
A Datasets540

A.1 Real Datasets541

In this work, we use a total of 9 continuous and 3 categorical datasets, with their dimensions and542

data types shown in Table 2. The Gas, Covid, and Energy datasets are the same as those used in543

[9], and we apply identical preprocessing procedures. The Musk2 dataset provides information on544

musk and non-musk molecules. The Scene dataset describes image characteristics. The MNIST545

dataset consists of images depicting handwritten digits. The Dilbert dataset is an image recognition546

dataset of pictures of objects rotated from various orientations. We additionally include 3 internal547

datasets of biomedical data: Phenotypes, Canine, and Founders datasets. The Phenotypes dataset548

contains a subset of categorical phenotypes from the UK Biobank (UKB), following the same549

pre-processing as in [71]. We use the UKB under the application number (XXXXX-hidden-for-550

submission). The Canine and Founders datasets comprise binary-coded sequences of DNA including551

Single Nucleotide Polymorphisms (SNPs), representing data for multiple dog breeds and human552

populations, respectively.553

The Polynomial and Cosine are two internally generated datasets consisting of values obtained from554

deterministic simulations. The Polynomial dataset includes samples where each feature value is555

obtained by evaluating a second-degree polynomial function f(x) = ax2 + bx+ c. The parameters556

a, b, and c are fixed for each sample. The feature values are derived by evaluating the polynomial557

function for the different x values within a sample. The values for x, a, b, and c are uniformly558

sampled from the range of [−10, 10]. The Cosine dataset consists of samples with features following559

a cosine function f(x) = a · cos(bx+ c). Similar to the Polynomial dataset, a, b, and c are fixed for560

each sample, and each feature value is obtained by evaluating the cosine function for the different561

x values within a sample. Here, the values of b and c are uniformly sampled within the range of562

[−π, π].563

Table 2: Datasets used to evaluate DataFix.
Dataset No. of attributes No. of samples Data Type

Gas 8 12,815 Continuous
Covid 10 9,889 Continuous
Energy 26 19,735 Continuous
Musk2 166 6,598 Continuous
Scene 294 2,407 Continuous

MNIST 784 70,000 Continuous
Phenotypes 1,227 31,424 Categorical

Dilbert 2,000 10,000 Continuous
Founders 10,000 4,144 Categorical
Canine 198,473 1,444 Categorical
Cosine 1,000 10,000 Continuous

Polynomial 1,000 10,000 Continuous

A.2 Simulated Probabilistic Datasets564

We generate 15 simulated datasets containing 1000 features and 5000 samples by sampling from pre-565

defined probabilistic distributions, including multivariate Gaussians, with and without transformations,566

multivariate Bernoulli distributions, Gaussian mixture models, and Bernoulli mixture models. A total567

of 200 features are shifted in each dataset such that |C| = 200 and |C| = 800. Table 3 describes568

the distributions used in each dataset. For every dataset, two distributions, p and q, are defined, so569

that D(p, q) > 0 but D(pC , qC) = 0. In fact, for all datasets except for dataset 8, we also have570

that D(pC , qC) > 0. A further discussion of the effect of shifts with D(pC , qC) > 0 and with571

D(pC , qC) = 0, and its relation to the equivalence of feature shift localization and feature selection,572

is provided in the following sections. Because we have access to p and q, we can compute the real573

divergence between the distributions. In practice, we make use of a Monte Carlo estimate, as shown574

in figures 5, 18 and 19, because the divergences might not have a closed-form solution or can be575

computationally intractable.576
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Datasets 1-3 are based on a multivariate Gaussian, with diagonal covariance used in datasets 1 and 2,577

and a covariance Σ used in dataset 3. The covariance matrix Σ is defined by a Gaussian kernel such578

that the ij component is Σij = exp −||i−j||2
s , where s acts as a scale parameter, and 0 ≤ Σij ≤ 1579

with Σii = 1. In practice, when constructing the covariance matrix, we perform a shuffle of the580

feature order to better depict tabular data, where, in many cases, the correlation between features581

does not follow any specific ordering (opposed to images or audio). We use s = 0.05 to define582

