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1 Preliminaries
Definition S1 (ϵ-DP, Dwork et al. (2006b)). A mechanism M is ϵ-DP if the
following holds:

sup
S,S′⊂X ,S∼S′

sup
A⊂Z

P (M(S) ∈ A)− eϵP (M(S′) ∈ A) ≤ 0,

where S ∼ S′ denotes that data sets S and S′ differ only by one individual.

Definition S2 ((ϵ, δ)-DP, Dwork et al. (2006a)). A mechanism M is (ϵ, δ)-DP
if the following holds:

sup
S,S′⊂X ,S∼S′

sup
A⊂Z

P (M(S) ∈ A)− eϵP (M(S′) ∈ A) ≤ δ.

Definition S3 (Locally private mechanism, variant of Duchi et al. (2013)). For
a multivariate mechanism (Z1, . . . , Zn) = M(X1, . . . , Xn) defines a collection of
randomized mechanisms {Mi}ni=1 as Mi(X1, . . . , Xn) = Zi. Here, M is a locally
private mechanism if Mi takes Xi for its input. Furthermore, M is said to be
sequential if Mi depends only on the realizations of Z1, . . . , Zi−1 for all i.

Definition S4 ((ϵ, δ)-LDP, Asoodeh et al. (2021)). A given locally private
mechanism M : Xn −→ P (Z) is (ϵ, δ)-LDP if

sup
x,x′∈X

sup
A⊂Z

∣∣PMi(x) (A)− eϵPMi(x′) (A)
∣∣ ≤ δ

for i = 1, . . . , n.

Definition S5 (FDP, Dong et al. (2022)). Let f : [0, 1] −→ [0, 1] be a trade-off
function for some distributions P and Q. A given mechanism M is f -FDP if

T (M(S),M(S′))(α) ≥ f(α)

for every S ∼ S′ ⊂ Xn and α ∈ [0, 1].
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Definition S6 (f -FLDP and µ-GLDP). A given locally private mechanism
M : Xn −→ P (Z) is f -FLDP (or µ-GLDP) if

T (Mi(x),Mi(x
′))(α) ≥ f(α) (or Gµ(α))

for every x, x′ ∈ X and i = 1, . . . , n.

Definition S7 (Minimax risk).

Rn(θ(P), L) := inf
θ̂:Xn−→Θ

sup
P∈P

EP

[
L
(
θ̂ (X1, . . . , Xn) , θ(P )

)]
.

2 Existing results
Proposition S1 (Le Cam’s method, LeCam (1973); Yu (1997); Tsybakov (2009)).
For two distributions P1, P2 ∈ P, suppose ρ(θ(P1), θ(P2)) ≥ 2η > 0 holds. Then,

Rn (θ(P),Φ ◦ ρ) = inf
θ̂:Xn−→Θ

sup
P∈P

EP

[
Φ
(
ρ
(
θ̂ (X1, . . . , Xn) , θ(P )

))]
≥ Φ(η)

2
(1− |Pn

1 − Pn
2 ∥TV ) .

Proposition S2 (Assoaud’s method, Assouad (1983); Yu (1997); Duchi et al.
(2018)). For a family P of distributions and a loss function Φ ◦ ρ, suppose a
set of distributions {Pv}v∈{−1,+1}d ⊂ P induces 2η-Hamming separation under
Φ ◦ ρ. Then, we have

Rn (θ(P),Φ ◦ ρ) ≥ η

d∑
j=1

(
1− ||Pn

+j − Pn
−j ||TV

)
where Pn

±j(x1, . . . , xn) :=
1

2d−1

∑
v:vj=±1 Pv(x1) · · ·Pv(xn).

3 Contraction inequality of FLDP
In discussing involving private mechanisms, the term contraction is frequently
used. As pointed out by Duchi et al. (2018), one consequence of private mecha-
nisms on statistical utility is a contraction of the effective sample size. Another
usage is the contraction of the distribution mechanism. In this section, we focus
on the latter aspect, especially examining the f -FLDP mechanism. Both Le
Cam’s and Assouad’s methods obtain lower bounds by considering a random
selection from a set of distributions in P. Hence, we assume that target dis-
tributions are randomly chosen from a prior family of distributions {Pv}v∈V .
Subsequently, our estimate θ̂ is fixed for given data, so the loss relies on the dis-
parity between the distributions {Pv}v∈V and the target parameters {θ(Pv)}v∈V .
In the private setting, mechanisms impact the distributions by converting the
family of distributions {Pv}v∈V into a family of closer distributions {M(Pv)}v∈V ,
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but not target parameters, which can be seen in (1) and (2) in the main paper.
Consequently, the difference in minimax risk between non-private and private
estimation heavily depends on the contraction ability of the mechanism. The
characteristic of a mechanism that transforms input distributions into output
distributions that are closer has already been studied in the context of the
contraction coefficient of the Markov kernel (Asoodeh et al., 2021). The Markov
kernel can be identified with a mechanism in the theoretical sense, which we will
adopt in our study.

