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A SALT Optimization via Tensor Regression1

Let yt ∈ RN1 be the t-th outputs and Xt ∈ RN2×N3 be the t-th inputs. The regression weights are a2

tensor A ∈ RN1×N2×N3 , which we model via a Tucker decomposition,3

A =

D1∑
i=1

D2∑
j=1

D3∑
k=1

gi jk u:i ◦ v: j ◦ w:k, (1)

where ui, v j, and wk are columns of the factor matrices U ∈ RN1×D1 , V ∈ RN2×D2 , and W ∈ RN3×D3 ,4

respectively, and gi jk are entries in the core tensor G ∈ RD1×D2×D3 .5

Consider the linear model, yt ∼ N(A ×2,3 Xt,Q) where A ×2,3 Xt is defined using the Tucker decom-6

position of A as,7

A ×2,3 Xt = A(1)vec(Xt) (2)

= UG(1)(V⊤ ⊗W⊤)vec(Xt) (3)

= UG(1)vec(V⊤XtW) (4)

where A(1) ∈ RN1×N2N3 and G(1) ∈ RD1×D2D3 are mode-1 matricizations of the corresponding tensors.8

Note that these equations assume that matricization and vectorization are performed in row-major9

order, as in Python but opposite to what is typically used in Wikipedia articles.10

Equation (4) can be written in multiple ways, and these equivalent forms will be useful for deriving11

the updates below. We have,12

A ×2,3 Xt = UG(1)(ID2 ⊗W⊤X⊤t )vec(V⊤) (5)

= UG(1)(V⊤Xt ⊗ ID3 )vec(W) (6)

=
[
U ⊗ vec(V⊤XtW)

]
vec(G). (7)

We minimize the negative log likelihood by coordinate descent.13

Optimizing the output factors Let14

x̃t = G(1)vec(V⊤XtW) (8)

for fixed V, W, and G. The NLL as a function of U is,15

L(U) =
1
2

∑
t

(yt − Ux̃t)⊤Q−1(yt − Ux̃t). (9)

This is a standard least squares problem with solution16

U⋆ =
∑

t

ytx̃⊤t

 ∑
t

x̃tx̃⊤t

−1

. (10)
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Optimizing the core tensors Let X̃t = U ⊗ vec(V⊤XtW) ∈ RN1×D1D2D3 denote the coefficient on17

vec(G) in eq. (7). The NLL as a function of g = vec(G) is,18

L(g) =
1
2

∑
t

(yt − X̃tg)⊤Q−1(yt − X̃tg). (11)

The minimizer of this quadratic form is,19

g⋆ =
∑

t

X̃⊤t Q−1X̃t

−1 ∑
t

X̃⊤t Q−1yt

 (12)

Optimizing the input factors Let20

X̃t = UG(1)(ID2 ⊗W⊤X⊤t ) (13)

for fixed U, W, and G. The NLL as a function of v = vec(V⊤) is,21

L(v) =
1
2

∑
t

(yt − X̃tv)⊤Q−1(yt − X̃tv). (14)

The minimizer of this quadratic form is,22

v⋆ =
∑

t

X̃⊤t Q−1X̃t

−1 ∑
t

X̃⊤t Q−1yt

 (15)

Optimizing the lag factors Let23

X̃t = UG(1)(V⊤Xt ⊗ ID3 ) (16)

for fixed U, V, and G. The NLL as a function of w = vec(W) is,24

L(w) =
1
2

∑
t

(yt − X̃tw)⊤Q−1(yt − X̃tw). (17)

The minimizer of this quadratic form is,25

w⋆ =
∑

t

X̃⊤t Q−1X̃t

−1 ∑
t

X̃⊤t Q−1yt

 (18)

Multiple discrete states If we have discrete states zt ∈ {1, . . . ,H} and each state has its own26

parameters (G(h),U(h),V(h),W(h),Q(h)), then letting ω(h)
t = E[zt = h] denote the weights from the27

