
1 Appendix1

A Proof Sketch2

To better clarify our theoretical results, we provide a proof sketch here. Firstly, we decompose the3

performance difference bound under the model-based setting into three terms (Theorem 1). Sec-4

ondly, by means of using Return Bound (Theorem 2), we can bound these three terms individually5

(Theorem 3). Then, we can do some transformation to get Unified Model Shift and Model Bias6

Bound (Theorem 4), which bounds the model shift term and the model bias term in total variation7

form. However, due to the intractable property of ∆, we further explore the upper bound of |∆|8

(Theorem 5), finding that ∆ can be ignored. Finally, by the Integral Probability Metrics (Lemma 3)9

and the property of the Wasserstein distance, we derive the target which bounds the model shift term10

and the model bias term in the Wasserstein distance form.11

Figure 1: Theoretical sketch of USB-PO.

B Useful Lemmas12

In this section, we provide some proof to support our theoretical analysis.13

Lemma 1 (Total variation Distance). Consider a measurable space(Ω,Σ) and probability measures14

P and Q are defined on (Ω,Σ). The total variation distance between P and Q is defined as:15

DTV (P ||Q) = sup
A∈Σ

|P (A)−Q(A)| (1)

Eq.(1) can be equivalently written as:16

DTV (P ||Q) =
1

2

∑
ω∈Ω

|P ({ω})−Q({ω})| (2)

Proof: The proof of this lemma can be found in [7].17

Lemma 2 (Total Variation Distance of Joint Distributions). Given two distributions p(x, y) =18

p(x)p(y|x) and q(x, y) = q(x)q(y|x), the total variation distance between them can be bounded19

as:20

DTV (p(x, y)||q(x, y)) ≤ DTV (p(x)||q(x)) + max
x

DTV (p(y|x)||q(y|x)) (3)
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Proof:21

DTV (p(x, y)||q(x, y)) =
1

2

∑
x,y

|p(x, y)− q(x, y)|

=
1

2

∑
x,y

|p(x)p(y|x)− q(x)q(y|x)|

=
1

2

∑
x,y

|p(x)p(y|x)− p(x)q(y|x) + p(x)q(y|x)− q(x)q(y|x)|

≤ 1

2

∑
x,y

p(x)|p(y|x)− q(y|x)|+ |p(x)− q(x)|q(y|x)

=
1

2

∑
x,y

p(x)|p(y|x)− q(y|x)|+ 1

2

∑
x

|p(x)− q(x)|

= Ex∼p(x)[DTV (p(y|x)||q(y|x))] +DTV (p(x)||q(x))
≤ DTV (p(x)||q(x)) + max

x
DTV (p(y|x)||q(y|x))

(4)

22

Lemma 3 (Integral Probability Metrics). Consider a measurable space(X ,Σ). The integral proba-23

bility metric associated with a class F of real-valued functions on X is defined as24

dF (P,Q) = sup
f∈F

|EX∼P [f(X)]− EY∼Q[f(Y )]| (5)

where P and Q are probability measures on X . We demonstrate the following special cases:25

(a) If F = {f : ||f ||∞ ≤ c}, then we have26

dF (P,Q) = cDTV (P ||Q) (6)

(b) If F is the set of L− Lipschitz function with a norm || · ||, then we have27

dF (P,Q) = LW1(P,Q) (7)

In our paper, to distinguish the dynamic transition function, we choose F to be the class cover-28

ing V π
M . Since the value function can converge to rmax

1−γ , it only needs to satisfy the Lv-Lipschitz29

continuity and thus we can get rmax

1−γ DTV (pM ||pM ′) = LvW1(pM , pM ′) for any arbitrary model30

M,M ′.31

C Missing Proof32

Theorem 1 (Performance Difference Bound Decomposition). Let Mi ∈ M be the evaluated model33

and πi ∈ Π be the policy derived from the model. The performance difference bound can be decom-34

posed into three terms,35

V π2|M2 − V π1|M1 = (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
) (8)

Proof: We introduce two additional terms V π1

M1
and V π2

M2
that allow the performance difference bound36

objective to be divided into three operators based on the return bounds, which can be reformulated37

separately.38

V π2|M2 − V π1|M1 = V π2|M2 − V π1|M1 + (V π1

M1
− V π1

M1
) + (V π2

M2
− V π2

M2
)

