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A Details of Theoretic Analysis and Proof

In this section, we illustrate the details of analysis and proof. For clarity, Some symbols may differ
slightly from the paper.

A.1 Definitions and notations

Attention mechanism. Given a spatial-temporal feature z ∈ Rb×n×l1×d1 , and textual embedding
c ∈ Rb×n×l2×d2 , where b, n, l, d denote the lengths of batch, frame, sequence and feature dimensions,
the attention mechanism obtains three elements Query Q, Key K and Value V by Q = zWq, K =
cWk, V = cWv , where Wq ∈ Rd1×d, Wk and Wv ∈ Rd2×d. After that, they will interact to generate
the transferred feature via

Attention(z, c) = MQ,KV, where MQ,K = softmax(QKT /
√
d). (1)

Layer Normalization. Considering data x ∈ Rl×d, the Layer Norm [1] is defined as

Norm(x) = α
x− µx

σx
+ β, where µx =

1

ld
Σl,d

i,j=1x
i,j , σx =

√
1

ld
Σl,d

i,j=1(x
i,j − µx)2, (2)

where α and β are learnable scalar parameters.
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Remark 1. In practice, there is an alternative definition of Layer Norm, where µx and σx are com-
puted only along feature dimension, e.g., µx = 1

dΣ
d
j=1x

·,j . Both the two definitions are appropriate
for the subsequent analysis.

Transformer module. A classical Transformer module in LDM [4] has the residual structure:

Transformer(z, c) = z + Linear(Attention(norm(z), norm(c))), (3)

where Linear(z) = zWL + bL, WL and bL are learnable parameters.

Remark 2. In LDM [4], the Self Attention (SA) Module is defined by

Transformer(z) = z + Linear(Attention(norm(z), norm(z)), (4)

and the Cross Attention (CA) Module is defined by

Transformer(z, c) = z + Linear(Attention(norm(z), c), (5)

We generalize and unify them into a common form in Eq. (3) for the sake of analysis.

A.2 Distribution transition in Transformer Module

Proposition 1. We assume that for Transformers in Eq. (3), any input feature z ∈ Rl×d (or Rn×d) is
a sample of i.i.d d-dimensional Gaussian random variables, denoted as rv(z) ∼ N(µrv(z),Σrv(z)),
and ẑ = Norm(z), same notation for c. (i) For the output from Eq. (1), the i-th row vector vari-
able, Attention(ẑ, ĉ)i, follows the Gaussian distribution N(µrv(V ), ωQ,KΣrv(V )), where µrv(V ) =

WT
v µrv(ĉ), Σrv(V ) = WT

v Σrv(ĉ)Wv, and ωQ,K = ∥M i
Q,K∥22. (ii) For the output from Eq. (3),

each row vector variable in Transformer(z, c) follows the Gaussian distribution N(µ′
rv(z),Σ

′
rv(z)),

where µ′
rv(z) = µrv(z) +WT

L µrv(V ) + bL, and Σ′
rv(z) = Σrv(z) + ωQ,KWT

L Σrv(V )WL.

Proof. The proof can be obtained directly by using the property of Gaussian distribution:

Under the assumption, z can viewed as the sample from [rv(z)T1 ; . . . ; rv(z)
T
l ], where rv(z)i, i =

1, . . . , l are i.i.d and follow N(µrv(z),Σrv(z)). Given the affine mapping in Eq. (2), it is intuitive that
the random variable rv(ẑ) = α rv(z)−µz

σz
+ β follows Gaussian distribution, hence ẑ can be viewed

as sample from [rv(ẑ)T1 ; . . . ; rv(ẑ)
T
l ]. Similar conclusion can be obtained for c, thus each row vector

in V of Eq. (1) follows the Gaussian distribution, where the random variable

rv(V ) = WT
v rv(ĉ) ∼ N(WT

v µrv(ĉ),W
T
v Σrv(ĉ)Wv). (6)

(i) Considering that the i-th row vector from Eq. (1),

Ai := Attention(ẑ, ĉ)i = Σl
j=1M

i,j
Q,K(ĉWv)

j . (7)