E-step, the summations in coordinate updates are weighted by ω(h)
t . For example, the coordinate28

update for the core tensors becomes,29

g(h)⋆ =

∑
t

ω(h)
t X̃(h)⊤

t Q(h)−1X̃(h)
t

−1 ∑
t

ω(h)
t X̃(h)⊤

t Q(h)−1yt

 (19)

B SALT approximates a Linear Dynamical System30

A stationary linear dynamical system (LDS) is defined as follows:31

xt = Axt−1 + b + ϵ t

yt = Cxt + d + δt

where yt ∈ RN1 is the t-th observation, xt ∈ RD1 is the t-th hidden state, ϵ t
i.i.d.
∼ N(0,Q), δt

i.i.d.
∼ N(0,R),32

and θ = (A,b,Q,C,d,R) are the parameters of the LDS.33

Following the notation of Murphy [1], the one-step-ahead posterior predictive distribution for the34

observations of the LDS defined above can be expressed as:35

p(yt |y1:t−1) = N(Cµt|t−1 + d,CΣt|t−1CT + R)
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where36

µt|t−1 = Aµt−1 + b
µt = µt|t−1 +Ktrt

Σt|t−1 = AΣt−1AT +Q
Σt = (ID1 −KtC)Σt|t−1

p(x1) = N(µ1|0,Σ1|0)

Kt = (Σ−1
t|t−1 + CT RC)−1CT R−1

rt = yt − Cµt|t−1 − d.

We can then expand the mean Cµt|t−1 + d as follows:37

Cµt|t−1 + d = C
t−1∑
l=1

ΓlAKt−lyt−l + C
t−1∑
l=1

Γl(b − AKt−ld) + d

where38

Γl =

l−1∏
i=1

A(ID1 −Kt−iC).

If (A,Q) is stabilizable and (C,A) is detectable, limt→∞Σt|t−1 = Σ, where Σ is the unique solution39

of the discrete algebraic Riccati equation Σ = AΣAT − AΣCT (CΣCT + R)−1CΣAT + Q (Kumar40

and Varaiya [2], Katayama et al. [3]). Consequently, the Kalman gain matrix converges to K =41

(Σ−1 + CT RC)−1CT R−1 for large t.42

Assuming that (A,Q) is stabilizable, (C,A) is detectable, and t is large enough, we can approximate43

the mean as44

Cµt|t−1 + d ≈C
t−1∑
l=1

Γl,stableAKyt−l + C
t−1∑
l=1

Γl,stable(b − AKd) + d

≈C
N3∑
l=1

Γl,stableAKyt−l + C
N3∑
l=1

Γl,stable(b − AKd) + d

where45

Γl,stable =

l−1∏
i=1

A(ID1 −KC) = (A(ID1 −KC))l−1

and N3 is sufficiently large.46

Now we further assume that A(I −KC) has linearly independent eigenvectors and let EΛE−1 be the47

eigendecomposition of A(I −KC) in real modal form. If A(I −KC) has n real eigenvalues and m48

pairs of complex eigenvalues (i.e., n + 2m = D1), we can express E, Λ, and E−1 as:49

E =
[

a1 . . . an b1 c1 . . . bm cm
]

Λ =



λ1
. . .
λn
σ1 ω1
−ω1 σ1

. . .
σm ωm
−ωm σm


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50

E−1 =



dT
1
...

dT
n

eT
1

f T
1
...

eT
m

f T
m



where a1 . . . an are the right eigenvectors corresponding to n real eigenvalues λ1 . . . λn, and bi and51

ci are the real and imaginary parts of the eigenvector corresponding to the complex eigenvalue52

σi + jωi.53

Since54

Γl,stable = (A(ID1 −KC))l−1 = EΛl−1E−1

The lth power of Λ, Λl, where l ≥ 0, can be expressed as:55

Λl =



λl
1
. . .

