
Supplementary Materials for: Switching Autoregressive Low-rank417

Tensor Models418

419

Table of Contents420

– Appendix A: SALT Optimization via Tensor Regression.421

– Appendix B: SALT approximates a (Switching) Linear Dynamical System.422

– Appendix C: Single-subspace SALT.423

– Appendix D: Synthetic Data Experiments.424

– Appendix E: Modeling Mouse Behavior.425

– Appendix F: Modeling C. elegans neural data.426

– Appendix G: Code Availability.427

12

A SALT Optimization via Tensor Regression428

Let yt 2 RN1 be the t-th outputs and Xt 2 RN2⇥N3 be the t-th inputs. The regression weights are a429

tensor A 2 RN1⇥N2⇥N3 , which we model via a Tucker decomposition,430

A =
D1X

i=1

D2X

j=1

D3X

k=1

gijk u:i � v:j � w:k, (10)

where ui, vj , and wk are columns of the factor matrices U 2 RN1⇥D1 , V 2 RN2⇥D2 , and W 2431

RN3⇥D3 , respectively, and gijk are entries in the core tensor G 2 RD1⇥D2⇥D3 .432

Consider the linear model, yt ⇠ N (A ⇥2,3 Xt,Q) where A ⇥2,3 Xt is defined using the Tucker433

decomposition of A as,434

A ⇥2,3 Xt = A(1)vec(Xt) (11)

= UG(1)(V
>

⌦ W
>)vec(Xt) (12)

= UG(1)vec(V>
XtW) (13)

where A(1) 2 RN1⇥N2N3 and G(1) 2 RD1⇥D2D3 are mode-1 matricizations of the corresponding435

tensors. Note that these equations assume that matricization and vectorization are performed in436

row-major order, as in Python but opposite to what is typically used in Wikipedia articles.437

Equation (13) can be written in multiple ways, and these equivalent forms will be useful for deriving438

the updates below. We have,439

A ⇥2,3 Xt = UG(1)(ID2 ⌦ W
>
X

>
t

)vec(V>) (14)

= UG(1)(V
>
Xt ⌦ ID3)vec(W) (15)

=
⇥
U ⌦ vec(V>

XtW)
⇤
vec(G). (16)

We minimize the negative log likelihood by coordinate descent.440

Optimizing the output factors Let441

ext = G(1)vec(V>
XtW) (17)

for fixed V, W, and G. The NLL as a function of U is,442

L(U) =
1

2

X

t

(yt � Uext)
>
Q

�1(yt � Uext). (18)

This is a standard least squares problem with solution443

U
? =

X

t

ytex>
t

!
X

t

extex>
t

!�1

. (19)

Optimizing the core tensors Let eXt = U⌦vec(V>
XtW) 2 RN1⇥D1D2D3 denote the coefficient444

on vec(G) in eq. (16). The NLL as a function of g = vec(G) is,445

L(g) =
1

2

X

t

(yt � eXtg)>Q�1(yt � eXtg). (20)

The minimizer of this quadratic form is,446

g
? =

X

t

eX>
t
Q

�1 eXt

!�1 X

t

eX>
t
Q

�1
yt

!
(21)

13

Optimizing the input factors Let447

eXt = UG(1)(ID2 ⌦ W
>
X

>
t

) (22)

for fixed U, W, and G. The NLL as a function of v = vec(V>) is,448

L(v) =
1

2

X

t

(yt � eXtv)>Q�1(yt � eXtv). (23)

The minimizer of this quadratic form is,449

v
? =

X

t

eX>
t
Q

�1 eXt

!�1 X

t

eX>
t
Q

�1
yt

!
(24)

Optimizing the lag factors Let450

eXt = UG(1)(V
>
Xt ⌦ ID3) (25)

for fixed U, V, and G. The NLL as a function of w = vec(W) is,451

L(w) =
1

2

X

t

(yt � eXtw)>Q�1(yt � eXtw). (26)

The minimizer of this quadratic form is,452

w
? =

X

t

eX>
t
Q

�1 eXt

!�1 X

t

eX>
t
Q

�1
yt

!
(27)

Multiple discrete states If we have discrete states zt 2 {1, . . . , H} and each state has its own453

parameters (G(h)
,U

(h)
,V

(h)
,W

(h)
,Q

(h)), then letting !
(h)
t

= E[zt = h] denote the weights from454

the E-step, the summations in coordinate updates are weighted by !
(h)
t

. For example, the coordinate455

update for the core tensors becomes,456

g
(h)? =

X

t

!
(h)
t
eX(h)>

t
Q

(h)�1 eX(h)
t

!�1 X

t

!
(h)
t
eX(h)>

t
Q

(h)�1
yt

!
(28)

14

B SALT approximates a (Switching) Linear Dynamical System457

We now re-state and provide a full proof for Proposition 1.458

Proposition 1 (Low-Rank Tensor Autoregressions Approximate Stable Linear Dynamical Systems).459

Consider a stable linear time-invariant Gaussian dynamical system. We define the steady-state460

Kalman gain matrix as K = limt!1 Kt, and � = A(I � KC). The matrix � 2 RD⇥D
has461

eigenvalues �1, . . . ,�D. Let �max = maxd |�d|; for a stable LDS, �max < 1 [22]. Let n denote the462

number of real eigenvalues and m the number of complex conjugate pairs. Let ŷ
(LDS)
t