Σij in dataset 3. Datasets 4 and 5 follow a lognormal distribution, defined as X = exp(V ) with583

V ∼ N (µ, Σ) andX ∼ Lognormal(µ, Σ). We use s = 0.05 and s = 0.002 to define Σij in datasets584

4 and 5, respectively. Datasets 6-8 follow a logit-normal distribution defined as X = σ(V ) with585

V ∼ N (µ, Σ) and X ∼ P (N (µ, Σ)), where σ is the sigmoid transformation. We use s = 0.05,586

s = 0.002, and s = 0.002 to define Σij in datasets 6, 7, and 8, respectively. Datasets 9-12 follow587

a multivariate Bernoulli with independent features. Each feature i has a frequency of fi, where588

f ∼ P (N (0, 2I)), ϵ ∼ N (0, I), and (·)0,1 = clamp0,1(·) = min(max(·, 0), 1) is the clamping589

function to ensure that the frequencies are between 0 and 1. Dataset 13 follows a Gaussian Mixture590

Model distribution, with 3 mixtures of equal weights, µi ∼ N (0, 0.01I), and Σi defined with591

s = 0.3. Datasets 14 and 15 follow a Bernoulli Mixture Model distribution with 3 mixtures and592

fi ∼ Uniformd(0, 1).593

Datasets 1, 3, 4, 6, 9, 10, 11, 12, 13, and 15 apply a shift to the marginal means, such that for all594

i ∈ C, E[pCi
] ̸= E[qCi

]. Such datasets include marginal shifts of a similar nature as the shifts595

generated by manipulation types 1, 2, and 6 applied to real datasets. Dataset 2 performs a shift of the596

marginal standard deviation while maintaining their mean such that for all i ∈ C, E[pCi
] = E[qCi

]597

but pCi
̸= qCi

and Var[pCi
] ̸= Var[qCi

], leading to a marginal shift similar to the one applied by598

manipulation type 4 used in the real datasets. Datasets 13 and 15 apply a shift to the mean of just one599

mixture of the mixture model, leading to only 1/3 of the samples being shifted, while still ensuring600

that E[pCi ] ̸= E[qCi ]. Datasets 5, 7, and 14 apply a distribution shift consisting of removing the601

correlation between features, equivalently to manipulation type 3 applied in real datasets, such that602

qC =
∏

i∈C qi and pC ̸= qC . Dataset 8 also applies a shift originating from modifying the correlation603

between features, but in this case, Σ′ is defined as:604

Σ′
ij =

{
Σij if i, j ∈ C, or i, j ∈ C
0 if i ∈ C with j ∈ C, or j ∈ C with i ∈ C (10)

where the correlation of the features within C and within C are maintained, but the cross-correlations605

between the C and C are lost, which leads to a shift equivalent to manipulation type 8 applied in real606

datasets, such that pC = qC , pC = qC , but p ̸= q.607

B Feature Selection and Feature Shift Localization Equivalence608

Section 4 provides a description of when the problem of feature selection and of feature shift609

localization are equivalent. Namely, when the number of manipulated features is known |C| = k, and610

the divergence of the corrupted features is larger than 0, such that DTV (p, q) = DTV (pC , qC) = 1,611

and DTV (pC , qC) = 0, then both problems are equivalent:612

C = argmax
|C|≤k

I(zC ; t) = argmin
DTV (pC ,qC)=0

|C| (11)