λl
n
σ1,l ω1,l
−ω1,l σ1,l

. . .
σm,l ωm,l
−ωm,l σm,l



where σi,l = σ
2
i,l−1 − ω

2
i,l−1, ωi,l = 2σi,l−1ωi,l−1 for l ≥ 2, σi,1 = σi, ωi,1 = ωi, σi,0 = 1, and56

ωi,0 = 0.57

Tucker Tensor Regression Let H ∈ RD×D×L be a three-way tensor, whose lth frontal slice H::l =58

Λl−1. Let G ∈ RD×D×D be a three-way tensor, whose entry gi jk = 1i= j=k for 1 ≤ k ≤ n, and gi jk =59

(−1)1i+1= j=k+11(i= j=k)∨(i−1= j−1=k)∨(i= j+1=k+1)∨(i+1= j=k+1) for k ∈ {n+1, n+3, . . . , n+2m−1}. Let W ∈ RL×D60

be a matrix, whose entry wlk = λ
l−1
k for 1 ≤ k ≤ n, wlk = σk,l−1 for k ∈ {n + 1, n + 3, . . . , n + 2m − 1},61

and wlk = −ωk,l−1 for k ∈ {n + 2, n + 4, . . . , n + 2m}. We can then decompose H into G ∈ RD×D×D62

and W ∈ RL×D such that H = G ×3 W (Figure 1).63
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Figure 1: Decomposition of H into G and W such that H = G ×3 W: Given an LDS whose
A(I −KC) has n real eigenvalues and m pairs of complex eigenvalues, this decomposition illustrates
how Tucker-SALT can approximate the LDS well with rank n + 2m.

With V = (E−1AK)T , U = CE, m = C
∑N3

l=1 Γl,stable(b−AKd)+d, and Xt = yt−1:t−N3 , we can rearrange64

the mean to:65

Cµt|t−1 + d ≈C
N3∑
l=1

EΛl−1E−1AKyt−l + C
N3∑
l=1

Γl,stable(b − AKd) + d

=U
N3∑
l=1

H::lVT yt−l +m

=U
N3∑
l=1

(G×̄3wl)VT yt−l +m

=U
N3∑
l=1

((G ×2 V)×̄3wl)yt−l +m

=U
N3∑
l=1

D2∑
j=1

D3∑
k=1

g: jk ◦ v: j(wlkyt−l) +m

=U
D2∑
j=1

D3∑
k=1

g: jk(v⊤: jXtw:k) +m

=

D1∑
i=1

D2∑
j=1

D3∑
k=1

u:igi jk(v⊤: jXtw:k) +m

=

 D1∑
i=1

D2∑
j=1

D3∑
k=1

gi jku:i ◦ v: j ◦ w:k

 ×2,3 Xt +m

CP Tensor Regression By rearranging E,Λl, and E−1 into J, Pl, and S respectively as fol-66

lows:67

J =
[

a1 . . . an b1 + c1 b1 c1 . . . bm + cm bm cm
]
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68

Pl =



λl
1
. . .

λl
n
σ1,l
α1,l
β1,l
. . .
σm,l

αm,l
βm,l


69

S =



dT
1
...

dT
n

eT
1 + f T

1
f T

1
eT

1
...

eT
m + f T

m
f T

m
eT

m


where J ∈ RD×(n+3m), Pl ∈ R(n+3m)×(n+3m), S ∈ R(n+3m)×D, αi,l = ωi,l − σi,l, and βi,l = −ωi,l − σi,l, we70

can diagonalize (A(ID1 −KC))l as JPlS.71

Let V = (SAK)T , U = CJ, m = C
∑N3

l=1 Γl,stable(b −AKd) + d, and Xt = yt−1:t−N3 . Let W ∈ RN3×(n+3m)72

be a matrix, whose element in the lth row and kth column is pl−1,kk (i.e., the element in the kth row and73

kth column of Pl−1), and G ∈ RD1×D1×D1 be a superdiagonal 3-way tensor, where gi jk = 1i= j=k. We can74