= E[yt | y<t]463

denote the predictive mean under a steady-state LDS, and ŷ
(SALT)
t

the predictive mean under a SALT464

model. An order-L Tucker-SALT model with rank n+2m, or a CP-SALT model with rank n+3m, can465

approximate the predictive mean of the steady-state LDS with error kŷ
(LDS)
t

�ŷ
(SALT)
t

k1 = O(�L

max).466

Proof. A stationary linear dynamical system (LDS) is defined as follows:467

xt = Axt�1 + b + ✏t (29)
yt = Cxt + d + �t (30)

where yt 2 RN is the t-th observation, xt 2 RD is the t-th hidden state, ✏t
i.i.d.
⇠ N (0,Q), �t

i.i.d.
⇠468

N (0,R), and ✓ = (A,b,Q,C,d,R) are the parameters of the LDS.469

Following the notation of Murphy [19], the one-step-ahead posterior predictive distribution for the470

observations of the LDS defined above can be expressed as:471

p(yt|y1:t�1) = N (Cµ
t|t�1 + d,C⌃t|t�1C

T + R) (31)

where472

µ
t|t�1 = Aµ

t�1 + b (32)

µ
t
= µ

t|t�1 + Ktrt (33)

⌃t|t�1 = A⌃t�1A
T + Q (34)

⌃t = (I � KtC)⌃t|t�1 (35)
p(x1) = N (µ1|0,⌃1|0) (36)

Kt = (⌃�1
t|t�1 + C

T
RC)�1

C
T
R

�1 (37)

rt = yt � Cµ
t|t�1 � d. (38)

We can then expand the mean Cµ
t|t�1 + d as follows:473

Cµ
t|t�1 + d = C

t�1X

l=1

�lAKt�lyt�l + C

t�1X

l=1

�l(b � AKt�ld) + d (39)

where474

�l =
l�1Y

i=1

A(I � Kt�iC) for l 2 {2, 3, . . .} , (40)

�1 = I. (41)

Theorem 3.3.3 of Davis and Vinter [22] (reproduced with our notation below) states that for a475

stabilizable and detectable system, the limt!1⌃t|t�1 = ⌃, where ⌃ is the unique solution of the476

discrete algebraic Riccati equation477

⌃ = A⌃A
T

� A⌃C
T (C⌃C

T + R)�1
C⌃A

T + Q. (42)

As we are considering stable autonomous LDSs here, the system is stabilizable and detectable, as all478

unobservable states are themselves stable [22, 36]479

Theorem 3.3.3 [Reproduced from Davis and Vinter [22], updated to our notation and context].480

(a) If the pair (A,C) is detectable then there exists at least one non-negative solution to the discrete481

15

algebraic Riccati equation (42).482

(b) If further the pair (A,C) is stabilizable then this solution ⌃ is unique, and ⌃t|t�1 ! ⌃ as483

t ! 1, where ⌃t|t�1 is the sequence generated by (32)-(38) with arbitrary initial covariance ⌃0.484

The matrix � = A(I � KC) is stable, where K is the Kalman gain corresponding to ⌃, i.e.485

K = (⌃�1 + C
T
RC)�1

C
T
R

�1 (43)
Proof. See Davis and Vinter [22]. Note that Davis and Vinter [22] define the Kalman gain as AK.486

The convergence of the Kalman gain also implies that each term in the sequence �l converges to487

�l =
l�1Y

i=1

A(I � KC) = (A(I � KC))l�1 = �
l�1

, (44)

where, concretely, we define � = A(I�KC). We can therefore make the following substitution and488

approximation489

Cµ
t|t�1 + d

lim t!1
= C

t�1X

l=1

�
l
AKyt�l + C

t�1X

l=1

�
l(b � AKd) + d (45)

= C

LX

l=1

�
l
AKyt�l + C

LX

l=1

�
l(b � AKd) + d +

1X

l=L+1

F

⇣
�
l

⌘
(46)

⇡ C

LX

l=1

�
l
AKyt�l + C

LX

l=1

�
l(b � AKd) + d (47)

The approximation is introduced as a result of truncating the sequence to consider just the “first” L490

terms, and discarding the higher-order terms (indicated in blue). It is important to note that each term491

in (45) is the sum of a geometric sequence multiplied elementwise with yt.492

There are two components we prove from here. First, we derive an element-wise bound on the error493

introduced by the truncation, and verify that under the conditions outlined that the bound decays494

monotonically in L. We then show that Tucker and CP decompositions can represent the truncated495

summations in (47), and derive the minimum rank required for this representation to be exact.496

Bounding The Error Term We first rearrange the truncated terms in (45), where we define497

xl , AKyt�l + b � AKd498
1X

l=L+1

F

⇣
�
l

⌘
= C

1X

l=L+1

�
l
AKyt�l + C

1X

l=L+1

�
l(b � AKd) + d, (48)

=
1X

l=L+1

C�
l
xl, (49)

=
1X

l=L+1

CE⇤
l�1

E
�1

xl, (50)

=
1X

l=L+1

P⇤
l�1

ql, (51)

where E⇤E
�1 is the eigendecomposition of �, P , CE, and ql , E

�1
xl. We now consider the499

infinity-norm of the error, and apply the triangle and Cauchy-Schwartz inequalities. We can write the500

bound on the as501

✏ =

������

 1X

l=L+1

F

⇣
�
l

⌘!

n

������
, where n = arg max

k

������

 1X

l=L+1

F

⇣
�
l

⌘!

k

������
(52)

=

�����

1X

l=L+1

DX

d=1

pnd�
l�1
d

ql,d

����� , (53)



1X

l=L+1

DX

d=1

|pnd|
���l�1

d

�� |ql,d| . (54)

16

Upper bounding the absolute magnitude of ql,d by W provides a further upper bound, which we can502

then rearrange503

✏  W

1X

l=L+1

DX

d=1

|pnd|
���l�1

d

�� , (55)