Even if |C| is unknown, if only marginal shifts are present, one can perform feature shift detection by613

iteratively solving Eq.3 with k = 1, and removing the detected features at each iteration from z as614

long as I(zC ; t) > 0, making the iterative feature selection and feature shift localization equivalent615

problems:616

Ci = argmax
|C|=1

I(zC ; t) (12)
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Table 3: Probabilistic datasets used to evaluate DataFix.
ID pC qC Description
1 N (0, I) N (0.5I, I) Multivariate Gaussians with diagonal co-

variance and a shifted mean.
2 N (0, I) N (0, 1.5I) Multivariate Gaussians with diagonal co-

variance and a shifted scale.
3 N (0, Σ) N (0.5I, Σ) Multivariate Gaussians with non-

diagonal covariance and a shifted mean.
4 Lognormal(0, Σ) Lognormal(0.5I, Σ) Multivariate lognormal with non-

diagonal covariance and a shifted mean.
5 Lognormal(0, Σ) Lognormal(0, I) Multivariate lognormal with non-

diagonal (pC) and diagonal (qC)
covariance.

6 P (N (0, Σ)) P (N (0.5I, Σ)) Multivariate logit-normal with non-
diagonal covariance and a shifted mean.

7 P (N (0, Σ)) P (N (0, I)) Multivariate logit-normal with non-
diagonal (pC ) and diagonal (qC ) covari-
ance.

8 P (N (0, Σ)) P (N (0, Σ′)) Multivariate logit-normal with different
non-diagonal covariances.

9 Bernoulli(f) Bernoulli((f + 0.05ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

10 Bernoulli(f) Bernoulli((f + 0.1ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

11 Bernoulli(f) Bernoulli((f + 0.5ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

12 Bernoulli(f) Bernoulli((f + 1.0ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

13 1
3

∑3
i=1 N (µi, Σi)

1
3

∑3
i=1 N (µ′

i, Σi) Gaussian Mixture Model with one mix-
ture shifted such that µ′

1 = µ1 + 10,
µ′
2 = µ2, and µ′

3 = µ3.
14 BMM([f1, f2, f3]) BMM([f ′, f ′, f ′]) Bernoulli Mixture Model with different

means f ′ = f1+f2+f3
3

.
15 BMM([f1, f2, f3]) BMM([(f1 + 0.2)0,1, f2, f3]) Bernoulli Mixture Model with one mix-

ture shifted.

where C =
l⋃

i=1

Ci. In fact, the approach presented in section 4, DF-Locate, can be seen as an617

approximation of this iterative process, where one or more features are selected at each step by the618

feature removal policy function.619

However, the equivalence of both tasks breaks down for distribution shifts such as the one applied620

in the manipulation type 8 for real datasets, and in dataset 8 of probabilistic simulations, where621

pC = qC and pC = qC , but p ̸= q. That is, when considering only the corrupted features C or622

the non-corrupted features C in isolation, the shift is impossible to detect unless all features are623

considered jointly. Therefore, any feature selection technique that approximates either implicitly624

or explicitly equation 3, will need a subset of features G containing features from both C and C in625

order to obtain I(zG; t) > 0, because I(zC ; t) = 0 and I(zC ; t) = 0. Furthermore, if |C| = |C| the626

problem of feature shift detection becomes unsolvable. This is because, even if a technique was able627

to properly identify a subset of features G = C, it would not be possible to know if the detected628

subset G contains corrupted or non-corrupted features, that is if G = C or G = C, making the629

assumption of |C| < |C| a necessary condition.630

Figure 3 (right) and Figure 12 show the F-1 score for each manipulation type, indicating that DataFix631

is able to correctly localize manipulated features with manipulation type 8 on real datasets, despite632

breaking the equivalence between feature selection and feature shift localization approaches. In633

contrast, Figure 13, which illustrates the average F-1 on the probabilistic datasets, shows that dataset634

8 is the one providing the lowest F-1 scores. While the low F-1 score in dataset 8 can be partly635

caused by the mismatch between feature selection and feature shift localization problems, it can also636
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originate from the difficulty of detecting shifts caused by mismatching correlations, as it provides637

similar performance as in datasets 5 and 7, where correlation shifts (with pC ̸= qC) are applied.638