= (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
)

(9)

39

Theorem 2 (Return Bound). Let Rmax denote the bound of the reward function, ϵπ denote40

maxs DTV (π1||π2) and ϵM2

M1
denote E(s,a)∼d

π1
M1

[DTV (pM1
||pM2

)]. For two arbitrary policies41

π1, π2 ∈ Π, the expected return under two arbitrary models M1,M2 ∈ M can be bounded as,42

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (10)
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Proof: We give the thorough proof referring to Lemma B.4 in MBPO [4] as follows.43

V π2

M2
− V π1

M1
=

∞∑
t=0

γt
∑
s,a

(pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a))r(s, a)

≥ −Rmax

∞∑
t=0

γt
∑
s,a

|pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a)|

= −2Rmax

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(11)

According to the Lemma 2, we have:44

DTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ DTV (p

π1

t,M1
(s)||pπ2

t,M2
(s)) + max

s
DTV (π1(·|s)||π2(·|s))

= DTV (p
π1

t,M1
(s)||pπ2

t,M2
(s)) + ϵπ

(12)

Further we expand the first term:45

DTV (p
π1

t,M1
(s)||pπ2

t,M2
(s))

=
1

2

∑
s

|pπ1

t,M1
(s)− pπ2

t,M2
(s)|

=
1

2

∑
s

|
∑
s′

pπ1

M1
(s|s′)pπ1

t−1,M1
(s′)− pπ2

M2
(s|s′)pπ2

t−1,M2
(s′)|

≤ 1

2

∑
s

∑
s′

|pπ1

M1
(s|s′)pπ1

t−1,M1
(s′)− pπ2

M2
(s|s′)pπ2

t−1,M2
(s′)|

≤ 1

2

∑
s,s′

pπ1

t−1,M1
(s′)|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|+ pπ2

M2
(s|s′)|pπ1

t−1,M1
(s′)− pπ2

t−1,M2
(s′)|

=
1

2
Es′∼p

π1
t−1,M1

(s′)[
∑
s

|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|] +DTV (p

π1

t−1,M1
(s′)||pπ2

t−1,M2
(s′))

=
1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s

|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|]

=
1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s

|
∑
a

pπ1

M1
(s, a|s′)− pπ2

M2
(s, a|s′)|]

≤ 1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s,a

|pπ1

M1
(s, a|s′)− pπ2

M2
(s, a|s′)|]

=

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)DTV (p
π1

M1
(s, a|s′)||pπ2

M2
(s, a|s′))

≤
t∑

t′=1

Es′∼p
π1
t′−1,M1

(s′)[ϵπ + Ea∼π1
[DTV (pM1

(s|s′, a)||pM2
(s|s′, a))]]

= tϵπ +

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

(13)

Then move the result of Eq.(13) to Eq.(12), we can get:46

DTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ (t+1)ϵπ+

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

(14)
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Next, we move the result of Eq.(14) to Eq.(11), we can get:47

V π2

M2
− V π1

M1

≥ −2Rmax

∞∑
t=0

γt((t+ 1)ϵπ +

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a)))

= −2Rmax(
ϵπ

(1− γ)2
+

1

1− γ

∞∑
t=1

γtEs′,a∼p
π1
t−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a)))

(15)

Here, we first simplify the second term of the Eq.(15)48

1

1− γ

∞∑
t=1

γtEs′,a∼p
π1
t−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

1− γ

∞∑
t=0

γtEs′,a∼p
π1
t,M1

(s′,a)DTV (pM1(s|s′, a)||pM2(s|s′, a))

=
γ

(1− γ)2
(1− γ)

∞∑
t=0

γtEs′,a∼p
π1
t,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

(1− γ)2
Es′,a∼d

π1
M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

(1− γ)2
ϵM2

M1

(16)

Then we bring this result back to Eq.(15) and the proof is complete.49

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (17)

50

Theorem 3 (Decomposition TVD Bound). Let ϵπi

Mi
denote E(s,a)∼d

πi
Mi

[DTV (pMi ||pM∗)]. Let Mi ∈51

M be the evaluated model and πi ∈ Π be the policy derived from the model. The decomposition52

terms can be bounded as,53

V π2|M2 − V π1|M1 ≥ 2Rmaxγ

(1− γ)2
(ϵπ1

M1
− ϵπ2

M2
− ϵM2

M1
)− 2Rmaxϵπ

(1− γ)2
(18)