= W

DX

d=1

|pnd|

1X

l=L+1

���l�1
d

�� . (56)

The first two terms are constant, and hence the upper bound is determined by the sum of the of the504

l
th power of the eigenvalues. We can again bound this sum by setting all eigenvalues equal to the505

magnitude of the eigenvalue with the maximum magnitude (spectral norm), denoted �max:506

✏  W

DX

d=1

|pnd|

1X

l=L+1

�
l�1
max, (57)

where these second summation is not a function of d, and W
P

D

d=1 |pnd| is constant. This summation507

is a truncated geometric sequence. Invoking Theorem 3.3.3 of Davis and Vinter [22] again, the matrix508

� has only stable eigenvalues, and hence �max < 1. Therefore the sequence sum will converge to509

1X

l=L+1

�
l�1
max =

�
L

max

1 � �max
. (58)

Rearranging again, we see that the absolute error on the n
th element of yt is therefore bounded510

according to a power of the spectral norm511

✏  W

DX

d=1

|pnd|
�
L

max

1 � �max
, (59)

= O
�
�
L

max

�
. (60)

More specifically, for a stable linear time-invariant dynamical system, and where q — and hence y —512

is bounded, then the bound on the error incurred reduces exponentially in the length of the window L.513

Furthermore, this error bound will reduce faster for systems with a lower spectral norm.514

Diagonalizing the System We first transform � into real modal form, defined as E⇤E
�1, where E515

and ⇤ are the eigenvectors and diagonal matrix of eigenvalues of �. Letting � have n real eigenvalues516

and m pairs of complex eigenvalues (i.e., n + 2m = D), we can express E, ⇤, and E
�1 as:517

E = [a1 . . . an b1 c1 . . . bm cm] (61)

⇤ =

2

666666666664

�1

. . .
�n

�1 !1

�!1 �1

. . .
�m !m

�!m �m

3

777777777775

(62)

518

E
�1 =

2

6666666666664

d
T

1
...

d
T

n

e
T

1

fT

1
...

e
T

m

fT

m

3

7777777777775

(63)

17

where a1 . . .an are the right eigenvectors corresponding to n real eigenvalues �1 . . .�n, and bi519

and ci are the real and imaginary parts of the eigenvector corresponding to the complex eigenvalue520

�i + j!i. Note that521

�
l = (A(I � KC))l�1 = E⇤

l�1
E

�1 (64)

The l
th power of ⇤, ⇤l, where l � 0, can be expressed as:522

⇤
l =

2

666666666664

�
l

1
. . .

�
l

n

�1,l !1,l

�!1,l �1,l

. . .
�m,l !m,l

�!m,l �m,l

3

777777777775

(65)

where �i,l = �
2
i,l�1 � !

2
i,l�1, !i,l = 2�i,l�1!i,l�1 for l � 2, �i,1 = �i, !i,1 = !i, �i,0 = 1, and523

!i,0 = 0.524

Tucker Tensor Regression Let H 2 RD⇥D⇥L be a three-way tensor, whose l
th frontal slice525

H::l = ⇤
l�1. Let G 2 RD⇥D⇥D be a three-way tensor, whose entry gijk = i=j=k for 1  k  n,526

and gijk = (�1) i+1=j=k+1
(i=j=k)_(i�1=j�1=k)_(i=j+1=k+1)_(i+1=j=k+1) for k 2 {n + 1, n +527

3, . . . , n + 2m � 1}. Let W 2 RL⇥D be a matrix, whose entry wlk = �
l�1
k

for 1  k  n, wlk =528

�k,l�1 for k 2 {n+1, n+3, . . . , n+2m�1}, and wlk = �!k,l�1 for k 2 {n+2, n+4, . . . , n+2m}.529

We can then decompose H into G 2 RD⇥D⇥D and W 2 RL⇥D such that H = G ⇥3 W (Figure 6).530

With V = (E�1
AK)T , U = CE, m = C

P
L

l=1 �
l(b � AKd) + d, and Xt = yt�1:t�L, we can531

rearrange the mean to:532

Cµ
t|t�1 + d ⇡ C

LX

l=1

E⇤
l�1

E
�1

AKyt�l + C

LX

l=1

�
l(b � AKd) + d (66)

= U

LX

l=1

H::lV
T
yt�l + m (67)

= U

LX

l=1

(G⇥̄3wl)V
T
yt�l + m (68)

= U

LX

l=1

((G ⇥2 V)⇥̄3wl)yt�l + m (69)

= U

LX

l=1

DX

j=1

DX

k=1

g:jk � v:j(wlkyt�l) + m (70)

= U

DX

j=1

DX

k=1

g:jk(v
>
:jXtw:k) + m (71)

=
DX

i=1

DX

j=1

DX

k=1

u:igijk(v
>
:jXtw:k) + m (72)

=

2

4
n+2mX

i=1

n+2mX

j=1

n+2mX

k=1

gijku:i � v:j � w:k

3

5⇥2,3 Xt + m (73)

18

= Λ!"#

Decompose

!

!

"

!

!

!
11 1"

2$

"

1
10
0 0

01
-1

!

1
'!
'!"

'!#$!

1
'%
'%"

'%#$!

1 0
(!,!
(!,"

-)!,!
-)!,"

(!,#$! -)!,#$!

1 0
(',!
(',"

-)',!
-)',"

(',#$! -)',#$!

Figure 6: Decomposition of H into G and W such that H = G ⇥3 W: Given an LDS whose
A(I�KC) has n real eigenvalues and m pairs of complex eigenvalues, this decomposition illustrates
how Tucker-SALT can approximate the LDS well with rank n + 2m.