The contraction coefficient of a mechanism under Df -divergence is defined as
follows:

sup
P,Q∈P(X )

Df (M(P )||M(Q))

Df (P ||Q)

where the f -divergence Df (P ||Q) is defined as Df (P ||Q) = EQ

[
f
(

P
Q

)]
for a

given convex function f : (0,∞) −→ R such that f(1) = 0. Although it cannot
be represented in the form of a contraction coefficient of a specific divergence,
Duchi et al. (2018) showed Dsy

kl (M(P )||M(Q)) ≤ 2(eϵ − 1)2∥P −Q∥2TV for the
ϵ-LDP mechanism M where Dsy

kl is defined in (2). This result indicates the
contraction property of the ϵ-LDP mechanism. By establishing such contraction
inequality for a mechanism, we can employ Le Cam’s or Assouad’s method to
derive the minimax lower bound for a given estimation problem. Therefore,
considering the contraction inequality of f -FLDP mechanisms with respect to
divergence measures can enhance our understanding of private minimax risk.
The contraction inequality for the f -FLDP mechanism, which is also utilized in
the proofs of Theorem 1 and Theorem 3, is presented in Theorem 2 in the main
paper.

For a given locally private mechanism M : X −→ P(Z) and distributions
P1, P2 ∈ P(X ), denote m1 and m2 for the distributions of M(X) and M(Y ),
respectively, where X ∼ P1 and Y ∼ P2. Thus, the mechanism discussed in this
section is designed for a dataset of size 1.

Recall the definition of δf (y) = supx∈[0,1] 1 − yx − f(x). For given two trade-
off functions f and g, if f ≥ g on [0, 1], then δf (y) ≤ δg(y) for all y. Thus,
cf,κ ≤ cg,κ if f ≥ g on [0, 1]. This implies that with less private mechanism
(g ≤ f), its resulting distribution is less contracted (cg,κ ≥ cf,κ), which aligns
with our intuitive expectation. We state the result of Duchi et al. (2018) for
comparison.

Proposition S3 (Contraction in ϵ-LDP mechanism, Duchi et al. (2018)). For
the ϵ-LDP mechanism,

Dsy
kl (m1||m2) ≤ 2(eϵ − 1)2∥P1 − P2∥2TV

holds for any P1, P2 ∈ P(X ).

Our bound extends the result presented in Proposition S3. If cf,κ exists for
κ = 1 and a given trade-off function f , then Theorem 2 bounds Dkl(m1||m2)
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by ∥P1 − P2∥2TV . This implies that the contraction and minimax rate for
inference problems under f -FLDP are analogous to those of ϵ-LDP, as shown in
Theorem 1,Theorem 3 and Theorem 2. Combining Theorem 2 and Lemma 1, we
obtain the following contraction inequality.

Corollary S1. If a given trade-off function f(x) ≥ 1− c0x
c1 on [0, 1] for some

c0 > 0 and c1 ∈ (0.5, 1), or δf (x) ≤ c3x
−1−c2 for x > x0 and some c3, c2, x0 > 0,

then
∫∞
0

δf (t) dt converges, and

Dsy
kl (m1||m2) ≤ cf,1

∥P1 − P2∥2TV

1− ∥P1 − P2∥TV

holds for f -FLDP mechanim M and for every distributions P1 and P2 over X .

Combining with the fact that Gµ satisfies the condition of Corollary S1, we can
also state the contraction inequality for µ-GLDP.

Corollary S2. For µ-GLDP mechanism M , the following holds:

Dsy
kl (m1||m2) ≤ c

∥P1 − P2∥2TV

1− ∥P1 − P2∥TV

for every distributions P1 and P2 over X .

Recall that the minimax rates of µ-GLDP are equivalent to those of ϵ-LDP
with respect to n. There exists a mechanism that is µ-GLDP but not ϵ-LDP
for any ϵ ≥ 0. Hence, µ-GLDP offers a more lenient privacy guarantee, yet its
optimal statistical utility does not differ from that of ϵ-LDP. This phenomenon
can be explained using the concept of contraction. The contraction inequality
of the µ-GLDP mechanism is not significantly different from that of ϵ-LDP, as
demonstrated in Proposition S3 and Corollary S2. Additionally, we note another
result regarding the contraction of the mechanism. Asoodeh et al. (2021) showed
Df (m1||m2) ≤ (1− (1− δ)e−ϵ)Df (P1||P2) for a (ϵ, δ)-DP mechanism where Df

represents an f -divergence. This result provides an intuitive understanding of
the contraction capability of the mechanism. However, as they pointed out, the
bounds in their work are loose in exchange for their generality. In comparison, our
result is more powerful when considering the K-L divergence, as our bound can
provide a finite upper bound even for distributions P1 and P2 with diverging K-L
divergence. Furthermore, our inequality allows for the classification of private
mechanisms based on their characteristics. For example, consider Gaussian
mechanisms with different variances of noise. With a fixed ϵ, these mechanisms
satisfy (ϵ, δ1)-LDP and (ϵ, δ2)-LDP for different values of δ1 and δ2. While
they may be treated differently from the perspective of (ϵ, δ)-LDP, they exhibit
essentially the same contraction ability according to (2), as the contraction is
bounded by the square of the total variation.
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4 Additional experiments
For our experiments, we utilized a CPU with an 11th Gen Intel(R) Core(TM)
i7-1185G7 processor. Also, we employed the Laplace random number generator
proposed by Chen (2023) for private mean estimation.

4.1 Univariate mean estimation
This experiment compares the univariate mean estimation for ϵ-LDP, µ-GLDP,
and non-private mechanisms. Our proposed mechanism in Section 3.1 under
µ-GLDP is compared with the mechanism in Duchi et al. (2018) and the non-
private mechanism, which is obtained by the sample mean. We generate the
data from χ2(1). We set ϵ ∈ {0.4, 0.8, 1.6, 3.2, 6.4} for ϵ-LDP and µ ∈ {0.5, 1}
for µ-GLDP. Also, we vary the sample size from n = 10 to n = 100 and the
moment from k=2 to k = 60. Estimation errors are calculated by taking the
square of the difference between the true and estimated means. We repeat the
experiment 100 times for each mechanism.