C Feature Shift from Imputation Methods639

Imputation and supervised methods trained to reduce the expected mean square error (MSE) between640

the predicted x̂C and real xC features of a given sample x can lead to distribution shifts. Note that641

the optimal function minimizing Ex∼P [||xC − f(xC)||2] is the expected value of xC conditioned642

in xC , that is f∗(xC) = E[xC |xC ]. Therefore, the method that predicts the corrupted (or missing)643

features C given the non-corrupted (non-missing) features C, which provides the lowest MSE, will644

generate predicted samples x̂C = f∗(xC), with a distribution where P(x̂C) = 1 for x̂C = E[xC |xC ],645

and P(x̂C) = 0 everywhere else. If Var[xC |xC ] > 0, then D(P(x̂C),P(xC)) > 0, because646

Var[x̂C |xC ] = 0.647

For example, given a dataset of samples x1, x2, ..., xN , with xiC = xjC and xiC ̸= xjC for all648

i and j – in other words, Var[xC |xC ] > 0 –, the optimal regression model, in terms of MSE,649

will predict x̂iC = E[xiC |xiC ] for all i, such that Var[x̂C |xC ] = 0. Similarly, consider a dataset650

where the features C and C are independent such that p = pCpC , and pC = N (µ, I), then651

x̂C = E[xC |xC ] = E[xC ] = µ, where µ ∈ R|C| is a constant vector. The simulated probabilistic652

dataset 1 follows this form, with pC = N (0, I) and qC = N (0.5I, I), where the method providing653

the lowest MSE will be the one predicting x̂C = E[xC |xC ] = µ = 0 for all samples. Figure 6654

shows the histogram of the first feature values before and after performing feature correction with655

multiple techniques. Most techniques, especially imputation-based techniques, output the mean or656

values highly close to it, which while producing minimum MSE, does not reflect the real distribution,657

removing or reducing its variance and leading to a distribution shift.658

Figure 6: Distribution of first feature values before and after shift correction with various techniques
for probabilistic dataset 1.
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D DF-Locate659

Algorithm 1 DF-Locate: Feature Shift Localization

1: Inputs:
X; ▷ Reference
Y ; ▷ Query
τ ; ▷ Feature Selection Threshold
ϵ; ▷ Divergence Threshold

2: X(0) = X
3: Y (0) = Y
4: i = 0
5: k(0) = 0
6: while D̂θ(X

(i), Y (i)) > ϵ and k < |Y |
2 and k(i) − k(i−1) > 0 do

7: θ← Train(X(i), Y (i)) ▷ Train discriminator
8: D̂ ← D̂θ(X

(i), Y (i)) ▷ Estimate divergence
9: β ← Fθ(X

(i), Y (i)) ▷ Estimate feature importance
10: Ci ← ψτ (β, D̂) ▷ Select corrupted features
11: X(i+1), Y (i+1) ← X

(i)

Ci
, Y

(i)

Ci
▷ Remove detected features

12: k(i+1) ← k(i) + |Ci| ▷ Update detected feature counter
13: i← i+ 1
14: end while
15: C =

i−1⋃
j=0

Cj ▷ Combine all detected features

16: C ← Refine(C) ▷ Use knee-locator to refine detected features
17: return C

DF-Locate (Section 4, Figure 1, and Algorithm 1) is the proposed method within DataFix that660

localizes the features originating the distribution shift by performing feature selection in an iterative661

way. First, starting with i = 0, and a reference X(0) = X and query Y (0) = Y datasets, a set of662

discriminators are trained θ = argmaxθ D̂θ(X
(i), Y (i)). The discriminators are used to predict the663

empirical total variation divergence (TVD) between distributions D̂ = D̂θ(X
(i), Y (i)), and a feature664

importance score for each feature β = Fθ(X
(i), Y (i)). The divergence and feature importances are665

used to select potentially corrupted features with the feature removal policy function (see section 4)666