CP Tensor Regression By rearranging E,⇤
l
, and E

�1 into J, Pl, and S respectively as follows:533

J = [a1 . . . an b1 + c1 b1 c1 . . . bm + cm bm cm] (74)

534

Pl =

2

6666666666666664

�
l

1
. . .

�
l

n

�1,l

↵1,l

�1,l

. . .
�m,l

↵m,l

�m,l

3

7777777777777775

(75)

535

S =

2

66666666666666664

d
T

1
...

d
T

n

e
T

1 + fT

1

fT

1
eT1
...

e
T

m
+ fT

m

fT

m

eT
m

3

77777777777777775

(76)

where J 2 RD⇥(n+3m), Pl 2 R(n+3m)⇥(n+3m), S 2 R(n+3m)⇥D, ↵i,l = !i,l � �i,l, and �i,l =536

�!i,l � �i,l, we can diagonalize (A(I � KC))l as JPlS.537

Let V = (SAK)T , U = CJ, m = C
P

L

l=1 �
l(b � AKd) + d, and Xt = yt�1:t�L. Let538

W 2 RL⇥(n+3m) be a matrix, whose element in the l
th row and k

th column is pl�1,kk (i.e.,539

the element in the k
th row and k

th column of Pl�1), and G 2 R(n+3m)⇥(n+3m)⇥(n+3m) be a540

19

superdiagonal 3-way tensor, where gijk = i=j=k. We can then rearrange the mean to:541

Cµ
t|t�1 + d ⇡ C

LX

l=1

E⇤
l�1

E
�1

AKyt�l + C

LX

l=1

�
l(b � AKd) + d (77)

= C

LX

l=1

JPl�1SAKyt�l + m (78)

= U

LX

l=1

Pl�1V
>
yt�l + m (79)

=
LX

l=1

n+3mX

i

n+3mX

j

n+3mX

k

gijk u:i � v:j(pl�1,kkyt�l) + m (80)

=
n+3mX

i

n+3mX

j

n+3mX

k

gijk u:i � v:j(Xtw:k) + m (81)

=

2

4
n+3mX

i=1

n+3mX

j=1

n+3mX

k=1

gijk u:i � v:j � w:k

3

5⇥2,3 Xt + m (82)

And so concludes the proof.542

20

C Single-subspace SALT543

Here we explicitly define the generative model of multi-subspace and single-subspace Tucker-SALT544

and CP-SALT. Single-subspace SALT is analogous to single-subspace SLDSs (also defined below),545

where certain emission parameters (e.g., C, d, and R) are shared across discrete states. This reduces546

the expressivity of the model, but also reduces the number of parameters in the model. Note that both547

variants of all models have the same structure on the transition dynamics of zt.548

Multi-subspace SALT Note that the SALT model defined in (6) and (7) in the main text was a549

multi-subspace SALT. We repeat the definition here for ease of comparison550

yt

i.i.d.
⇠ N

0

@

0

@
D1X

i=1

D2X

j=1

D3X

k=1

g
(zt)
ijk

u
(zt)
:i � v

(zt)
:j � w

(zt)
:k

1

A⇥2,3 yt�1:t�L + b
(zt),⌃⌃⌃(zt)

1

A , (83)

D1 = D2 = D3 = D and G is diagonal for CP-SALT.551

Single-subspace Tucker-SALT In single-subspace methods, the output factors are shared across552

discrete states553

yt

i.i.d.
⇠ N

0

@U

0

@m
(zt) +

0

@
D2X

j=1

D3X

k=1

g
(zt)
:jk � v

(zt)
:j � w

(zt)
:k

1

A⇥2,3 yt�1:t�L

1

A+ b,⌃⌃⌃(zt)

1

A , (84)

where m
(zt) 2 RD1 .554

Single-subspace CP-SALT Single-subspace CP-SALT requires an extra tensor compared to555

Tucker-SALT, as this tensor can no longer be absorbed in to the core tensor.556

yt

i.i.d.
⇠ N

0

@U
0

0

@m
(zt) + P

(zt)

0

@

0

@
D2X

j=1

D3X

k=1

g
(zt)
:jk � v

(zt)
:j � w

(zt)
:k

1

A⇥2,3 yt�1:t�L

1

A

1

A+ b,⌃⌃⌃(zt)

1

A ,

(85)

where U
0

2 RN⇥D
0
1 , P(zt) 2 RD

0
1⇥D1 , m(zt) 2 RD

0
1 , D1 = D2 = D3 = D, and G is diago-557

nal.558

Multi-subspace SLDS Multi-subspace SLDS is a much harder optimization problem, which we559

found was often numerically unstable. We therefore do not consider multi-subspace SLDS in these560

experiments, but include its definition here for completeness561

xt ⇠ N

⇣
A

(zt)xt�1 + b
(zt), Q

(zt)
⌘
, (86)

yt ⇠ N

⇣
C

(zt)xt + d
(zt), R

(zt)
⌘
. (87)

Single-subspace SLDS Single-subspace SLDS was used in all of our experiments, and is typically562

used in practice [8, 15]563

xt ⇠ N

⇣
A

(zt)xt�1 + b
(zt), Q

(zt)
⌘
, (88)

yt ⇠ N (Cxt + d, R) . (89)

21

D Synthetic Data Experiments564

D.1 Extended Experiments for Proposition 1565

In Section 5.1 we showed that Proposition 1 can accurately predict the required rank for CP- and566

Tucker-SALT models. We showed results for a single LDS for clarity. We now extend this analysis567

across multiple random LDS and SALT models. We randomly sampled LDSs with latent dimensions568

ranging from 4 to 10, and observation dimensions ranging from 9 to 20. For each LDS, we fit569

