
Figure 4: Pursuit Environment

A Algorithm Details490

Algorithm 1 SUPER algorithm for DQN
for each training iteration do

Collect a batch of experiences b {DQN}
for each agent i do

Insert bi into bu↵eri {DQN}
end for
for each agent i do

Select b⇤i ✓ bi of experiences to share1 {SUPER}
for each agent j 6= i do

Insert b⇤i into bu↵erj {SUPER}
end for

end for
for each agent i do

Sample a train batch bi from bu↵eri {DQN}
Learn on train batch bi {DQN}

end for
end for

1 See section “Experience Selection”

Algorithm 1 shows a full pseudocode listing for SUPER on DQN.491

B Experiment Domains492

SISL: Pursuit is a semi-cooperative environment, where a group of pursuers has to capture a group493

of evaders in a grid-world with an obstacle. The evaders (blue) move randomly, while the pursuers494

(red) are controlled by RL agents. If a group of two or more agents fully surround an evader, they495

each receive a reward, and the evader is removed from the environment. The episode ends when all496

evaders have been captured, or after 500 steps, whichever is earlier. Pursuers also receive a (very497

small) reward for being adjacent to an evader (even if the evader is not fully surrounded), and a498

(small) negative reward each timestep, to incentivize them to complete episodes early. We use 8499

pursuers and 30 evaders.500

MAgent: Battle is a semi-adversarial environment, where two groups of opposing teams are501

battling against each other. An agent is rewarded 0.2 points for attacking agents in the opposite team,502

and 5 points if the other agent is killed. All agents start with 10 health points (HP) and lose 2 HP in503

each attack received, while regaining 0.1 HP in every turn. Once killed, an agent is removed from the504

environment. An episode ends when all agents from one team are killed. The action space, of size 21505

is identical for all agents, with (8) options to attack, (12) to move and one option to do nothing. Since506

no additional reward is given for collaborating with other agents in the same team, it is considered to507

be more challenging to form collaboration between agents in this environment. We use a map of size508

18⇥ 18 and 6 agents per team.509

13



Figure 5: Performance of SUPER-dueling-DDQN variants with target bandwidth 0.1 on all three
domains. For Pursuit, performance is the total mean episode reward from all agents. For Battle and
Adversarial-Pursuit, performance is the total mean episode reward from all agents in the sharing team
(blue team in Battle, prey team in Adversarial-Pursuit). Shaded areas indicate one standard deviation.

MAgent: Adversarial Pursuit is a predator-prey environment, with two types of agents, prey and510

predator. The predators navigate through obstacles in the map with the purpose of tagging the prey.511

An agent in the predators team is rewarded 1 point for tagging a prey, while a prey is rewarded �1512

when being tagged by a predator. Unlike in the Battle environment, prey agents are not removed from513

the game when being tagged. Note that prey agents are provided only with a negative or zero reward514

(when manage to avoid attacks), and their aim is thus to evade predator agents. We use 8 prey agents,515

and 4 predator agents.516

C Further Experimental Results517

C.1 Additional Results on DDQN518

In addition to the final performance shown in the main text, we show in Table 1 numerical results519

from all experiments. Figure 5 shows learning curves from all experiments.

Table 1: Performance in all three environments, taken at 800k timesteps (Pursuit), 300k timesteps
(Battle), 300k timesteps (Adv. Pursuit). Numbers in parentheses indicate standard deviation. Highest
performance in each environment is printed in bold.

pursuit battle adversarial_pursuit
ddqn 181.43 (+-4.16) 9.46 (+-0.86) -719.78 (+-66.82)

ddqn_paramshare -139.03 (+-121.11) 15.15 (+-8.64) -268.78 (+-60.11)
ddqn_shareall 148.27 (+-9.22) 9.25 (+-6.60) -568.91 (+-40.82)

maddpg -342.24 (+-4.12) -10.31 (+-nan) -1071.71 (+-8.56)
seac 32.51 (+-70.27) -2.73 (+-0.03) -993.40 (+-120.22)

super_ddqn_gaussian 373.63 (+-9.15) 16.28 (+-3.42) -480.37 (+-15.79)
super_ddqn_quantile 454.56 (+-5.89) 17.05 (+-2.74) -506.29 (+-35.03)

super_ddqn_stochastic 266.42 (+-85.52) 7.43 (+-5.64) -582.59 (+-15.20)

520

14



Figure 6: Performance of SUPER-DQN variants with target bandwidth 0.1 on Pursuit and Adversarial-
Pursuit. For Pursuit, performance is the total mean episode reward from all agents. For Adversarial-
Pursuit, performance is the total mean episode reward from all agents in the prey team. Shaded areas
indicate one standard deviation.

Figure 7: Performance of SUPER-dueling-DDQN variants with target bandwidth 0.1 on all Battle
and Adversarial=Pursuit, with co-evolving opponents. Performance is the total mean episode reward
from all agents in the sharing team (blue team in Battle, prey team in Adversarial-Pursuit). Shaded
areas indicate one standard deviation.