then rearrange the mean to:75

Cµt|t−1 + d ≈C
N3∑
l=1

EΛl−1E−1AKyt−l + C
N3∑
l=1

Γl,stable(b − AKd) + d

=C
N3∑
l=1

JPl−1SAKyt−l +m

=U
N3∑
l=1

Pl−1V⊤yt−l +m

=

N3∑
l=1

n+3m∑
i

n+3m∑
j

n+3m∑
k

gi jk u:i ◦ v: j(pl−1,kkyt−l) +m

=

n+3m∑
i

n+3m∑
j

n+3m∑
k

gi jk u:i ◦ v: j(Xtw:k) +m

=

n+3m∑
i=1

n+3m∑
j=1

n+3m∑
k=1

gi jk u:i ◦ v: j ◦ w:k

 ×2,3 Xt +m

Correspondence between SALT and Switching Linear Dynamical Systems Above, we demon-76

strated how SALT can approximate a linear dynamical system. For a switching linear dynamical77

system, this correspondence will hold within each discrete state. It is important to note, however, that78

this correspondence will be less exact near the boundary between discrete states.79
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Figure 2: The quality of SALT approximation of SLDSs decreases as the number of discrete
state switches increases: The data comes from an SLDS with H = 2, N = 20, and D = 7. 15,000
timesteps were generated, with varying numbers of evenly spaced out discrete state switches (x-axis).
The mean squared error of reconstructing the autoregressive tensors increased with the number of
discrete state switches.

This is because in SALT, the autoregressive dynamics only depend on the current discrete state.80

However, in an SLDS, when we marginalize out the continuous latent states, the autoregressive81

dynamics in the observation space will depend on previous discrete states as well.82

C Modeling Mouse Behavior: Videos83

Here we describe how the mouse behavioral videos were generated. We first determined the CP-84

SALT hyperparameters as those which led to the highest log-likelihood on the validation dataset.85

Then, using that CP-SALT model, we computed the most likely discrete states on the train and test86

data. Given a discrete state h, we extracted slices of the data whose most likely discrete state was87

h. We padded the data by 30 frames (i.e. 1 second) both at the beginning and the end of each slice88

for the movie. A red dot appears on each mouse for the duration of discrete state h. We generated89

such videos for all 50 discrete states (as long as there existed at least one slice for each discrete state)90

on the train and test data. For a given discrete state, the mice in each video behaved very similarly91

(e.g., the mice in the video for state 18 “pause" when the red dots appear, and those in the video for92

state 32 “walk" forward), suggesting that CP-SALT is capable of segmenting the data into useful93

behavioral syllables.94

D Additional Synthetic Data Experiments95

D.1 The effect of the number of switches on the recovery of the parameters of the96

autoregressive dynamic tensors97

We asked how the number of discrete state switches affected SALT’s ability to recover the autoregres-98

sive tensors. We trained CP-SALT, Tucker-SALT, the ARHMM, all with L = 5 lags, and the SLDS99

on data sampled from an SLDS with varying number of discrete state switches. The ground-truth100

SLDS model had H = 2 discrete states, N = 20 observations and D = 7 dimensional continuous101

latent states. The matrix A(h)(I −K(h)C(h)) of each discrete state of the ground-truth SLDS had 1 real102

eigenvalue and 3 pairs of complex eigenvalues. We sampled 5 batches of T = 15, 000 timesteps of103

data from the ground-truth SLDS, with sn ∈ {1, 10, 25, 75, 125} number of discrete state switches that104

were evenly spaced out across the data. We then computed the mean squared error (MSE) between105

the SLDS tensors and the tensors reconstructed by SALT, the ARHMM, and the SLDS. (Figure 2).106

More precisely, we combined the 3rd order autoregressive tensors from each discrete into a 4th order107

tensor, and calculated the MSE based on these 4th order tensors. As expected, the MSE increased108
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with the number of switches in the data, indicating that the quality of SALT approximation of SLDSs109

decreases as the number of discrete state switches increases.110

E Code111

As part of Supplementary materials, we include the source code for SALT (in Python) and an example112

Jupyter Notebook for sampling data from SALT and fitting SALT to the data with an EM algorithm.113

SALT code requires the ssm-jax package.114
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