5 randomly initialized CP-SALT and Tucker-SALT models with L = 50 lags. We varied the570

rank of our fit SALT models according to the rank predicted by Proposition 1. Specifically, we571

computed the estimated number of ranks for a given LDS, denoted D
⇤, and then fit SALT models572

with {D
⇤

� 2, D⇤
� 1, D⇤

, D
⇤ + 1, D⇤ + 2} ranks. According to Proposition 1, we would expect573

to see the reconstruction error of the autoregressive tensor be minimized, and for prediction accuracy574

to saturate, at D = D
⇤.575

To analyze these model fits, we first computed the average mean squared error of the autoregressive576

tensor corresponding to the LDS simulation, as a function of SALT rank relative to the rank required577

by Proposition 1. We see, as predicted by Proposition 1, that error in the autoregressive tensor is578

nearly always minimized at D⇤ (Figure 7A). Tucker-SALT was always minimized at D⇤. Some579

CP-SALT fits have lower MSE at ranks other than predicted by Proposition 1. We believe this is580

due to local minima in the optimization. We next investigated the test log-likelihood as a function of581

the relative rank (Figure 7B). Interestingly, the test log-likelihood shows that Tucker-SALT strongly582

requires the correct number of ranks for accurate prediction, but CP-SALT can often perform well583

with fewer ranks than predicted (although still a comparable number of ranks to Tucker-SALT). As584

in Figure 2, these analyses empirically confirm Proposition 1.585

-2 -1 0 1 2
D � D�

0

1

2

3

R
el

at
iv

e
M

SE

⇥10�5

(a) Normalized MSE of autoregressive tensor.

-2 -1 0 1 2
D � D�

�0.20

�0.15

�0.10

�0.05

0.00

R
el

at
iv

e
te

st
lo

g-
lik

el
ih

oo
d

Tucker-SALT

CP-SALT

(b) Normalized log-likelihood on held-out test set.

Figure 7: Extended results examining Proposition 1. Results are shown for the ability of SALT to
estimate ten randomly generated LDSs, using five SALT repeats for each LDS. MSEs (in panel A)
and log-likelihoods (in panel B) are normalized by the mean MSE and mean log-likelihood of SALT
models trained with D = D

⇤. D is the rank of the fit SALT model, and D
⇤ is the necessary rank

predicted by Proposition 1.

D.2 Quantitative Performance: Synthetic Switching LDS Experiments586

We include further results and analysis for the NASCAR® and Lorenz attractor experiments presented587

in Section 5.2. We compare the marginal likelihood achieved by single-subspace SALT models of588

different sizes. We see that SALT outperforms ARHMMs, and can fit larger models (more lags)589

without overfitting (Figure 8). Note that the SLDS does not admit exact inference, and so we cannot590

readily compute the exact marginal likelihood for the SLDS.591

D.3 TVART versus SALT in recovering the parameters of SLDSs592

We compared SALT to TVART [24], another tensor-based method for modeling autoregressive593

processes. We modified TVART (as briefly described in the original paper) so that it can handle594

AR(p) processes, as opposed to only AR(1) processes. TVART is also not a probabilistic model (i.e.,595

22

1 5 6 7 8 9 10 15 20
Lags

0.4

0.5

0.6

0.7

0.8

T
es

t
lo

g-
lik

el
ih

oo
d

(a) NASCAR.

1 5 10 15 20
Lags

0.700

0.725

0.750

0.775

0.800

0.825

0.850

T
es

t
lo

g-
lik

el
ih

oo
d

Tucker-SALT rank 1

Tucker-SALT rank 2

Tucker-SALT rank 3

Tucker-SALT rank 4

CP-SALT rank 1

CP-SALT rank 2

CP-SALT rank 3

CP-SALT rank 4

ARHMM

(b) Lorenz.

Figure 8: Quantitative performance of different SALT models and ARHMMs (averaged over 3
different runs) on the synthetic experiments presented in Section 5.2. The test-set log likelihood is
shown as a function of lags in the SALT model, for both (A) the NASCAR® and (B) Lorenz synthetic
datasets.

cannot compute log-likelihoods), and so we focus our comparison on how well these methods recover596

the parameters of a ground-truth SLDS.597

We used the same SLDS that we used to generate the NASCAR® dataset in Section 5.2. We then598

used L = 7 CP-SALT and Tucker-SALT with ranks 3 and 2, respectively, and computed the MSE599

between the ground truth tensor and SALT tensors. For TVART, we used L = 7, bin size of 10,600

and ranks 2 and 3 to fit the model to the data. We then clustered the inferred dynamics parameters601

to assign discrete states. To get the TVART parameter estimation, we computed the mean of the602

dynamics parameters for each discrete state and computed the MSE against the ground truth tensor.603

The MSE results are as follows:604

Table 2: Results comparing SALT and TVART [24] on the NASCAR example.
Model Rank Tensor Reconstruction MSE (⇥10�3) Number of parameters
TVART 2 0.423 1.4K
TVART 3 0.488 2.0K
Tucker-SALT 2 0.294 0.6K
CP-SALT 3 0.297 0.7K

Table 2 shows that SALT models recover the dynamics parameters of the ground truth SLDS more605

accurately. Furthermore, we see that SALT models use fewer parameters than TVART models for606

the dataset (as the number of parameters in TVART scales linearly with the number of windows). We607

also note that TVART cannot be applied to held-out data, and, without post-hoc analysis, does not608

readily have a notion of re-usable dynamics or syllables.609

D.4 The effect of the number of switches on the recovery of the parameters of the610

autoregressive dynamic tensors611

We asked how the frequency of discrete state switches affected SALT’s ability to recover the au-612

toregressive tensors. We trained CP-SALT, Tucker-SALT, the ARHMM, all with L = 5 lags, and613

the SLDS on data sampled from an SLDS with varying number of discrete state switches. The614

ground-truth SLDS model had H = 2 discrete states, N = 20 observations and D = 7 dimensional615

continuous latent states. The matrix A
(h)(I � K

(h)
C

(h)) of each discrete state of the ground-616

truth SLDS had 1 real eigenvalue and 3 pairs of complex eigenvalues. We sampled 5 batches of617