Ci = ψτ (β, D̂). Then, the detected features are removed from X and Y , such that X(i+1) = X
(i)

Ci
667

and Y (i+1) = Y
(i)

Ci
. The process is repeated as long as the estimated divergence is smaller than a668

threshold D̂θ(X
(i), Y (i)) > ϵ, less than half of the features of the dataset are removed k < |Y |

2 , or at669

least one feature is selected by the feature removal policy function at each step k(i) − k(i−1) > 0.670

In this work we use ϵ = 0.02 as the stopping threshold. After the iterative process is stopped, a671

refinement step, described below, is applied to remove features that might have been incorrectly672

selected as corrupted.673

In order to perform the refinement step, we store intermediate steps so that we can revisit and select674

the optimal stopping point throughout the iterative process. At each iteration, we store the indexes of675

the features selected as corrupted, the corresponding estimated TVD, and the number of removed676

features. While the ideal stopping iteration would be determined by the iteration providing the best677

localization performance, in terms of, for example, F-1 score, this requires access to the ground truth,678

which is unavailable in practice. However, there often exists a point at which the cost of removing679

additional features (i.e., selecting non-corrupted features as corrupted) outweighs the corresponding680

decrease in TVD. Once such optimal iteration is determined, all identified corrupted features up to681

that iteration are flagged as corrupted and later changed by DF-Correct.682

To determine the optimal iteration from the curve depicting the TVD as a function of the total number683

of removed features, we locate the elbow or knee from a processed version of the curve (Figure 7). A684

curve obtained from a perfect discriminator would always exhibit a convex and decreasing shape.685

However, due to the intrinsic randomness in the training and evaluation process of the discriminator,686
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this ideal shape is not always achieved, making the task of locating the knee challenging. Several687

techniques can be applied to smooth the curve and transform it into a convex and decreasing function.688

In our approach, we make use of the Savitzky-Golay filter [72] due to its ability to effectively remove689

signal noise without distorting the underlying trend of the curve. Additionally, we apply an opening690

operation to eliminate any local maxima in the curve, ensuring that each point is equal to or smaller691

than its left neighbor. Furthermore, we process the initial iterations of the curve to enforce strict692

decreasing behavior.693

The Savitzky-Golay filter relies on two key parameters: the length of the filter window and the694

polyorder used for fitting the samples. For the window length, we define it as max(5, 2⌊ζδ/2⌋+ 1),695

where ζ is chosen from the set {1, 2, 3, 5, 7}, and δ represents the average number of removed features696

at each iteration. We also experiment with different polyorders, considering values from the set697

{3, 4}. Based on our experimentation on the simulated datasets, we determine that the optimal choice698

for ζ is 2, and the best polyorder is 4. To identify the knee point, we employ the knee locator method699

introduced by [73]. The knee locator involves two primary parameters: the sensitivity (S) and the700

online parameter. The sensitivity parameter determines the number of "flat" points we anticipate701

encountering in the unmodified data curve before identifying a knee, while the online parameter702

enables the correction of previous knee values when set to True. We explore different values for703

S from the set {1, 3, 5, 7}, and for the online parameter from the options {True, False}. Our704

experimentation reveals that the optimal values for S and online are 5 and False, respectively.705

Figure 7 shows an example of the knee location, used to refine the selection of features. The F-1 score706

can serve as a way to evaluate the selected stopping point, showing the trade-off between reduced707

TVD and the number of removed features.708

Figure 7: Knee location based on distribution shift: TVD vs. removed Features and F-1 score in
location task.