Proof: According to CMLO [5] and Eq.(10), the term V π1|M1 − V π1

M1
can be approximated as54

− 2Rmaxγ
(1−γ)2 ϵπ1

M1
, thus we only need to bound the remaining two terms.55

For the term V π2|M2 − V π2

M2
, we use Eq.(10) to bound it.56

V π2|M2 − V π2

M2
≥ −2Rmax(

max
s

DTV (π2||π2)

(1− γ)2
+

γ

(1− γ)2
ϵπ2

M2
)

= −2Rmaxγ

(1− γ)2
ϵπ2

M2

(19)

Similarly, for the term V π2

M2
− V π1

M1
, we can get:57

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (20)

We now combine these three bounds together and complete the proof.58

V π2|M2 − V π1|M1 = (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
)

≥ −2Rmaxγ

(1− γ)2
ϵπ2

M2
+

2Rmaxγ

(1− γ)2
ϵπ1

M1
− 2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
)

=
2Rmaxγ

(1− γ)2
(ϵπ1

M1
− ϵπ2

M2
− ϵM2

M1
)− 2Rmaxϵπ

(1− γ)2

(21)

59
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Theorem 4 (Unified Model Shift and Model Bias Bound). Let κ denote the constant 2Rmax

(1−γ)2 and60

∆ denotes E(s,a)∼d
π1
M1

[DTV (pM2
||pM∗)] − E(s,a)∼d

π2
M2

[DTV (pM2
||pM∗)]. Let Mi ∈ M be the61

evaluated model and πi ∈ Π be the policy derived from the model. The unified model shift and62

model bias bound can be derived as,63

V π2|M2 − V π1|M1

≥ κ(γ(E(s,a)∼d
π1
M1

[DTV (pM1 ||pM∗)−DTV (pM1 ||pM2)−DTV (pM2 ||pM∗)] + ∆)− ϵπ)
(22)

Proof: Based on Eq.(18), we add a new term κE(s,a)∼d
π1
M1

[DTV (pM2
||pM∗)] to reformulate the64

optimization objective.65

Theorem 5 (|∆| Upper Bound). Let Mi ∈ M be the evaluated model and πi ∈ Π be the policy66

derived from the model. The term ∆ can be upper bounded as:67

|∆| ≤ 2γ

1− γ
E(s,a)∼d

π1
M1

[DTV (pM1
||pM2

)max
s,a

DTV (pM2
||pM∗)] +

2ϵπ
1− γ

max
s,a

DTV (pM2
||pM∗)

(23)

Proof: First, we combine these two terms.68

|∆| = |E(s,a)∼d
π1
M1

[DTV (pM2 ||pM∗)]− E(s,a)∼d
π2
M2

[DTV (pM2 ||pM∗)]|

= (1− γ)|
∞∑
t=0

γt
∑
s,a

(pπ1

t,M1
(s, a)− pπ2

t,M2
(s, a))DTV (pM2(s

′|s, a)||pM∗(s′|s, a))|

≤ (1− γ)max
s,a

DTV (pM2
(s′|s, a)||pM∗(s′|s, a))

∞∑
t=0

γt
∑
s,a

|pπ1

t,M1
(s, a)− pπ2

t,M2
(s, a)|

= 2(1− γ)max
s,a

DTV (pM2
||pM∗)

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(24)

Recalling that we get the result of the sum equation above in Eq.(14), and then we have:69

|∆| ≤ 2(1− γ)max
s,a

DTV (pM2 ||pM∗)(
ϵπ

(1− γ)2
+

γ

(1− γ)2
ϵM2

M1
)

=
2γ

1− γ
Es,a∼d

π1
M1

[DTV (pM1
||pM2

)max
s,a

DTV (pM2
||pM∗)] +

2ϵπ
1− γ

max
s,a

DTV (pM2
||pM∗)

(25)

70

D Experimental Details71

D.1 Environment Setup72

We evaluate the algorithm over a series of MuJoCo [11] continuous control benchmark tasks. To73

ensure fairness, we use the standard 1000-step version of all the environments. The details of the74

environment setup are from OpenAI Gym [1], as shown in Table 1.