T = 15, 000 timesteps of data from the ground-truth SLDS, with sn 2 {1, 10, 25, 75, 125} num-618

ber of discrete state switches that were evenly spaced out across the data. We then computed the619

mean squared error (MSE) between the SLDS tensors and the tensors reconstructed by SALT, the620

ARHMM, and the SLDS. (Figure 9). More precisely, we combined the 3rd order autoregressive621

tensors from each discrete state into a 4th order tensor, and calculated the MSE based on these 4th622

23

1 10 25 75 125

sn (Number of discrete state switches)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
sq

ua
re

d
er

ro
r

⇥10�4

CP-SALT

Tucker-SALT

ARHMM

SLDS

Figure 9: The quality of SALT approximation of SLDSs decreases as the number of discrete
state switches increases: The data comes from an SLDS with H = 2, N = 20, and D = 7. 15,000
timesteps were generated, with varying numbers of evenly spaced discrete state switches (x-axis).
The mean squared error of reconstructing the autoregressive tensors increased as a function of the
number of discrete state switches. Note that we combined the 3rd order autoregressive tensors from
each discrete state into a 4th order tensor, and calculated the MSE based on these 4th order tensors.

order tensors. As expected, the MSE increased with the number of switches in the data, indicating that623

the quality of SALT approximation of SLDSs decreases as the frequency of discrete state switches624

increases.625

24

E Modeling Mouse Behavior626

We include further details for the mouse experiments in Section 5.3.627

E.1 Training Details628

We used the first 35,949 timesteps of data from each of the three mice, which were collected at629

30Hz resolution. We used H = 50 discrete states and fitted ARHMMs and CP-SALT models with630

varying lags and ranks. Similar to Wiltschko et al. [2], we imposed stickiness on the discrete state631

transition matrix via a Dirichlet prior with concentration of 1.1 on non-diagonals and 6 ⇥ 104 on632

the diagonals. These prior hyperparameters were empirically chosen such that the durations of the633

inferred discrete states and the given labels were comparable. We trained each model 5 times with634

random initialization for each hyperparameter, using 100 iterations of EM on a single NVIDIA Tesla635

P100 GPU.636

E.2 Video Generation637

Here we describe how the mouse behavioral videos were generated. We first determined the CP-638

SALT hyperparameters as those which led to the highest log-likelihood on the validation dataset.639

Then, using that CP-SALT model, we computed the most likely discrete states on the train and test640

data. Given a discrete state h, we extracted slices of the data whose most likely discrete state was641

h. We padded the data by 30 frames (i.e. 1 second) both at the beginning and the end of each slice642

for the movie. A red dot appears on each mouse for the duration of discrete state h. We generated643

such videos for all 50 discrete states (as long as there existed at least one slice for each discrete644

state) on the train and test data. For a given discrete state, the mice in each video behaved very645

similarly (e.g., the mice in the video for state 18 “pause" when the red dots appear, and those in646

the video for state 32 “walk" forward), suggesting that CP-SALT is capable of segmenting the data647

into useful behavioral syllables. See “MoSeq_salt_videos_train" and “MoSeq_salt_videos_test"648

in the supplementary material for the videos generated from the train and test data, respectively.649

“salt_crowd_i.mp4" refers to the crowd video for state i. We show the principal components for states650

1, 2, 13, 32, 33, 47 in Figure 10.651

E.3 Modeling Mouse Behavior: Additional Analyses652

We also investigated whether SALT qualitatively led to a good segmentation of the behavioral data653

into discrete states, shown in Figure 10. Figure 10A shows a 30 second example snippet of the test654

data from one mouse colored by the discrete states inferred by CP-SALT. CP-SALT used fewer655

discrete states to model the data than the ARHMM (Figure 10B). Coupled with the finding that656

CP-SALT improves test-set likelihoods, this suggests that the ARHMM may have oversegmented657

the data and CP-SALT may be better able to capture the number of behavioral syllables. Figure 10C658

shows average test data (with two standard deviations) for a short time window around the onset659

of a discrete state (we also include mouse videos corresponding to that state in the supplementary660

materials). The shrinking gray area around the time of state onset, along with the similar behaviors661

of the mice in the video, suggests that CP-SALT is capable of segmenting the data into consistent662

behavioral syllables.663

25

Figure 10: CP-SALT leads to qualitatively good segmentation of the mouse behavioral data
into distinct syllables.: (A) 30 seconds of test data (Mouse 1) with the discrete states inferred by
CP-SALT as the background color. (B) For one mouse, the cumulative number of frames that are
captured by each discrete state, where the discrete states are ordered according to how frequently they
occur. (C) The average test data, with two standard deviations, for six states of CP-SALT, aligned to
the time of state onset. The shrinkage of the gray region around the state onset tells us that CP-SALT
segments the test data consistently.

