0, or

w⊤
j x < 0. For the latter case, we know limλ→∞

∂f(λx)
∂aj

= ∂f(λx)
∂bj

= ∂f(λx)
∂wj

= 0. In both cases, we
have

lim
λ→∞

∑
j∈N

〈
∂f(x)

∂θj
,
∂f(λx)

∂θj

〉
= 0.

Therefore, according to the definition of NTK, we have

lim
λ→∞

kNTK(x, λx) = lim
λ→∞

〈
∂f(x)

∂θi
,
∂f(λx)

∂θi

〉
= Θ(λ)→∞.

602

For the model equipped with LayerNorm, the forward function becomes

fθ(x) = a⊤σ(ψ(Wx+ b)),

where ψ(·) is the layer normalization function defined as

ψ(x) =
√
d · x− 11⊤x/d∥∥x− 11⊤x/d

∥∥ .
Denote P = I − 11⊤/d, note that the derivative of ψ(·) is603

ψ̇(x) =
∂ψ(x)

∂x
=
√
d ·

(
I

∥Px∥
− Pxx⊤P

∥Px∥3

)
P . (37)

Specially, we have604

ψ(λx) =
√
d · λx− λ11

⊤x/d

λ
∥∥x− 11⊤x/d

∥∥ = ψ(x). (38)

18

Now we state the second proposition.605

Proposition 2. For any input x and network parameter θ and any direction v ∈ Rdin , if the network606

has LayerNorm, then we know there exists a universal constant C, such that for any λ ≥ 0, we have607

kNTK(x,x+ λv) ≤ C. (39)
Proof. Since for finite range, there always exists a constant upper bound, we just need to analyze the608

case for λ→ +∞ and shows that it is constant bounded. First compute∇θfθ(x) and get609

∂f

∂a

∣∣∣
x
=σ(ψ(Wx+ b)), (40)

∂f

∂W

∣∣∣
x
=a⊤σ′(ψ(Wx+ b))ψ̇(Wx+ b)x, (41)

∂f

∂b

∣∣∣
x
=a⊤σ′(ψ(Wx+ b))ψ̇(Wx+ b). (42)

These quantities are all constant bounded. Next we compute limλ→∞∇θfθ(x+ λv)610

∂f

∂a

∣∣∣
x+λv

=σ(ψ(W (x+ λv) + b))), (43)

∂f

∂W

∣∣∣
x+λv

=a⊤σ′(ψ(W (x+ λv) + b)))ψ̇(W (x+ λv) + b)(x+ λv), (44)

∂f

∂b

∣∣∣
x+λv

=a⊤σ′(ψ(Wx+ b))ψ̇(W (x+ λv) + b). (45)

According to the property of LayerNorm in Equation (38), we have611

lim
λ→∞

∂f

∂a

∣∣∣
x+λv

= lim
λ→∞

σ(ψ(W (x+ λv) + b)) (46)

=σ(ψ(W (λv))) (47)
=σ(ψ(Wv)) = Constant (48)

lim
λ→∞

∂f

∂W

∣∣∣
x+λv

= lim
λ→∞

a⊤σ′(ψ(W (x+ λv) + b)))ψ̇(W (x+ λv) + b)(x+ λv) (49)

= lim
λ→∞

a⊤σ′(ψ(Wv)))ψ̇(W (x+ λv) + b)(x+ λv) (50)

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·
(

I

∥PλWv∥
− P (λWv)(λWv)⊤P

∥P (λWv)∥3

)
P (x+ λv)

(51)

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·

(
P (x+ λv)

λ∥PWv∥
− PWvv⊤W⊤P (x+ λv)

λ∥PWv∥3

)
(52)

=a⊤σ′(ψ(Wv)))
√
d ·

(
Pv

∥PWv∥
− PWvv⊤W⊤Pv

∥PWv∥3

)
(53)

=Constant. (54)

lim
λ→∞

∂f

∂b

∣∣∣
x+λv

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·
(

I

λ∥PWv∥
− PWvWv)⊤P

λ∥P (Wv)∥3

)
P (55)

=0. (56)
Therefore we know its limit is also constant bounded. So we know there exists a universal constant612

with respect to θ,x,v such that kNTK(x,x+ λv) =
〈

∂f(x)
∂θi

, ∂f(x+λv)
∂θi

〉
≤ C.613

E Experiment Setup614

SEEM Experiments For the experiments presented in Section Section 3.1, we adopted TD3 as our615

baseline, but with a modification: instead of using an exponential moving average (EMA), we directly616