(a) Trade-off functions (b) Mean squared errors

Figure S1: (a) Trade-off functions of each ϵ-LDP for ϵ ∈ {0.4, 0.8, 1.6, 3.2, 6.4}
and µ-GLDP for µ ∈ {0.5, 1}. (b) The mean squared errors for univariate mean
estimation with the best assumed moment k for each privacy mechanism.

Fig. S1a presents a graphical comparison of the trade-off function for each
assumed local differential privacy mechanism. In the mean estimation, we
observe that the higher-utility-less-private rule remains consistent across all
mechanisms, unlike in the density estimation, as can be seen in Fig. S1b. This
implies that if an optimal mechanism is partially more private than the others
(exhibiting smaller trade-off function values for some given Type I errors), its
estimation errors are worse, even when selecting the kth moment that yields the
smallest error for each mechanism, except for n = 10.
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5 Proofs
Notation. For a given mechanism M : X −→ P (Z) we denote qM (z) as the
density of the random variable M(x) for x ∈ X . When the specific mechanism
being referenced is clear, we omit the subscript and use q(z|x). Also, for a
distribution P on X , we denote M(P ) as the distribution of M(X) with X ∼ P .
The density of M(P ) can be expressed as

∫
X q(z|x)dP (x).

Proposition S4 (Asoodeh et al. (2021)). If a mechanism M : X −→ Z is
(ϵ, δ)-DP, then

Eeϵ [M(P )||M(Q)] ≤ δEeϵ [P ||Q] ≤ δ

holds for every distributions P and Q over X .

5.1 Proof of Theorem 2
We prove the following lemma first before proving Theorem 2.

Lemma S1.

log(1 + t) ≤
(
1− κ

κ

)1−κ

tκ

holds for t > 0 and 0 ≤ κ ≤ 1.

Proof. The generalized AM-GM inequality states that

xκy1−κ ≤ κx+ (1− κ)y

for x, y ≥ 0 and κ ∈ [0, 1]. Thus, for κ ∈ [0, 1] and t ≥ 0,(
1

κ

1

1 + t

)κ(
1

1− κ

t

1 + t

)1−κ

≤ 1

holds by the generalized AM-GM inequality. Then,

d

dt

((
1− κ

κ

)1−κ

tκ − log(1 + t)

)
= (1− κ)1−κκκtκ−1 − 1

1 + t
≥ 0.

Therefore, the inequality holds for t ≥ 0.

Note that

Dsy
kl (m1||m2) =

∫
Z
m1 log

m1

m2
dz +

∫
Z
m2 log

m2

m1
dz

=

∫
Z
(m1 −m2) log

m1

m2
dz

=

∫
Z
(max{m1,m2} −min{m1,m2}) log

max{m1,m2}
min{m1,m2}

dz

=

∫
Z
|m1 −m2|log

(
1 +

|m1 −m2|
min{m1,m2}

)
dz.
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Then, by Lemma S1,

Dsy
kl (m1||m2) ≤

(
1− κ

κ

)1−κ ∫
Z

|m1 −m2|1+κ

min{m1,m2}κ
dz.

Define distributions P+ and P− following the distributions (P1−P2)+
∥P1−P2∥TV

and
(P2−P1)+

∥P1−P2∥TV
, respectively, where (x)+ = max{x, 0}. Note that P+ and P− are

distributions since their densities are non-negative and integrals are 1 by defini-
tion. Then, we can derive the densities of m+ = M(P+) and m− = M(P−) as
follows:

m+(z) =
1

∥P1 − P2∥TV

∫
X
q(z|x) (dP1(x)− dP2(x))+ ,

m−(z) =
1

∥P1 − P2∥TV

∫
X
q(z|x) (dP2(x)− dP1(x))+ .

Thus, we have

m+(z)−m−(z) =
1

∥P1 − P2∥TV

∫
X
q(z|x) (dP1(x)− dP2(x))

=
m1(z)−m2(z)

∥P1 − P2∥TV
,

since max{x, 0} −max{−x, 0} = x. Then,

Dsy
kl (m1||m2) ≤

(
1− κ

κ

)1−κ

∥P1 − P2∥1+κ
TV

∫
Z

|m+ −m−|1+κ

min{m1,m2}κ
dz

=

(
1− κ

κ

)1−κ

∥P1 − P2∥1+κ
TV

(∫
Z

m1+κ
+ +m1+κ

−
min{m1,m2}κ

dz

)
.

Also, if we define mmin = M(Pmin) where Pmin is the distribution defined by
min{P1,P2}∫

X min{dP1,dP2} , we have

mmin(z) =
1∫

X min{dP1, dP2}

∫
X
q(z|x)min{dP1, dP2}

≤ 1∫
X min{dP1, dP2}

min
{∫

X
q(z|x)dP1,

∫
X
q(z|x)dP2

}
=

1

1− ∥P1 − P2∥TV
min{m1,m2}.