26

F Modeling C. elegans Neural Data664

We include further details and results for the C. elegans example presented in Section 5.4. This665

example highlights how SALT can be used to gain scientific insight in to the system.666

F.1 Training Details667

We used ⇠3200 timesteps of data (recorded at 3Hz) from one worm, for which 48 neurons were668

confidently identified. The data were manually segmented in to seven labels (reverse sustained, slow,669

forward, ventral turn, dorsal turn, reversal (type 1) and reversal (type 2). We therefore used H = 7670

discrete states in all models (apart from the GLM). After testing multiple lag values, we selected671

L = 9 for all models, as these longer lags allow us to examine longer-timescale interactions and672

produced better segmentations across models, with only a small reduction in variance explained.673

We trained each model 5 times with KMeans initialization, using 100 iterations of EM on a single674

NVIDIA Tesla V100 GPU. Models that achieved 90% explained variance on a held-out test set were675

then selected and analyzed (similar to Linderman et al. [9]).676

F.2 Additional Quantitative Results677

Figure 11 shows additional results for training different models. In Figure 11A we see that models678

with larger ranks (or latent dimension) achieve higher explained variance. Interestingly, longer lags679

can lead to a slight reduction in the explained variance, likely due to overfitting. This effect is less680

pronounced in the more constrained single-subspace SALT, but, these models achieve lower explained681

variance ratios throughout. Longer lag models allow us to inspect longer-timescale dependencies,682

and so are more experimentally insightful. Figure 11B shows the confusion matrix for discrete states683

between learned models and the given labels. The segmentations were similar across all models that684

achieved 90% explained variance.685

1 2 3 4 5 6 7
SALT Labels

REVSUS
SLOW
FWD

VT
DT

REV1
REV2

G
iv

en
L
ab

el
s

0

200

400

600

N
um

b
er

of
T

im
es

te
ps

1 2 3 4 5 6 7
SLDS Labels

REVSUS
SLOW
FWD

VT
DT

REV1
REV2

G
iv

en
L
ab

el
s

0

200

400

600

N
um

be
r

of
T

im
es

te
ps

1 2 3 4 5 6 7
ARHMM Labels

REVSUS
SLOW
FWD

VT
DT

REV1
REV2

G
iv

en
L
ab

el
s

0

200

400

600

N
um

b
er

of
T

im
es

te
ps

1 2 3 4 5 6 7
ARHMM Labels

REVSUS
SLOW
FWD

VT
DT

REV1
REV2

G
iv

en
L
ab

el
s

0

200

400

600

N
um

b
er

of
T

im
es

te
ps

8 9 10 11 12 13 14 15 16 17 18
SALT rank or SLDS continuous latent state dimension

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

H
el

d-
ou

t
te

st
da

ta
E

xp
la

in
ed

va
ri

an
ce

ra
ti

o

SS CP-SALT L=1

SS CP-SALT L=3

SS CP-SALT L=6

SS CP-SALT L=9

MS CP-SALT L=1

MS CP-SALT L=3

MS CP-SALT L=6

MS CP-SALT L=9

SS SLDS

A

B

Figure 11: SALT and SLDS perform comparably on held-out data: (A): Explained variance on
a held-out sequence. Single-subspace (SS) SALT and SLDS perform comparably. Multi-subspace
(MS) SALT achieves a higher explained variance with fewer ranks. Multi-subspace SLDS was
numerically unstable. (B): Confusion matrices between given labels and predicted labels. All
methods produce similar quality segmentations.

F.3 Additional Autoregressive Filters686

Figures 12 and 13 show extended versions of the autoregressive filters included in Section 5.4. Figure687

12 shows the filters learned for ventral and dorsal turns (for which panel A was included in Figure 5),688

27

while Figure 13 shows the filters for forward and backward locomotion. Note that the GLM does not689

have multiple discrete states, and hence the same filters are used across states. We see for ARHMM690

and SALT that known-behavior tuned neurons have higher magnitude filters (determined by area691

under curve), whereas the SLDS and GLM do not recover such strong state-specific tuning. Since692

the learned SLDS did not have stable within-state dynamics, the autoregressive filters could not be693

computed using Equation (47). We thus show CA
(h)l

C
+ for lag l as a proxy for the autoregressive694

filters of discrete state h of the SLDS. Note that this is a post-hoc method and does not capture the695

true dependencies in the observation space.696

We see that SALT consistently assigns high autoregressive weight to neurons known to be involved697

in certain behaviors (see Figures 12 and 13). In contrast, the ARHMM identifies these relationships698

less reliably, and the estimate of the SLDS autoregressive filters identifies few strong relationships.699

As the GLM only have one “state”, the autoregressive filters are averaged across state, and so few700

strong relationships are found. This highlights how the low-rank and switching properties of SALT701

can be leveraged to glean insight into the system.702

28

Active
during:

SA
LT

 T
en

so
r W

ei
gh

ts

A

Lag=9, equivalent to 3 seconds; from left to right

B

�1
1RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�1
1RIVR

�1
1SMDVL

�1
1SMDVR

�1
1AVFL

�1
1AVFR

�1
1SMDDL

�1
1SMDDR

�0.5
0.5RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�0.5
0.5RIVR

�0.5
0.5SMDVL

�0.5
0.5SMDVR

�0.5
0.5AVFL

�0.5
0.5AVFR

�0.5
0.5SMDDL

�0.5
0.5SMDDR

SLDS State 4 (Ventral Turn) SLDS State 5 (Dorsal Turn)

SL
D

S
Te

ns
or

 W
ei

gh
ts

C ARHMM State 4 (Ventral Turn) ARHMM State 5 (Dorsal Turn)