19

copied the current Q-network as the target network. The Adam optimizer was used with a learning rate617

of 0.0003, β1 = 0.9, and β2 = 0.999. The discount factor, γ, was set to 0.99. Our code builds upon618

the existing TD3+BC framework, which can be found at https://github.com/sfujim/TD3_BC.619

SEEM Reduction Experiments For the experiments discussed in Section Section 4, we maintained620

the same configuration as in the SEEM experiments, with the exception of adding regularizations and621

normalizations. LayerNorm was implemented between the linear and activation layers with learnable622

affine parameters, applied to all hidden layers excluding the output layer. WeightNorm was applied623

to the output layer weights.624

Offline RL Algorithm Experiments For the experiments presented in Section Section 5, we used625

true offline RL algorithms including TD3+BC, IQL, Diff-QL, and CQL as baselines. We implement626

our method on the top of official implementations of TD3+BC and IQL; for CQL and Diff-QL, we627

use reliable JAX implementations. LayerNorm was directly added to the critic network in these628

experiments.629

Linear Decay of Inverse Q-value with SGD Given that the explosion in D4RL environments630

occurs very quickly in the order of 1
1−C′ληt and is difficult to capture, we opted to use a simple631

toy task for these experiments. The task includes a continuous two-dimensional state space s =632

(x1, x2) ∈ S = R2, where the agent can freely navigate the plane. The action space is discrete, with633

8 possible actions representing combinations of forward or backward movement in two directions.634

Each action changes the state by a value of 0.01. All rewards are set to zero, meaning that the true635

Q-value should be zero for all state-action pairs. For this task, we randomly sampled 100 state-action636

pairs as our offline dataset. The Q-network was implemented as a two-layer MLP with a hidden size637

of 200. We used SGD with a learning rate of 0.01, and the discount factor, γ was set to 0.99.638

F More Experiments639

Benchmarking Normalizations. Previously, we have demonstrated that LayerNor, BatchNorm,640

and WeightNorm can effectively maintain a low SEEM and stabilize Q convergence in Section 4. Our641

next goal is to identify the most suitable regularization method for the value network in offline RL.642

Prior research has shown that divergence is correlated with poor control performance[37, 18]. In this643

context, we evaluate the effectiveness of various regularization techniques based on their performance644

in two distinct settings - the Antmaze task and the X% Mujoco dataset we mentioned above. Previous645

offline RL algorithms have not performed particularly well in these challenging scenarios. As646

displayed in Figure 11, TD3+BC, when coupled with layer normalization or batch normalization,647

yields significant performance enhancement on the 10% Mujoco datasets. The inability of batch648

normalization to improve the performance might be attributed to the oscillation issue previously649

discussed in Section 4. In the case of Antmaze tasks, which contain numerous suboptimal trajectories,650

we select TD3 with a diffusion policy, namely Diff-QL [38], as our baseline. The diffusion policy is651

capable of capturing multi-modal behavior. As demonstrated in Figure 11 and Table 2, LayerNorm652

can markedly enhance performance on challenging Antmaze tasks. In summary, we empirically find653

LayerNorm to be a suitable normalization for the critic in offline RL.654

TD3+BC LN BN WN
300

350

400

450

500

550

600

P
er

fo
rm

an
ce

Regularizations

Figure 11: Normalizations effect on 10% Mujoco Locomotion Datasets.

20

https://github.com/sfujim/TD3_BC

Table 2: Normalizations effect on two challenging Antmaze tasks.
Dataset diff-QL LN BN WN

antmaze-large-play-v0 1.6 72.7 1.0 35.0
antmaze-large-diverse-v0 4.4 66.5 2.1 42.5

How LayerNorm should be added. The inclusion of LayerNorm is situated between the linear655

and activation layers. However, the ideal configuration for adding LayerNorm can vary and may656

depend on factors such as 1) the specific layers to which LayerNorm should be added, and 2) whether657

or not to apply learnable per-element affine parameters. To explore these variables, we conducted658

an assessment of their impacts on performance in the two most challenging Antmaze environments.659

Our experimental setup mirrored that of the Antmaze experiments mentioned above, utilizing a three-660

layer MLP critic with a hidden size configuration of (256,256,256). We evaluated variants where661

LayerNorm was only applied to a portion of hidden layers and where learnable affine parameters were662

disabled. As seen in Table 3, the performances with LayerNorm applied solely to the initial layers663

LN (0), LN (0,1) are considerably lower compared to the other setups in the ‘antmaze-large-play-v0’664

task, while applying LayerNorm to all layers LN(0,1,2) seems to yield the best performance. For the665