E DF-Correct709

DF-Correct (Section 5, Figure 2, and Algorithm 2) is the proposed method within DataFix that710

corrects the feature shifts by changing the values of the features in Y originating the distribution711

shift through an iterative approach. Given the set of corrupted features C, DF-Correct tries to712

generate a new query dataset Y ′, such that YC = Y ′
C

, while D(X,Y ′) < D(X,Y ). DF-Correct713

starts by obtaining an initial candidate of Y ′ by setting the values within the subset C of Y as714

missing and performing imputation with linear regression and k-NN. Furthermore, a naive initial715

candidate is generated by replacing the corrupted values of Y with randomly selected values of716

X (restricted to the features subset C). Note that this naive initialization already fixes distribution717

shifts where features are completely independent of each other. The set of the 3 initial candidates,718

V = {Y 0, Y 1, Y 2}, is evaluated by computing the empirical total variation divergence with a719

classifier, and the one providing the lowest empirical divergence is selected as the initial corrected720
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Algorithm 2 DF-Correct: Feature Shift Correction

1: Inputs:
X; ▷ Reference
Y ; ▷ Query
C; ▷ Corrupted Features
ϵ; ▷ Divergence Threshold

2: V = {Y 0, Y 1, Y 2} ← Impute(X,Y,C)
3: Y ′ ← argminY i∈V D̂θ(X,Y

i)

4: if D̂θ(X,Y
′) < ϵ then

5: return Y ′

6: end if
7: for epoch do
8: θ← Train(X,Y ′) ▷ Train discriminators
9: I ← DetectIncorrect(Dθ(Y

′)) ▷ Detect samples that require feature correction
10: B ← GenerateProposals(X,Y ′, V, C) ▷ Obtain proposals from X,Y ′, V
11: for i ∈ I do
12: bi ← argmaxb∈B rθi(y

(b)
i ) ▷ Find best proposal

13: Y ′ ← update(Y ′, y
(bi)
i ) ▷ Update dataset with the corrected sample y(bi)i

14: end for
15: if D̂θ(X,Y

′) < ϵ then
16: return Y ′

17: end if
18: end for
19: return Y ′

query Y ′ = argminY i∈V D̂θ(X,Y
i). If D̂θ(X,Y

′) < ϵ, the correction process is done and Y ′ is721

returned. Otherwise, if D̂θ(X,Y
′) > ϵ, an iterative process where some samples of Y ′ are modified722

is performed.723

The iterative process tries to find new values of Y ′ = {y′1, y′2, ..., y′Ny
} that reduce the empirical total724

variation distance:725

D̂TV
θ (X,Y ′) =

1

Nx

Nx∑
i=1

g(rθ(xi))−
1

Ny

Ny∑
j=1

g(rθ(y
′
j)) (13)

with g(u) = 1
2 sign(u− 1). Because the values of X are left untouched, this becomes equivalent to726

solving:727

Y ′ = argmin
Y

max
θ

Ny∑
j=1

−g(rθ(y′j)) = argmax
Y

max
θ

Ny∑
j=1

g(rθ(y
′
j)) (14)

In order to perform such an optimization process, a set of classifiers are trained using X , Y ′, and728

data augmentation consisting of performing random permutations within the features of the reference729

X dataset, in order to generate extra samples of "corrupted" sequences. After training the classifiers,730

the next step is to find which samples need to be corrected. Note that when p = q, we have731

E[D̂TV
θ (X,Y )] = 0, and:732

E[
∑
j∈Ny

g(rθ(yj))] = E[
∑

m∈N+

g(rθ(ym))]− E[
∑

n∈N−

g(rθ(yn))] = 0 (15)

where N+ = {i : rθ(yi) > 1} are the indices of samples classified as positive by the discriminator,733

and N− = {i : rθ(yi) < 1} are the indices of samples classified as negative. Furthermore, both sets734

have, in expectation, the same size E[|N+|] = E[|N−|] = E[ |Ny|
2 ]. This indicates that when both735

distributions are equal, a discriminator will approximately classify half of the samples as positive and736
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half as negative. Therefore we only correct the set of samples I , including up to |Ny|
2 samples with737

the highest probability of being corrupted:738

I = {i : rθi(yi) < rθi+1(yi+1) < 1} (16)

with |I| ≤ |Ny|
2 . Then, we construct a set of feature value proposals B that will replace the corrupted739

features. This proposal set is constructed by including within B all the feature values of the reference740