A
RH

M
M

 T
en

so
r W

ei
gh

ts

�1

1RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�1

1RIVR

�1

1SMDVL

�1

1SMDVR

�1

1AVFL

�1

1AVFR

�1

1SMDDL

�1

1SMDDR

�1

1RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�1

1RIVR

�1

1SMDVL

�1

1SMDVR

�1

1AVFL

�1

1AVFR

�1

1SMDDL

�1

1SMDDR

D

G
LM

 T
en

so
r W

ei
gh

ts

�1
1RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�1
1RIVR

�1
1SMDVL

�1
1SMDVR

�1
1AVFL

�1
1AVFR

�1
1SMDDL

�1
1SMDDR

�0.5
0.5RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�0.5
0.5RIVR

�0.5
0.5SMDVL

�0.5
0.5SMDVR

�0.5
0.5AVFL

�0.5
0.5AVFR

�0.5
0.5SMDDL

�0.5
0.5SMDDR

�1
1RIVL

R
IV

L

R
IV

R

SM
D

V
L

SM
D

V
R

A
V

F
L

A
V

F
R

SM
D

D
L

SM
D

D
R

A
IB

L

A
V
A

R

A
V

B
L

A
V

E
R

R
M

E
D

V
B

02

�1
1RIVR

�1
1SMDVL

�1
1SMDVR

�1
1AVFL

�1
1AVFR

�1
1SMDDL

�1
1SMDDR

SALT State 4 (Ventral Turn) SALT State 5 (Dorsal Turn)

Dorsal
Turn

Ventral
Turn

Figure 12: Autoregressive tensors learned by different models (Ventral and Dorsal Turns): (A-C)
One-dimensional autoregressive filters learned in two states by SALT, SLDS, ARHMM (identified
as ventral and dorsal turns), and (D) by a GLM. RIV and SMDV are known to mediate ventral turns,
while SMDD mediate dorsal turns [31, 32, 34].

29

�0.5
0.5AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�0.5
0.5AVBR

�0.5
0.5RIBL

�0.5
0.5RIBR

�0.5
0.5AVAL

�0.5
0.5AVAR

�0.5
0.5AVEL

�0.5
0.5AVER

�0.5
0.5AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�0.5
0.5AVBR

�0.5
0.5RIBL

�0.5
0.5RIBR

�0.5
0.5AVAL

�0.5
0.5AVAR

�0.5
0.5AVEL

�0.5
0.5AVER

SALT State 3 (Forward) SALT State 7 (Reverse)

Forward

Reverse

Active
during:

SA
LT

 T
en

so
r W

ei
gh

ts

A

Lag=9, equivalent to 3 seconds; from left to right

B

SL
D

S
Te

ns
or

 W
ei

gh
ts

SLDS State 3 (Forward) SLDS State 7 (Reverse)

�0.5

0.5AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�0.5

0.5AVBR

�0.5

0.5RIBL

�0.5

0.5RIBR

�0.5

0.5AVAL

�0.5

0.5AVAR

�0.5

0.5AVEL

�0.5

0.5AVER

�0.5

0.5AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�0.5

0.5AVBR

�0.5

0.5RIBL

�0.5

0.5RIBR

�0.5

0.5AVAL

�0.5

0.5AVAR

�0.5

0.5AVEL

�0.5

0.5AVER

C

A
RH

M
M

 T
en

so
r W

ei
gh

ts

ARHMM State 3 (Forward) ARHMM State 7 (Reverse)

�1

1AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�1

1AVBR

�1

1RIBL

�1

1RIBR

�1

1AVAL

�1

1AVAR

�1

1AVEL

�1

1AVER

�1

1AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�1

1AVBR

�1

1RIBL

�1

1RIBR

�1

1AVAL

�1

1AVAR

�1

1AVEL

�1

1AVER

D

G
LM

 T
en

so
r W

ei
gh

ts �1

1AVBL

A
V

B
L

A
V

B
R

R
IB

L

R
IB

R

A
V
A

L

A
V
A

R

A
V

E
L

A
V

E
R

A
IB

L

A
IB

R

R
IM

L

R
IM

R

R
IS

V
A

01

�1

1AVBR

�1

1RIBL

�1

1RIBR

�1

1AVAL

�1

1AVAR

�1

1AVEL

�1

1AVER

Figure 13: Autoregressive tensors learned by different models (Forward Locomotion and
Reversal): (A-C) One-dimensional autoregressive filters learned in two states by SALT, SLDS,
ARHMM (identified as forward and reverse), and (D) by a GLM. AVB and RIB are known to mediate
forward locomotion, while AVA and AVE are involved in initiating reversals [31, 32, 37, 38].

30

G Code Availability703

As part of Supplementary materials, we include the source code for SALT (in Python) and an example704

Jupyter Notebook. This notebook shows how to sampling data from SALT, and then re-fit a SALT705

model to the data with an EM algorithm. We include just the core code here for ease of inspection,706

and will release the full source code after the review process.707

31

	Introduction
	Background
	SALT: Switching Autoregressive Low-rank Tensor Models
	Generative Model
	Model Fitting and Inference
	Connections Between SALT and Switching Linear Dynamical Systems

	Related Work
	Results
	SALT Faithfully Approximates LDS
	Synthetic Switching LDS Examples
	Modeling Mouse Behavior
	Modeling C. elegans Neural Data

	Discussion
	SALT Optimization via Tensor Regression
	SALT approximates a (Switching) Linear Dynamical System
	Single-subspace SALT
	Synthetic Data Experiments
	Extended Experiments for prop:lds
	Quantitative Performance: Synthetic Switching LDS Experiments
	TVART versus SALT in recovering the parameters of SLDSs
	The effect of the number of switches on the recovery of the parameters of the autoregressive dynamic tensors

	Modeling Mouse Behavior
	Training Details
	Video Generation
	Modeling Mouse Behavior: Additional Analyses

	Modeling C. elegans Neural Data
	Training Details
	Additional Quantitative Results
	Additional Autoregressive Filters

	Code Availability