‘antmaze-large-diverse-v0’ task, performances seem to be more consistent across different LayerNorm666

applications. Overall, this analysis suggests that applying LayerNorm to all layers tends to yield667

the best performance in these tasks. Also, the utilization of learnable affine parameters appears less668

critical in this context.669

Table 3: The effect of LayerNorm implementations on two challenging Antmaze tasks.
Dataset w.o. LN LN LN LN LN LN LN

(0) (0,1,) (1,2) (2) (0,1,2) (no learnable)

antmaze-large-play-v0 1.6 0 0 8.3 17.8 72.7 72.8
antmaze-large-diverse-v0 4.4 60.2 68 77.1 65.5 66.5 66.7

G Discussion670

SEEM and Deadly Triad. Deadly Triad is a term that refers to a problematic interaction observed671

in reinforcement learning algorithms, where off-policy learning, function approximation, and boot-672

strapping converge, leading to divergence during training. Existing studies primarily analyze linear673

functions as Q-values, which tend to limit the analysis to specific toy examples. In contrast, our work674

uses NTK theory to provide an in-depth understanding of the divergence of Q-values in non-linear675

neural networks in realistic settings, and introduces SEEM as a tool to depict such divergence. SEEM676

can be used to understand the Deadly Triad as follows: If a policy is nearly on-policy, X∗
t is merely a677

perturbation of X . Consequently, At = γGθt
(X∗

t ,X)−Gθt
(X,X) ≈ (γ− 1)Gθt

(X,X), with678

G tending to be negative-definite. Without function approximation, the update of Q(X) will not679

influence Q(X∗
t), and the first term in At becomes zero. At = −Gθt(X,X) ensures that SEEM680

is non-positive and Q-value iteration remains non-expansive. If we avoid bootstrapping, the value681

iteration transforms into a supervised learning problem with well-understood convergence properties.682

However, when all three components in Deadly Triad are present, the NTK analysis gives rise to the683

form At = γGθt
(X∗

t ,X)−Gθt
(X,X), which may result in divergence if the SEEM is positive.684

Policy Constraint and LayerNorm. We have established a connection between SEEM and value685

divergence. As shown in Figure 6, policy constraint alone can also control SEEM and prevent686

divergence. In effect, policy constraint addresses an aspect of the Deadly Triad by managing the687

degree of off-policy learning. However, an overemphasis on policy constraint, leading to excessive688

bias, can be detrimental to the policy and impair performance, as depicted in Figure 7. Building on689

this insight, we focus on an orthogonal perspective in deadly triad - regularizing the generalization690

capacity of the critic network. Specifically, we propose the use of LayerNorm in the critic network to691

inhibit value divergence and enhance agent performance. Policy constraint introduces an explicit bias692

into the policy, while LayerNorm does not. Learning useful information often requires some degree693

of prior bias towards offline dataset, but too much can hinder performance. LayerNorm, offering an694

orthogonal perspective to policy constraint, aids in striking a better balance.695

21

H More Visualization Results696

In Assumption 2, we posit that the direction of NTK and the policy remains stable following a697

certain period of training. We validates this assumption through experimental studies. We observe698

the convergence of the NTK trajectory and policy in all D4RL Mujoco Locomotion and Antmaze699

tasks, as depicted in the first two columns of Figures Figure 12, Figure 13, and Figure 14. We also700

illustrate the linear growth characteristic of Adam optimization (as outlined in Theorem Theorem 4)701

in the fourth column. As a consequence, the model parameter vectors maintain a parallel trajectory,702

keeping the cosine similarity near 1 as shown in the third column. Figure 15 and Figure 16 showcase703

how SEEM serves as a ”divergence detector”in Mujoco and Antamze tasks. The surge in the SEEM704

value is consistently synchronized with an increase in the estimated Q-value.705

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
walker2d-medium-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
walker2d-medium-replay-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
walker2d-medium-expert-v2 (3 seeds)

Figure 12: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in D4RL Mujoco Walker2d tasks.

22

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000
Model Norm

halfcheetah-medium-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

Model Norm
halfcheetah-medium-replay-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

Model Norm
halfcheetah-medium-expert-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
hopper-medium-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
hopper-medium-replay-v2 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

Model Norm
hopper-medium-expert-v2 (3 seeds)

Figure 13: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in D4RL Mujoco Halfcheetah and Hopper tasks.

23

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
antmaze-umaze-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000
Model Norm

antmaze-umaze-diverse-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

50000

100000

150000

200000

Model Norm
antmaze-medium-play-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

10000

20000

30000

Model Norm
antmaze-medium-diverse-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

25000

50000

75000

100000

125000

Model Norm
antmaze-large-play-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

NTK similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Action similarity

0 1000 2000 3000
K steps

0.0

0.2

0.4

0.6

0.8

1.0

Model similarity

0 1000 2000 3000
K steps

0

25000

50000

75000

100000

125000

Model Norm
antmaze-large-diverse-v0 (3 seeds)

Figure 14: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in Antmaze tasks.