Table 1: The general outline of the MuJoCo environment.

Environment-Version State Dim Action Dim Termination
Ant-v2 27 8 obs[0]<0.2 or obs[0] > 1.0

HalfCheetah-v2 17 6 -
Hopper-v2 11 3 obs[1] ≥ 0.2 or obs[0] ≤ 0.7

Humanoid-v2 45 17 obs[0] < 1.0 or obs[0] > 2.0
InvertedPendulum-v2 4 1 obs[1] > 0.2 or obs[1] < -0.2

Walker2d-v2 17 6 obs[0] ≥ 2.0 or obs[0] ≤ 0.8 or
obs[1] ≥ 1.0 or obs[1] ≤ -1.0

75
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D.2 Baseline implementation76

MFRL Baselines. We use two state-of-the-art model-free algorithms, i.e. SAC [3] and PPO [9],77

to do baseline comparison. To demonstrate the final performance and sampling efficiency of our78

method, we train SAC for 3M steps, which is much more than MBRL algorithms. The hyperparam-79

eters are consistent with the author’s settings.80

MBRL Baselines. We use several state-of-the-art model-based algorithms to do baseline compar-81

ison, covering CMLO [5], MBPO [4], SLBO [8] and STEVE [2]. The implementation of CMLO is82

based on the opensource repo published by the author and all of the hyperparameters are set accord-83

ing to the paper [5]. Our algorithm USB-PO is implemented based on the opensource repo published84

by Janner who is the author of MBPO.85

We present the final performance on six continuous benchmark tasks in Table 2. The results demon-86

strate that our algorithm achieves competitive performance compared to both MBRL and MFRL87

baselines over these tasks. Each result in the table shows the average and standard deviation on the88

maximum average returns among different random seeds and we choose 250K for HalfCheetah-v2,89

300K for Walker2d-v2, 300K for Humanoid-v2, 250K for Ant-v2, 15K for Inverted-Pendulum-v2,90

120K for Hopper-v2.91

Table 2: The final performance on six continuous benchmark tasks.

HalfCheetah Humanoid Walker2d

MBRL

STEVE 12406.29±458.08 4318.32±853.60 1109.23±1163.74
SLBO 1915.47±1398.73 459.46±34.27 3107.93±1887.09
MBPO 12765.67±594.54 5546.77±221.72 4582.06±67.44
CMLO 10143.55±193.82 5577.01±219.89 4807.60±99.89

USB-PO 15105.91±177.75 5973.75±110.99 5691.62±162.57
MFRL(@3M steps) SAC 15012 6207 5879

Ant InvertedPendulum Hopper

MBRL

STEVE 779.72±45.67 778.54±265.51 1131.61±623.52
SLBO 707.79±218.80 793.24±334.90 898.68±233.21
MBPO 4926.10±818.38 1000.00±0.00 3436.00±120.72
CMLO 5123.71±783.97 1000.00±0.00 3495.41±71.02

USB-PO 6340.84±119.06 1000.00±0.00 3694.22±46.19
MFRL(@3M steps) SAC 5934 1000 3610

D.3 Hyperparameters92

Our algorithm USB-PO is based on MBPO [4] and is implemented according to the opensource repo93

published by the MBPO author. Except for the learning rate in phase 2 of our USB-PO algorithm,94

the hyperparameters are completely identical to the MBPO settings for all environments. In all95

benchmark tasks, we set this learning rate to 1e-4.96

D.4 Computing Infrastructure97

In Table 3, we list our computing infrastructure and the computational time for training USB-PO98

on these six continuous benchmark tasks. Note that the time we report is the cost for 4 random99

seeds simultaneously on one graphics card. For Humanoid, only two random seeds can be run100

simultaneously because of the limitation of graphics memory.101

Table 3: Computing infrastructure and the computational time for each benchmark task compared
to MBPO, where the time unit d denotes day and h denotes hour.