Hence,

Dsy
kl (m1||m2) ≤

(
1− κ

κ

)1−κ ∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

∫
Z

m1+κ
+ +m1+κ

−
mκ

min

dz.
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For each term in the right-hand side, we can obtain the following inequal-
ity: ∫

Z

m1+κ
+

mκ
min

dz =

∫
Z

∫ ∞

0

(1 + κ) tκ1{ m+

mmin
> t}mmindtdz

=

∫
Z

∫ ∞

0

κtκ−11{ m+

mmin
> t}m+dtdz,

which yields the following bound:∫
Z

m1+κ
+

mκ
min

dz = (1 + κ)

∫
Z

m1+κ
+

mκ
min

dz − κ

∫
Z

m1+κ
+

mκ
min

dz

=

∫
Z

∫ ∞

0

κ(1 + κ)tκ−11{ m+

mmin
> t} (m+ − tmmin) dtdz

=

∫ ∞

0

κ(1 + κ)tκ−1Et [m+||mmin] dt

≤
∫ ∞

0

κ(1 + κ)tκ−1δ(t)dt.

Then, the integral converges by the assumption of Theorem 2. Also, the inequality

symmetrically holds for m1+κ
−

mκ
min

. Therefore, we obtain the desired inequality:

Dsy
kl (m1||m2) ≤ 2κκ (1− κ)

1−κ ∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

∫ ∞

0

(1 + κ)tκ−1δ(t)dt.

5.2 Proof of Corollary S1
First, we consider the case when a trade-off function f(x) ≥ 1− c0x

c1 for some
c0 > 0 and c1 ∈ (0.5, 1). Recall the definition of δ(y) := supx∈[0,1] 1− yx− f(x).
Thus, if we denote

δf (y) = sup
x∈[0,1]

1− yx− f(x), δg(y) = sup
x∈[0,1]

1− yx− g(x)

for trade-off functions f and g such that f(t) ≥ g(t) on [0, 1], respectively,
then

δg(y) = sup
x∈[0,1]

1− yx− g(x) ≥ sup
x∈[0,1]

1− yx− f(x) = δf (y).

Now assume that a given trade-off function f satisfies f(x) ≥ 1− c0x
c1 for some

c0 > 0 and c1 ∈ (0.5, 1) and define g(x) = max{1−c0x
c1 , 0}. Then, δf (y) ≤ δg(y).

Thus, if
∫
δg (t) dt converges,

∫
δf (t) dt also converges. By performing specific

calculations of δg, we can obtain the desired conclusion:

δg(y) = sup
x∈[0,1]

1− yx− g(x) = sup

0≤x≤c
− 1

c1
0

−yx+ c0x
c1
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for y ≥ 0. By differentiating the objective function, we can determine that it has
a local maximum in [0, 1] at x = (c0c1)

1
1−c1 y−

1
1−c1 , and their boundary values

are non-positive on [0, c
−1/c1
0 ]. For sufficiently large y ≥ y0, (c0c1)

1
1−c1 y−

1
1−c1 ≤

c
−1/c1
0 and

δg(y) = Cy−
c1

1−c1 ,

where C = (c0c1)
1

1−c1 (c−1
1 − 1). Note that δg(y) ∈ [0, 1] by definition, which

gives ∫ y0

0

δg(y)dy ≤ y0.

Thus, we can show the convergence of the integral∫ ∞

0

δg(y)dy ≤ y0 +

∫ ∞

y0

Cy−
c1

1−c1 dy

= y0 + C
1− c1
1− 2c1

y
− 2c1−1

1−c1
0

< ∞

if c1 ∈ (0.5, 1). Now we consider the case when δ(x) ≤ c3x
−1−c2 for x > x0 for

some c3, c2, x0 > 0. Since δ(y) ∈ [0, 1], we have∫ 1

0

δ(y)dy ≤ 1

and ∫ ∞

1

δ(y)dy ≤
∫ ∞

1

c3y
−1−c2dy =

c3
c2

,

thus the integral converges and Theorem 2 yields the desired result.

5.3 Proof of GLDP holding the condition of Lemma 1
Dong et al. (2022) showed that if a trade-off function is given as f(x) = Gµ(x) for
some µ > 0, the corresponding δ(y) := supx∈[0,1] 1− yx− f(x) has the following
closed form:

δ (eϵ) = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
.

Denote y = eϵ and note that

Φ(−t) =

∫ −t

−∞

1√
2π

e−x2

dx ≤
∫ −t

−∞

|x|
|t|
√
2π

e−x2

dx =
1

2t
√
2π

e−t2 .
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Then,

δ (y) ≤ Φ

(
− log y

µ
+

µ

2

)
≤ 1

2
(

log y
µ − µ

2

)√
2π

e−(
log y
µ −µ

2 )
2

≤ 1

4
√
2π

e
− log2 y

µ2 +log y

=
1

4
√
2π

y−
log y
µ +1

<
1

4
√
2π

y−2

for y > e3µ. Therefore,
∫
δ(t)dt converges by Lemma 1.

5.4 Proof of Theorem 1
For a given mechanism M , denote the estimator θ̂(Z) = θ̂ (M(X1, . . . , Xn)).
Then,

sup
P∈P

E
[
Φ
(
ρ
(
θ̂, θ (P )

))]
≥ 1

2
E
[
Φ
(
ρ
(
θ̂, θ (P1)

))
|Z ∼ M(P1)

]
+

1

2
E
[
Φ
(
ρ
(
θ̂, θ (P2)

))
|Z ∼ M(P2)

]
. (S1)

Since ρ is a metric,

ρ
(
θ̂, θ (P1)

)
+ ρ

(
θ̂, θ (P2)

)
≥ ρ (θ (P1) , θ (P2)) ≥ 2η.