C.2 DQN and Dueling DDQN521

For all of the DDQN and SUPER-DDQN variants discussed in Section 5, we consider also variants522

based on standard DQN. Figure 6 shows results from these experiments.523

C.3 Co-Evolving Teams524

In Battle and Adversarial-Pursuit we further show a variant where the opposing team are co-evolving525

with the blue / prey team. In this variant, all agents start from a randomly initialized policy and526

train concurrently, using a DDQN algorithm. However, only the blue / prey team share experiences527

using the SUPER mechanism. We only do this for the DDQN baseline as well as discriminate and528

share-all SUPER variants. This is in part because some of the other baseline algorithms do not support529

concurrently training opposing agents with a different algorithm in available implementations; and in530

part because we consider this variant more relevant to real-world scenarios where fully centralized531

training may not be feasible. We aim to show here how sharing even a small number of experiences532

changes the learning dynamics versus to non-sharing opponents. Figure 7 shows this variant.533

C.4 Further Ablations534

In addition to the ablations presented in the main text, we include here additional results from the535

Battle environment in Figure 9. Results are broadly similar to the results in the main text, with a536

notably bad performance for uniform random experience sharing.537

15



Figure 8: Performance of DDQN and SUPER-DDQN (gaussian experience selection, target band-
width 0.1) for differing hyperparameter settings of the underlying DDQN algorithm. Top: Different
learning rates and rollout fragment lengths in Pursuit. Bottom: Different exploration settings in Pur-
suit and co-evolving variants of Batle and Adversarial-Pursuit. Hyperparameters otherwise identical
to those used in Figure 1. Performance measured at 1M timesteps in Pursuit, 300k timesteps in Battle,
400k timesteps in Adversarial-Pursuit.

Figure 9: Performance of quantile SUPER vs share-all and uniform random experience sharing in
Pursuit at 800k timesteps.

D Stability Across Hyperparameters538

Figure 8 shows performance of no-sharing DDQN and SUPER-DDQN for different hyperparam-539

eters. As we can see, SUPER-DDQN outperforms no-sharing DDQN consistently across all the540

hyperparameter settings considered.541

E Additional Analysis of Bandwidth Sensitivity542

We present here a more detailed analysis of bandwidth sensitivity of SUPER-DDQN in the three543

experience selection modes we discuss in the main text. Figure 10 shows the mean performance544

16



Figure 10: Performance of SUPER with different experience selection and varying bandwidth in
Pursuit at 1-2M timesteps (top) and at 250k timesteps (bottom).

across five seeds for gaussian (left), quantile (middle) and stochastic (right) experience selection, at545

1-2M timesteps (top) and at 250k timesteps (bottom). We can see that at 1-2M timesteps and a target546

bandwidth of 0.1, all three experience selection criteria perform similary. One thing that stands out is547

that stochastic selection has much lower performance at other target bandwidths, and also much less548

performance uplift compared to no-sharing DDQN at 250k timesteps at any bandwidth. Gaussian549

experience selection appears to be less sensitive to target bandwidth, but upon closer analysis we550

found that it also was much less responsive in terms of how much actual bandwidth it used at different551

settings. Figure 11 (left) shows the actual bandwidth used by each selection criterion at different552

target bandwidths. We can see that quantile and stochastic experience hit their target bandwidth very553

well in general.5 What stands out, however, is that gaussian selection vastly overshoots the target554

bandwidth at lower settings, never going significantly below 0.01 actual bandwidth.555

What is a fairer comparison therefore is to look at performance versus actual bandwidth used for each556

of the approaches, which we do in Figure 11 (middle, at 1-2M timesteps, and right, at 250k timesteps).557

For these figures, we did the following: First, for each experience selection approach and target band-558

width, we computed the mean performance and mean actual bandwidth across the five seeds. Then,559

for each experience selection mode, we plotted these (meanactualbandwidth,meanperformance)560

(one for each target bandwidth) in a line plot.6 The result gives us a rough estimate of how each561

approach’s performance varies with actual bandwidth used. We see again that stochastic selection562

shows worse performance than quantile at low bandwidths, and early in training. We also see that563

gaussian selection very closely approximates quantile selection. Notice that gaussian selection never564

hits an exact actual bandwidth of 0.1, and so we cannot tell from these data if it would match quantile565

selection’s performance at its peak. However, we can see that at the actual bandwidths that gaussian566

selection does hit, it shows very similar performance to quantile selection. As stated in the main567

5Quantile selection overshoots at 1e-4 (0.0001) target bandwidth and is closer to 1e-3 actual bandwidth
usage, which we attribute to a rounding error, as we ran these experiments with a window size of 1500 (1.5e+3),
and a quantile of less than a single element is not well-defined.

6Because each data point now has variance in both x- and y-directions, it is not possible to draw error bars
for these.