According to the additive property of Gaussian distribution, the random variable

rv(Ai) = Σl
j=1M

i,j
Q,Krv(V )j ∼ N(µrv(V ), ωQ,KΣrv(V )),

where ωQ,K = Σl
j=1(M

i,j
Q,K)2 = ∥M i

Q,K∥22.
(8)

(ii) For each i = 1, . . . , l, we have

Transformer(z, c)i = zi +Attention(ẑ, ĉ)iWL + bL, (9)

Therefore, we can derive the random variable

rv(z) +WT
L rv(Ai) + bL ∼

N(µrv(z) +WT
L µrv(V ) + bL, Σrv(z) + ωQ,KWT

L Σrv(V )WL).
(10)
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A.3 Covariate shift for tuning Wq

Since Tune-A-Video solely tunes the parameters of Transformers including Wq in SCA and CA, which
inherited from pre-trained LDM, to prevent covariate shift, µ′

rv(z) and Σ′
rv(z) should not be largely

changed before and after tuning. At first, we can observe that µ′
rv(z) is unrelated to Wq , hence tuning

Wq does not affect the mean value. For Σ′
rv(z), we can conclude that tuning Wq has little impact on

it through the following theoretic analysis.
Lemma 1. Given that x ∈ Rn, the softmax function is defined by

softmax(x) =
1∑n

j=1 exp (λxj)

 exp (λx1)
...

exp (λxn)

 , λ > 0. (11)

The softmax function is L-Lipschitz with respect to ∥ · ∥2 with L = λ, that is, for all z, z′ ∈ Rn,
∥softmax(x)− softmax (x′)∥2 ≤ λ ∥x− x′∥2 .

Please refer to Proposition 4 in [2] for the proof.

Proposition 2. Along with notations in Proposition 1, denoting the tuned results of Wq as W tuning
q ,

and the tuned Covariance of Σ′
rv(z) as Σ′tuning

rv(z) , we have

∥Σ′tuning
rv(z) − Σ′

rv(z)∥ ≤ α∥W tuning
q −Wq∥2, (12)

where α is a constant related to the definition of matrix norm but unrelated to the tuning process.

Proof. First, we expand the formula

∥Σ′tuning
rv(z) − Σ′

rv(z)∥ = ∥ωQtuning,KWT
L Σrv(V )WL − ωQ,KWT

L Σrv(V )WL∥

= |ωQtuning,K − ωQ,K |∥WT
L Σrv(V )WL∥.

(13)

In the following, we consider the first term and have

|ωQtuning,K − ωQ,K | = |∥M i
Qtuning,K∥22 − ∥M i

Q,K∥22|

= |(M i
Qtuning,K −M i

Q,K)T (M i
Qtuning,K +M i

Q,K)|

≤ ∥M i
Qtuning,K −M i

Q,K∥2∥M i
Qtuning,K +M i

Q,K∥2
≤ 2∥M i

Qtuning,K −M i
Q,K∥2

= 2∥softmax(Qi
tuningK

T /
√
d)− softmax(QiKT /

√
d)∥2.

(14)

By Lemma 1, softmax is a Lipschitz function under 2−norm, thus we have

|ωQtuning,K − ωQ,K | ≤ 2√
d
∥
Qi

tuningK
T

√
d

− QiKT

√
d

∥2

≤ 2

d
∥Qi

tuning −Qi∥2∥K∥2

=
2

d
∥ẑiW tuning

q − ẑiWq∥2∥K∥2

=
2

d
∥W tuning

q −Wq∥2∥ẑi∥2∥K∥2.

(15)

In summary, we can derive

∥Σ′tuning
rv(z) − Σ′

rv(z)∥ ≤ 2

d
∥W tuning

q −Wq∥2∥ẑi∥2∥K∥2∥WT
L Σrv(V )WL∥. (16)

Remark 3. Because W tuning
q is optimized iteratively from Wq, which is well initialized from pre-

trained LDM to have a small gradient value under the diffusion loss, and

∥W tuning
q −Wq∥22 < Trace((W tuning

q −Wq)(W
tuning
q −Wq)

T ) = ∥W tuning
q −Wq∥2F , (17)

it is intuitive that under a small learning rate, this term will have a small value.
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A.4 Covariate shift for appending Temporal Attention Module

For a batch of temporal data z ∈ R(bl)×n×d, Temporal Attention (TA) Module has the following form

Transformer(z) = z + Linear(Attention(norm(z), norm(z)). (18)

Considering a temporal feature z ∈ Rn×d, following Proposition 1 the impact on mean value µ′
rv(z)−

µrv(z) = WT
L WT

v µrv(ĉ)+bL, and the impact on covariance Σ′
rv(z)−Σrv(z) = ωQ,KWT

L Σrv(V )WL.