Thus, at least one of the terms in the left-hand side is greater or equal to η.
Since Φ is increasing, we have

Φ
(
ρ
(
θ̂, θ (P1)

))
+Φ

(
ρ
(
θ̂, θ (P2)

))
≥ Φ (η) .

For X = (X1, . . . , Xn) ∈ Xn, let Li(Z) = Φ
(
ρ
(
θ̂ (Z) , θ (Pi)

))
for i =1 and 2,

w1(Z) = L1(Z)
L1(Z)+L2(Z) , and w2(Z) = L2(Z)

L1(Z)+L2(Z) . Then, (S1) becomes

sup
P∈P

E
[
Φ
(
ρ
(
θ̂, θ (P )

))]
≥ Φ (η)

2

(∫
Zn

w1dM(Pn
1 ) +

∫
Zn

w2dM(Pn
2 )

)
≥ Φ (η)

2

∫
Zn

min{dM(Pn
1 ), dM(Pn

2 )}

=
Φ(η)

2

∫
Zn

dM(Pn
1 )− (dM(Pn

1 )− dM(Pn
2 ))+

=
Φ(η)

2
(1− ∥M(Pn

1 )−M(Pn
2 )∥TV ) .
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Pinsker’s inequality (Tsybakov, 2009) states that

∥P −Q∥2TV ≤ 1

2
Dkl (P ||Q) . (S2)

Using Pinsker’s inequality in (S2), we have

∥M(Pn
1 )−M(Pn

2 )∥TV ≤
√

1

2
Dkl (M(Pn

1 )||M(Pn
2 )). (S3)

Note that we can decompose the K-L divergence for multivariate distributions
as:

Dkl (f(x1, · · · , xn)||g(x1, · · · , xn))

=

∫
Xn

f(x1:n) log
f(x1:n)

g(x1:n)
dx1:n

=

∫
Xn

f(x1:n)

n∑
i=1

log
f(xi|x1:i−1)

g(xi|x1:i−1)
dx1:n

=

n∑
i=1

∫
Xn

f(x1:n) log
f(xi|x1:i−1)

g(xi|x1:i−1)
dx1:n

=

n∑
i=1

∫
X i

f(x1:i) log
f(xi|x1:i−1)

g(xi|x1:i−1)
dx1:i

=

n∑
i=1

∫
X i−1

∫
X
f(xi|x1:i−1) log

f(xi|x1:i−1)

g(xi|x1:i−1)
dxif(x1:i−1)dx1:i−1

=

n∑
i=1

∫
X i−1

Dkl (f(xi|x1:i−1)||g(xi|x1:i−1)) f(x1:i−1)dx1:i−1

where f(x1, . . . , xi) and f(xi|x1:i−1) denote the marginal distribution of (X1, . . . , Xi)
and conditional distribution of Xi|X1, . . . , Xi−1, respectively, under the distribu-
tion with density f(x1, · · · , xn). Hence, the K-L divergence is decomposed into
the summation of the expected K-L divergences:

Dkl (f(x1:n)||g(x1:n)) =

n∑
i=1

E [Dkl (f(xi|X1:i−1)||g(xi|X1:i−1)) |X1:n ∼ f ] .

(S4)
Denote (Z1, . . . , Zn) = M(Pn

1 ), (W1, . . . ,Wn) = M(Pn
2 ), then Eq. (S4) gives

Dkl (M(Pn
1 )||M(Pn

2 )) =

n∑
i=1

E [Dkl (zi|Z1:i−1||wi|Z1:i−1) |Z1:n ∼ M(Pn
1 )] .

The locally private mechanism is f -FLDP if, for given i − 1 outputs, the
mechanism M(Xi|z1, . . . , zi−1) is f -FDP for Xi, which is also the case of f -
FLDP with only one input. As a result, Dkl (zi|Z1:i−1||wi|Z1:i−1) is bounded by

11



cf,κ
∥P1−P2∥1+κ

TV

(1−∥P1−P2∥TV )κ based on Theorem 2 since zi|Z1:i−1 ∼ M(P1) and wi|Z1:i−1 ∼
M(P2), which leads to the following inequality:

Dkl (M(Pn
1 )||M(Pn

2 )) ≤ ncf,κ
∥P1 − P2∥1+κ

TV

(1− ∥P1 − P2∥TV )
κ .

Combining it with Eq. (S3), we have

∥M(Pn
1 )−M(Pn

2 )∥TV ≤

√
1

2
ncf,κ

∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

and

sup
P∈P

E
[
Φ
(
ρ
(
θ̂, θ (P )

))]
≥ Φ (η)

2

1−

√
1

2
ncf,κ

∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

 .

Consequently, for a given family Mf of f -FLDP mechanisms, we have

Rn (θ (P) ,Φ ◦ ρ,Mf ) ≥
Φ (η)

2

1−

√
ncf,κ

∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

 .

5.5 Proof of Corollary 1
For 0 < η < 1 and v ∈ {−1,+1}, define distributions Pv such that

Pv

(
X = ±η−

1
k

)
=

1± v

2
η, Pv (X = 0) = 1− η.

Then,
Ev[X] = vη1−

1
k , Ev[|X|k] = 1,

thus Pv ∈ Pk. Noting |E+1[X]− E−1[X]| = 2η1−
1
k , we can apply Theo-

rem 1:

Rn

(
θ
(
Pk, ∥·∥22,Mf

))
≥ 1

2

(
η1−

1
k

)2 1−√ncf,κ
∥P+1 − P−1∥1+κ

TV

(1− ∥P+1 − P−1∥TV )
κ

 .