17



Figure 11: Left: Actual bandwidth used (fraction of experiences shared) at different target bandwidths.
Middle, right: Performance compared to actual bandwidth used at 1-2M and 250k timesteps.

text, our interpretation of this is that using mean and variance to approximate the exact distribution568

of absolute td-errors is a reasonable approximation, but that we might need to be more clever in569

selecting c in equation 3.570

F Experiment Hyperparameters & Details571

We performed all experiments using the open-source library RLlib [16]. Experiments in Figure 1572

and 6 were ran using RLlib version 2.0.0; experiments in other figures were run using version 1.13.0.573

Environments used are from PettingZoo [33], including SISL [8] and MAgent [40]. The SUPER574

algorithm was implemented by modifying RLlib’s standard DQN algorithm to perform the SUPER575

experience sharing between rollout and training. Table 2 lists all the algorithm hyperparameters576

and environment settings we used for all the experiments. Experiments in the “Stability across577

hyperparameters” section had hyperparameters set to those listed in Table 2 except those specified578

in Figure 8. Any parameters not listed were left at their default values. Hyperparameters were579

tuned using a grid search; some of the combinations tested are also discussed in the “Stability across580

hyperparameters” section. For DQN, DDQN and their SUPER variants, we found hyperparameters581

using a grid search on independent DDQN in each environment, and then used those hyperparameters582

for all DQN/DDQN and SUPER variants in that environment. For all other algorithms we performed a583

grid search for each algorithm in each environment. For MADDPG we attempted further optimization584

using the Python HyperOpt package [4], however yielding no significant improvement over our585

manual grid search. For SEAC, we performed a grid search in each environment, but found no586

better hyperparameters than the default. We found a CNN network architecture using manual experi-587

mentation in each environment, and then used this architecture for all algorithms except MADDPG588

where we used a fully connected net for technical reasons. We tested all other algorithms using589

both the hand-tuned CNN as well as a fully connected network, and found that the latter performed590

significantly worse, but still reasonable (and in particular significantly better than MADDPG using591

the same fully connected network, on all domains).592

All experiments were repeated with three seeds. All plots show the mean and standard deviation of593

these seeds at each point in training. For technical reasons, individual experiment runs did not always594

report data at identical intervals. For instance, one run might report data when it had sampled 51000595

environment timesteps, and another run might report at 53000 environment timesteps. In order to still596

be able to report a meaningful mean and standard deviation across repeated runs, we rounded down597

the timesteps reported to the nearest k steps, i.e. taking both the data above to represent each run’s598

performance at 50000 steps. We set k to the target reporting interval in each domain (8000 timesteps599

in Pursuit, 6000 timesteps in the other two domains). Where a run reported more than once in a600

18



10000 step interval, we took the mean of its reports to represent that run’s performance in the interval.601

Mean and standard deviation were calculated across this mean performance for each of the five seeds.602

To increase legibility, we applied smoothing to Figures 5 and 6 using an exponential window with603

↵ = 0.3 for Pursuit, ↵ = 0.1 for Battle, and ↵ = 0.25 for Adversarial-Pursuit. This removes some604

noise from the reported performance, but does not change the relative ordering of any two curves.605

G Implementation & Reproducibility606

All source code is included in the supplementary material and will be made available on publication607

under an open-source license. We refer the reader to the included README file, which contains608

instructions to recreate the experiments discussed in this paper.

Table 2: Hyperparameter Configuration Table - SISL: Pursuit
Environment Parameters

HyperParameters Value HyperParameters Value
max cycles 500 x/y sizes 16/16
shared reward False num evaders 30
horizon 500 n catch 2
surrounded True num agents(pursuers) 8
tag reward 0.01 urgency reward -0.1
constrained window 1.0 catch rewards 5
obs range 7

CNN Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

SUPER / DQN / DDQN
learning rate 0.00016 final exploration epsilon 0.001
batch size 32 nframework torch
prioritized replay_alpha 0.6 prioritized replay eps 1e-06
dueling True target network update_freq 1000
buffer size 120000 rollout fragment length 4
initial exploration epsilon 0.1

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

609

19



Table 3: Hyperparameter Configuration Table- MAgent: Battle
Environment Parameters

HyperParameters Value HyperParameters Value
minimap mode False step reward -0.005
Num blue agents 6 Num red agents 6
dead penalty -0.1 attack penalty -0.1
attack opponent reward 0.2 max cycles 1000
extra features False map size 18

CNN Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

SUPER / DQN / DDQN
learning rate 1e-4 batch size 32
framework torch prioritized replay_alpha 0.6
prioritized replay eps 1e-06 horizon 1000
dueling True target network update_freq 1200
rollout fragment length 5 buffer size 90000
initial exploration epsilon 0.1 final exploration epsilon 0.001

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

20



Table 4: Hyperparameter Configuration Table - MAgent: Adversarial Pursuit
Environment Parameters
HyperParameters Value HyperParameters Value
Number predators 4 Number preys 8
minimap mode False tag penalty -0.2
max cycles 500 extra features False
map size 18

Policy Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

SUPER / DQN / DDQN
learning rate 1e-4 batch size 32
framework torch prioritized replay alpha 0.6
prioritized replay eps 1e-06 horizon 500
dueling True target network update_freq 1200
buffer size 90000 rollout fragment length 5
initial exploration epsilon 0.1 final exploration epsilon 0.001

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

21