24

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
10

10
13

10
10

10
13

10
10

10
13

walker2d-medium-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
10

10
13

10
10

10
13

10
10

10
13

walker2d-medium-replay-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
10

10
13

10
10

10
13

10
10

10
13

walker2d-medium-expert-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
10

10
13

10
10

10
13

10
10

10
13

halfcheetah-medium-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
9

10
12

10
8

10
12

10
10

10
13

halfcheetah-medium-replay-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
10

10
13

10
10

10
13

10
10

10
13

halfcheetah-medium-expert-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
9

10
12

10
9

10
12

10
9

10
12

hopper-medium-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
9

10
12

10
9

10
12

10
9

10
12

hopper-medium-replay-v2 (3 seeds)

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 2000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
9

10
12

10
9

10
12

10
9

10
12

hopper-medium-expert-v2 (3 seeds)

Figure 15: The normalized kernel matrix’s SEEM (in red) and the estimated Q-value (in blue) in
D4RL Mujoco tasks. For each environment, results from three distinct seeds are reported.

25

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
4

10
10

10
9

10
12

10
4

10
10

antmaze-umaze-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
4

10
10

10
2

10
4

10
8

10
11

antmaze-umaze-diverse-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
4

10
10

10
7

10
10

10
4

10
10

antmaze-medium-play-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
6

10
9

10
4

10
8

10
2

10
6

antmaze-medium-diverse-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
3

10
9

10
3

10
1

10
3

10
9

antmaze-large-play-v0 (3 seeds)

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

0 1000 2000 3000
K steps

0.0

0.5

1.0 SEEM/Q-value

10
3

10
9

10
2

10
1

10
0

10
4

10
10

antmaze-large-diverse-v0 (3 seeds)

(a) The normalized kernel matrix’s SEEM (in red) and the estimated Q-value (in blue) in D4RL Mujoco tasks.

0 2000
K steps

10
3

10
12

Unnormalized SEEM

0 2000
K steps

10
11

10
15

Unnormalized SEEM

0 2000
K steps

10
3

10
11

Unnormalized SEEM
antmaze-umaze-v0 (3 seeds)

0 2000
K steps

10
3

10
11

Unnormalized SEEM

0 2000
K steps

10
1

10
2

Unnormalized SEEM

0 2000
K steps

10
4

10
11

Unnormalized SEEM
antmaze-umaze-diverse-v0 (3 seeds)

0 2000
K steps

10
3

10
11

Unnormalized SEEM

0 2000
K steps

10
6

10
10

Unnormalized SEEM

0 2000
K steps

10
3

10
12

Unnormalized SEEM
antmaze-medium-play-v0 (3 seeds)

0 2000
K steps

10
2

10
7

Unnormalized SEEM

0 2000
K steps

10
2

10
8

Unnormalized SEEM

0 2000
K steps

10
1

10
4

Unnormalized SEEM
antmaze-medium-diverse-v0 (3 seeds)

0 2000
K steps

10
3

10
12

Unnormalized SEEM

0 2000
K steps

10
4

10
2

Unnormalized SEEM

0 2000
K steps

10
2

10
10

Unnormalized SEEM
antmaze-large-play-v0 (3 seeds)

0 2000
K steps

10
3

10
12

Unnormalized SEEM

0 2000
K steps

10
4

10
2

Unnormalized SEEM

0 2000
K steps

10
3

10
11

Unnormalized SEEM
antmaze-large-diverse-v0 (3 seeds)

(b) The unnormalized kernel matrix’s SEEM. The three curves in each environment correspond directly to those
presented in Figure (a)

Figure 16: In Figure (a), an inflation in the estimated Q-value coincides with a surge in the normalized
SEEM. However, there are some anomalies, such as the second running in the ’umaze-diverse’
environment, where the Q-value rises while the unnormalized SEEM remains low. However, the
corresponding normalized SEEM in Figure (b) suggests an actual inflation of SEEM. Furthermore,
for scenarios where the Q-value converges, as seen in the second running in ’large-diverse’, the
unnormalized SEEM maintains an approximate zero value.

26

	Related Works
	Proof of Main Theorems
	More Observations and Deduction
	Model Alignment
	Terminal Time
	Adam Case

	LayerNorm's Effect on NTK
	Experiment Setup
	More Experiments
	Discussion
	More Visualization Results