Putting ∥P+1 − P−1∥TV = η, we have

Rn

(
θ
(
Pk, ∥·∥22,Mf

))
≥ 1

2

(
η1−

1
k

)2 [
1−

√
ncf,κ

η1+κ

(1− η)
κ

]
.

Set η = (2ncf,κ)
− 1

1+κ , then

(1− η)
−κ

=
(
1− (2ncf,κ)

− 1
1+κ

)−κ

≤

(
1− 1√

2ncf,κ

)−1

≤ 2
√
2

2
√
2− 1

12



if n > 4
cf,κ

. As a result,

Rn

(
θ
(
Pk, ∥·∥22,Mf

))
≥ 1

2
(2ncf,κ)

− 1
1+κ

2(k−1)
k

1−
√ √

2

2
√
2− 1

 .

Therefore,
Rn

(
θ
(
Pk, ∥·∥22,Mf

))
≥ c0 (ncf,κ)

− 1
1+κ

2(k−1)
k

if n > c1 where c0 > 0 depends on k and κ and c1 depends on cf,κ.

5.6 Proof of Corollary 2
The lower bound is evident from the fact that Gµ satisfies the conditions stated
in Lemma 1 and Corollary 1. The coefficient in the lower bound is given as
follows:

cGµ,1 = 4

∫ ∞

0

δGµ(t)dt

= 4

∫ ∞

0

Φ

(
− log t

µ
+

µ

2

)
− tΦ

(
− log t

µ
− µ

2

)
dt

= 4

∫ ∞

0

∫ − log t
µ +µ

2

−∞

1√
2π

e−
1
2x

2

dx− t

∫ − log t
µ −µ

2

−∞

1√
2π

e−
1
2x

2

dxdt

= 4

∫ ∞

0

∫ − log t
µ +µ

2

−∞

1√
2π

e−
1
2x

2
(
1− teµx−

1
2µ

2
)
dxdt

= 4

∫ ∞

−∞

∫ e−µx+1
2
µ2

0

1√
2π

e−
1
2x

2
(
1− teµx−

1
2µ

2
)
dtdx

= 4

∫ ∞

−∞

1√
2π

e−
1
2x

2 1

2
e−µx+ 1

2µ
2

dx

= 2

∫ ∞

−∞

1√
2π

e−
1
2 (x+µ)2e

1
2µ

2

dx

= 2e
1
2µ

2

To establish the upper bound, we provide an explicit mechanism and estimator
that resemble those of ϵ-LDP. For T > 0, define

M(x) = max{−T,min{x, T}}+ ϵi

where ϵi ∼ N
(
0, 4T 2

µ2

)
. It is µ-GDP since

T (x+ ϵi, x
′ + ϵi) = T (x− x′ + ϵi, ϵi) = T

( µ

2T
(x− x′) +N(0, 1), N(0, 1)

)
,

and
∣∣ µ
2T (x− x′)

∣∣ ≤ µ. Thus, T (M(x),M(x′)) ≥ T (N(µ, 1), N(0, 1)) = Gµ and
the mechanism is µ-GDP. For given data X1, . . . , Xn, define a locally private

13



mechanism such that Zi = M(Xi) for all i, which is µ-GLDP. Under the µ-GLDP
mechanism, we can evaluate the estimator θ̂ = 1

n

∑n
i=1 Zi. Then, we have

E
[(

θ̂ − θ
)2]

= V ar(θ̂) + (E[Z1]− E [X1])
2
.

We can bound the first term in the right-hand side as follows:

V ar(θ̂) =
4T 2

nµ2
+

1

n
E
[
max{−T,min{x, T}}2

]
− 1

n
E [max{−T,min{x, T}}]2

≤ 4T 2

nµ2
+

1

n
T 2.

For the second term, we use the fact that the bounded kth moment implies a
tail bounded by the kth order, and we have

|E[Z1]− E [X1]| = |E [max{−T,min{X1, T}} −X1]|
≤ E [|X1| 1{|X1|> T}]

≤ E[|X1|k]
1
kE [1{|X1|> T}]1−

1
k

by Hölder’s inequality. Thus,

|E[Z1]− E [X1]| ≤ P (|X1|> T )
1− 1

k = P
(
|X1|k> T k

)1− 1
k ≤ 1

T k−1

by Markov’s inequality since E
[
|X1|k

]
≤ 1. As a result,

E
[(

θ̂ − θ
)2]

≤
(
1 +

4

µ2

)
1

n
T 2 +

1

T 2k−2

and setting T =

[
n
(
1 + 4

µ2

)−1
] 1

2k

, we have

E
[(

θ̂ − θ
)2]

≤
(
1 +

4

µ2

)1− 1
k

n−(1− 1
k ).

Therefore,

Rn (θ (Pk) ,Φ ◦ ρ,Mµ) ≤
(
nµ2(4 + µ2)−1

)−(1− 1
k ) .

5.7 Proof of Theorem 3
For {Pv}v∈{−1,+1}d and V : Θ −→ {−1,+1}d satisfying 2η-Hamming separation
for Φ ◦ ρ, we have

Rn (θ (P) ,Φ ◦ ρ,M) ≥ η

d∑
i=1

(
1− ∥M(Pn

+j)−M(Pn
−j)∥TV

)
14



by Proposition S2. The Pinsker’s inequality in (S2) gives

∥M(Pn
+j)−M(Pn

−j)∥TV ≤
√

1

2
Dkl

(
M(Pn

+j)||M(Pn
−j)
)
.