HalfCheetah Humanoid Walker2d Ant InvertedPendulum Hopper
CPU AMD EPYC 7B12 64-Core Processor
GPU NVIDIA 2080Ti

MBPO times 2.46d 1.64d 1.75d 2.88d 3.43h 17.81h
USB-PO times 2.29d 1.51d 1.65d 2.91d 3.42h 18.28h
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E Comparison with Prior Works102

In this section, we compare USB-PO with prior theoretical works to emphasize our contribution, as103

a complementary to the main paper. First, we give a summary and then show the details as follows.104

MBPO-Style does not consider model shift and CMLO-Style rely on a fixed threshold to constrain105

model shift. Our algorithm, USB-PO, adaptively adjusts the model updates in a unified manner106

(unify model shift and model bias) to get the performance improvement guarantee.107

MBPO-Style [4, 10, 6, 12]. They use the return discrepancy bound V π|M ≥ V π
M − C(ϵm, ϵπ) to108

improve the lower bound on the performance under the real environment, i.e. as long as improving109

V π
M by more than C(ϵm, ϵπ) can guarantee improvement on V π|M . Obviously, This scheme is110

guaranteed under a fixed model and it does not consider the change in model dynamic during updates111

nor the performance variation concerning model shift. Even worse, if the model has some excessive112

updates, it is impractical to find a feasible solution to meet the improvement guarantee.113

CMLO-Style [5]. They use the performance difference bound under the model-based setting114

V π2|M2 − V π1|M1 ≥ C to directly consider model shift and model bias. However, they finally115

derive a constrained lower-bound optimization problem and use a fixed threshold to constrain model116

shift, i.e. sups∈S,a∈A DTV (PM1
(·|s, a)||PM2

(·|s, a)) ≤ σM1,M2
and determine when to update the117

model accordingly. Notably, we find that this fixed threshold plays a key role in the whole algorithm118

and needs to be carefully adjusted for each environment. If this threshold is set too low, the model119

bias of the following iteration will be large, which impairs the subsequent optimization process. If120

this threshold is set too high, the performance improvement can no longer be guaranteed. Addition-121

ally, using a fixed threshold during the whole training process makes the algorithm problematic to122

adjust adaptively.123

USB-PO (Ours). Following CMLO-Style [5], we also use the performance difference bound un-124

der the model-based setting to directly consider model shift and model bias. Compared to relying on125

a fixed threshold to constrain model shift, we use a transformation to unify model shift and model126

bias into one formulation without the constraint (Theorem 4). Due to the intractable property of127

∆, we further explore the upper bound of |∆|, finding that ∆ can be ignored with respect to model128

shift and model bias alone (Theorem 5). Finally, the optimization objective we get can be used129

to fine-tune M2 in a unified manner to adaptively adjust the model updates to get a performance130

improvement guarantee. Notably, our algorithm can use the same learning rate of Phase 2 and our131

algorithm is robust to this learning rate. To the best of our knowledge, this is the first method that132

unifies model shift and model bias and adaptively fine-tunes the model updates during the training133

process.134

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

difference of model bias difference of model shift difference of optimization objective value

Figure 2: We choose a specific random seed to show the details of the first 30 training times on all
benchmark tasks, covering the difference of optimization objective value, the model shift term and
the model bias term before and after the fine-tuning process.
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F Additional Experiment135

F.1 Working Mechanism Extension136

To illustrate that the ability of USB-PO to reduce both model shift and model bias potentially is not137

a coincidence that exists only in the Walker2d environment, we add experimental results in other138

MuJoCo [11] environments. As shown in Figure 2, when the fine-tuning actually operates, the139

difference of the model shift term and the model bias term among all of the benchmark tasks are140

generally both positive, further validating our superiority.141

F.2 Ablation Study Extension142

Here, we show the results of the ablation study on all of the MuJoCo benchmark tasks.143

As shown in Figure 3, only optimizing the model shift term results in a drop in sample efficiency144

while only optimizing the model bias term leads to performance deterioration. Only fine-tuning the145

model updates in a unified manner can achieve excellent performance.146

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

with none with model shift with model bias with both

Figure 3: Optimization Objective Variants on all MuJoCo benchmark tasks.

F.3 Ensemble numbers147

To illustrate the justification of the ensemble numbers we set, we conduct the ablation experiment148

on more ensemble numbers containing 3, 5, and 7. As Figure 4 shows, as the number of ensemble149

models goes up, the performance will be higher and more stable, but it will cost more time. To150

maintain the balance between performance and time, we finally set the value of this parameter to 7,151

which is recommended by the MBPO [4] original repo.152
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Figure 4: Ablation experimental results of the ensemble model numbers.
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