A.5 Covariate shift for appending Shift-restricted Temporal Attention Module

For a batch of temporal data z ∈ R(bl)×n×d, STAM has the following form

Transformer(z) = z + ¯Linear( ¯Attention(IC(z), IC(z)). (19)

Considering a sample z ∈ Rn×d, the impact on mean value µ′
rv(z) − µrv(z) = WT

L WT
v µrv(ĉ) + bL,

and the impact on covariance Σ′
rv(z) − Σrv(z) = ωQ,KWT

L Σrv(V )WL. However, due to µrv(ĉ) = 0,
we have µ′

rv(z) − µrv(z) = bL. The covariance shift is illustrated by the following proposition.

Proposition 3. Along with notations in Proposition 1, given Σ′
rv(z) = Σrv(z)+ωQ,KWT

L Σrv(V )WL,
we have

∥Σ′
rv(z) − Σrv(z)∥ ≤ ∥WL∥2∥Wv∥2∥Σrv(ẑ)∥. (20)

Proof. Since
∑

j=1 M
i,j
Q,K = 1, and M i,j

Q,K ≥ 0, we can derive 0 ≤ ωQ,K ≤ 1. Thus

∥Σ′
rv(z) − Σrv(z)∥ = ∥ωQ,KWT

L Σrv(V )WL∥

≤ ∥WT
L Σrv(V )WL∥

≤ ∥WL∥2∥Σrv(V )∥
≤ ∥WL∥2∥Wv∥2∥Σrv(ẑ)∥.

(21)

In STAM, since Σrv(ẑ) = Σrv(z), ∥WL∥ = 1 and ∥Wv∥ = 1, thus the proposition shows that
∥Σ′

rv(z) − Σrv(z)∥ ≤ ∥Σrv(z)∥. By experiments, the most variances are small values around 1e− 2,
hence STAM indeed alleviates the covariate shift compared with TA Module.

B More Results
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M
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A
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M

Figure 1: Inserting STAM before (STAM-CA) or after (CA-STAM) CA Module. The examples show
that different orders have subtle visual effects on the results.
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B.1 Position for inserting Temporal Attention Module

We note that Tune-A-Video appends TA Module after CA Module, where the module sequence is SCA
Module—CA Module—TA Module. Our EI2 inserts STAM before CA Module, where the module
sequence is FFAM—STAM—CA Module. This sequence is more suitable for the theoretical analysis
of STAM. In practice, the sequence FFAM—CA Module—STAM for inflating LDM also performs
well in experiments, and we do not observe an obvious visual advantage from reordering the module
sequence. Figure 1 depicts a few examples.

B.2 More qualitative results

For comprehensive analysis and evaluation, we have supplied a video in the supplementary materials,
which contains the Qualitative Comparison, Ablation Study and Combination of EI2 and P2P [3].
It can be observed that STAM and FFAM facilitate EI2 to surpass previous state-of-the-art methods
in terms of textual alignment and temporal consistency. Incorporating P2P [3] with EI2 can further
improve the stability and structure preservation of results.

References
[1] Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv: 1607.06450 (2016)

[2] Gao, B., Pavel, L.: On the properties of the softmax function with application in game theory and
reinforcement learning. ArXiv abs/1704.00805 (2017)

[3] Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt
image editing with cross attention control. arXiv preprint arXiv: 2208.01626 (2022)

[4] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis
with latent diffusion models. In: CVPR (2022)

5


	Details of Theoretic Analysis and Proof
	Definitions and notations
	Distribution transition in Transformer Module
	Covariate shift for tuning Wq
	Covariate shift for appending Temporal Attention Module
	Covariate shift for appending Shift-restricted Temporal Attention Module

	More Results
	Position for inserting Temporal Attention Module
	More qualitative results