Again, we can decompose the K-L divergence by Eq. (S4). Denote m±j(z1, · · · , zn)
for the distribution of (Z1, . . . , Zn) = M

(
Pn
±j

)
, then the chain rule gives

Dkl (m+j ||m−j) =

n∑
i=1

E [Dkl (m+j(xi|Z1:i−1)||m−j(xi|Z1:i−1))]

where m±(xi|z1:i−1) is the distribution of Zi = Mi(xi, z1:i−1) for given z1:i−1.

Now we show that m±j(xi|Z1:i−1) = M(P±j), implying that Xi and Z1:i−1 are
independent. It was previously noted by Duchi et al. (2018) but we show it
for the sake of completeness in the proof. Note that, if Xis are i.i.d. drawn
from Pv, Xi and Z1:i−1 are independent due to the sequential assumption of
the locally private mechanism. Without loss of generality, we only need to show
m+j(xi|Z1:i−1) = M(P+j). Let (X1, . . . , Xn) be a random vector following Pn

+j

and (Z1, . . . , Zn) = M(X1, . . . , Xn). In what follows, we use the induction on i.
When i = 1, the statement is trivial. For i > 1, we have

m+j(xi, zi−1|z1:i−2) =

∫
X
m+j(xi, zi−1|xi−1, z1:i−2)dP+j(xi−1|z1:i−2)

=

∫
X
m+j(xi, zi−1|xi−1, z1:i−2)dP+j(xi−1)

=

∫
X
m+j(xi, zi−1|xi−1, z1:i−2)p+j(xi−1)dxi−1

by the induction hypothesis and the fact that the ith marginal of Pn
+j is P+j ,

which leads to

m+j(xi, zi−1|z1:i−2) =

∫
X
m+j(xi|xi−1, z1:i−2)q(zi−1|xi−1, z1:i−2)dP+j(xi−1).

Also, Xi and Xi−1 are independent since

P (Xi ∈ A,Xi−1 ∈ B) =

∫
A

∫
B

∫
Xn−2

dPn
+j

=
1

2d−1

∑
v:vj=+1

∫
A

∫
B

∫
Xn−2

n∏
i=1

pv(xi)dx

=
1

2d−1

∑
v:vj=+1

Pv (Xi ∈ A)Pv (Xi−1 ∈ B)

= P+j (Xi ∈ A)P+j (Xi−1 ∈ B)

= P
(
Xi ∈ A|X1:n ∼ Pn

+j

)
P
(
Xi−1 ∈ B|X1:n ∼ Pn

+j

)
.

15



Consequently, we have

m+j(xi, zi−1|z1:i−2) =

∫
X
m+j(xi|z1:i−2)q(zi−1|xi−1, z1:i−2)p+j(xi−1)dxi−1

= m+j(xi|z1:i−2)m+j(zi−1|z1:i−2).

Repeating the procedure inductively, we arrive at the independency between Xi

and Z1:i−1. Thus, we have

Dkl (m+j(xi|Z1:i−1)||m−j(xi|Z1:i−1)) ≤ cf,κ
∥P+j − P−j∥1+κ

TV

(1− ∥P+j − P−j∥TV )
κ .

Therefore,

∥M(Pn
+j)−M(Pn

−j)∥TV ≤

√
ncf,κ
2

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )
κ

for all j = 1, . . . , d, which yields

Rn (θ (P,Φ ◦ ρ, f)) ≥ dη −
d∑

j=1

√
ncf,κ
2

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )
κ

≥ dη −

√√√√d

d∑
j=1

ncf,κ
2

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )
κ

≥ dη

1−
√√√√ncf,κ

d

d∑
j=1

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )
κ


by the Cauchy-Schwarz inquality.

5.8 Proof of Corollary 3
Duchi et al. (2018) showed that there exists a function gβ : [0, 1] −→ R such that
gβ is β-times differentiable, non-negative on [0, 1/2] and non-positive on [1/2, 1]

with g(i)(0) = g(i)(1) for i ≤ β − 1,
∫ 1

0
gβ(x)dx = 0, |g(β)β (x)|, and |gβ(x)|≤ 1.

Finally, ∫ 1/2

0

gβ(x)dx = c1/2,

∫ 1

0

(
g
(i)
β (x)

)2
dx ≥ c

for some c1/2, c > 0 for i < β. For d ≥ 1 if we define fv = 1 +
∑d

j=1 rvjgβ,j

where gβ,j =
1
dβ gβ

(
d
(
x− j−1

d

))
1
{
x ∈

[
j−1
d , j

d

] }
then,

f (j)
v (0) = f (j)

v (1)

∫ 1

0

∣∣∣f (β)
v (x)

∣∣∣2 dx ≤ r2
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for j ≤ β − 1. It is shown that such fv is a member of Fβ

[
r
πβ

]
⊂ Fβ [r] in

Tsybakov (2009). Define

Vj(f) := arg min
v∈{−1,+1}

∫ j
d

j−1
d

(f(x)− rvgβ,j(x))
2
dx

for j = 1, 2, . . . , d. Then, we have∫ j
d

j−1
d

(f(x) + rVj(f)gβ,j(x))
2
dx ≥

∫ j
d

j−1
d

(f(x)− rVj(f)gβ,j(x))
2
dx

which gives ∫ j
d

j−1
d

f(x)rVj(f)gβ,j(x)dx ≥ 0,

and ∫ j
d

j−1
d

(f(x) + rVj(f)gβ,j(x))
2
dx ≥ r2

∫ j
d

j−1
d

g2β,j(x)dx =
r2c

d2β+1
.

As a result,

∥f − fv∥22 =

d∑
j=1

∫ j
d

j−1
d

(f(x)− rvjgβ,j(x))
2
dx

≥
d∑

j=1

1{Vj(f) ̸= vj}
r2c

d2β+1
=

r2c

d2β+1

d∑
j=1

1{Vj(f) ̸= vj}

for all f ∈ Fβ [r]. Setting V : Fβ [r] −→ {−1,+1}d, we can apply Theorem 3 to
derive

Rn

(
Fβ [r

2], ∥·∥22, f
)
≥ r2c

2d2β

1−
√√√√ncf,κ

d

d∑
j=1

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )
κ


where f±j =

1
2d−1

∑
vj :=±1 fv = 1± rgβ,j for j ∈ 1, . . . , d. Consequently,

∥f+j − f−j∥TV =

∫ 1

0

(2rgβ,j(x))+dx =

∫ j−0.5
d

j−1
d

2rgβ,j(x)dx

=

∫ j−0.5
d

j−1
d

2r

dβ
gβ

(
d

(
x− j − 1

d

))
dx

=

∫ 1
2

0

2r

dβ+1
gβ (u) du

= 2
rc1/2

dβ+1
.
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Therefore, the lower bound becomes

Rn

(
Fβ [r], ∥·∥22, f

)
≥ r2c

2d2β

1−
√√√√√ncf,κ

d

d∑
j=1

1(
1− 2rc1/2

dβ+1

)κ (2rc1/2

dβ+1

)1+κ


≥ r2c

d2β

1−√√√√ ncf,κ(
1− 2rc1/2

dβ+1

)κ (2rc1/2)1+κ

d(β+1)(1+κ)

 .

Put d = (21+κ · 21+κr1+κncf,κ)
1

(β+1)(1+κ) to get

Rn

(
Fβ [r], ∥·∥22, f

)
≥ 2−

2β
β+1 r

2
β+1 c

(
1−

√
1

2

)
(ncf,κ)

− 2β
(β+1)(1+κ)

for n > 1
cf,κ

(
c1/2

)1+κ.

5.9 Proof of Corollary 4
The lower bound can be shown by using Corollary 3 and the fact that Gµ satisfies
the condition of Corollary 3 for κ = 1. Also, the coefficient can be obtained
similarly as in the proof of Corollary 2. Now as in the proof of Corollary 2, we
show the upper bound with the explicit estimator and mechanism. For d ∈ N
and given x ∈ [0, 1], define the mechanism M as

M(x) = (ϕ1(x), · · · , ϕd(x)) + ϵ

where ϵ ∼ N(0, 2d
µ2 Id×d). Then, the mechanism ϕi(x) −→ N(ϕi(x),

2d
µ2 ) is

µ√
d
-GDP. It is known that composition of µ1−, · · · , µd-GDP mechanisms is√
µ2
1 + · · ·+ µ2

d-GDP (Dong et al., 2022). So, M is µ-GDP since
√(

µ√
d

)2
+ · · ·+

(
µ√
d

)2
=

µ.

Let Xi ∼ f ∈ Fβ [r
2] and (Zi1, . . . , Zid) = M(Xi), and define the estimator as

follows:

θ̂ =
1

n

n∑
i=1

d∑
j=1

Zijϕj .

Then, the risk under l2 norm is give as:

E
[
∥θ̂ − f∥22

]
=

d∑
j=1

E

( 1

n

n∑
i=1

Zij − θj

)2
+

∑
j>d

θ2j .

Note that if f =
∑

θjϕj , E [ϕj(X)|X ∼ f ] = θj , thus E [Zij ] = E [ϕj(X)] = θj .
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Denote Zi,j = ϕj(Xi) + ϵi,j where ϵi,j ∼ N(0, 2d
µ2 ). Then, we have

E

( 1

n

n∑
i=1

Zij − θj

)2
 =

1

n
V ar (Z1j)

=
1

n
[V ar(ϕj(X1)) + V ar(ϵ1,j)] ≤

1

n
+

2d

nµ2
,

since |ϕj |≤ 1. Note that

∑
j>d

θ2j ≤ 1

d2β

∑
j>d

j2βθ2j ≤ r2

d2β
.

As a result,

E
[
∥θ̂ − f∥22

]
≤ 1

n

2d2

µ2
+

r2

d2β
+

d

n
,

and by setting d = (0.5nµ2r2)
1

2β+2 , we have

E
[
∥θ̂ − f∥22

]
≤ r2(0.5nµ2r2)−

2β
2β+2 + (0.5µ2r2)

1
2β+2n− 2β+1

2β+2 .

Therefore,
Rn

(
θ
(
Fβ [r

2]
)
, ∥·∥22,Mµ

)
≤ cr

2
β+1n− 2β

2β+2

for some c > 0 depending on µ and β.

5.10 Proof of Lemma 2
Note that

Pm2

(
m1(Z)

m2(Z)
> a

)
=

∫
Z
1

{
m1

m2
> a

}
m2(z)dz

≤
∫
Z

[(
m1

m2
− a+ 1

)
+

−
(
m1

m2
− a

)
+

]
m2(z)dz

= Ea−1(m1||m2)− Ea(m1||m2).

Then, Proposition S4 states that Ea−1(m1||m2) ≤ δf (a − 1) for a ≥ 2, which
leads to

Pm2

(
m1(Z)

m2(Z)
> a

)
≤ δf (a− 1).
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