X , of the initial imputed candidates V , of the current corrected query Y ′, and random permutations741

of X . Then, for every sample i ∈ I , each of the proposals b ∈ B is placed as an alternative to the742

corrupted features, generating a sample y(b)i , where y(b)i C = b, and y(b)i C = yiC . The proposal743

providing the highest probability of being "non-corrupted" is selected:744

bi = argmax
b∈B

rθi(y
(b)
i ) (17)

Finally, the updated sample y(b)i is placed inside the corrected query Y ′. After updating all samples745

in I , the divergence is computed again, and if D̂θ(X,Y
′) > ϵ, the process is repeated for a number746

of epochs. Typically, the number of epochs is set to 1 or 2, as the correction process can become747

computationally intensive for large datasets (see next sections).748

F Computational Time749

Large and high-dimensional datasets are becoming the norm, therefore, methods that detect and750

correct feature shifts should be able to properly scale with respect to the number of samples and751

features.752

Figure 8 presents the average computational time of feature shift location benchmarking methods753

as a function of the product between the number of samples and features for each dataset. MI and754

selectKbest stand out as the fastest benchmarks (using the Chi-square test for categorical datasets and755

ANOVA-F test for continuous datasets). MRMR and FAST-CMIM, although performing adequately756

in terms of speed for small datasets, encounter challenges in scaling with larger dataset sizes.757

Consequently, they fail to produce results within the 30-hour time limit for Founders and Canine758

datasets. Furthermore, the feature-shift detection techniques KNN-KS and, particularly MB-KS,759

demonstrate significantly slower performance, rendering them incapable of delivering results within760

the given time constraint for Founders, Canine, Dilbert, and Phenotypes datasets. DF-Locate proves761

to be a reasonably efficient method, exhibiting good scalability as the dataset size increases, while762

providing the best localization performance.763

In Figure 9, we conduct a comparative analysis of the computational time for shift correction methods.764

Although DF-Correct is not faster than simpler techniques like median or linear regression, its765

speed surpasses several competing methods, such as MIRACLE and HyperImpute. Furthermore, DF-766

Correct exhibits reasonable runtime even for the largest high-dimensional Canine dataset, successfully767

correcting the distribution shift within the 30-hour time limit. Many of the competing methods were768

unable to provide results for the Canine dataset due to their excessive time complexity and/or memory769

requirements. Therefore, DF-Correct provides the best correction in terms of distribution shifts, while770

still providing competitive or faster speeds than competing methods.771

G Extended Feature Shift Localization Results772

We evaluate the performance of DF-Locate across different fractions of manipulated features: 5%,773

10%, and 25%. The F-1 scores, depicted in Figure 10, were computed by averaging across manipula-774

tion types and taking the median across real datasets for each feature shift localization method. Our775

findings show that DF-Locate obtains consistently higher performance, irrespective of the fraction776

of manipulated features involved. However, it is important to note that this is not the case for other777

methods, such as MRMR and FAST-CMIM, which exhibit limitations in their location capabilities,778

particularly when there are only a few corrupted features. Note that when a small percentage of ma-779

nipulated features is present, a smaller amount of features need to be localized as corrupted. However,780
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Figure 8: Computational time for shift location methods based on real dataset size.

Figure 9: Computational time for shift correction methods based on real dataset size.

this could also lead, in some cases, to lower distribution shifts, making the detection of such shifts781

more challenging. On the other hand, the presence of a larger percentage of manipulated features782

can make the localization task more challenging, while the empirical detection of the presence of the783

shift can be, in some cases, easier.784

Figure 11 shows the mean F-1 score of DF-Locate and various shift location methods applied to the785

real datasets. The symbol ’x’ denotes experiments that are missing due to exceeding the time limit786

of 30 hours. Note that most methods fail to process high-dimensional datasets such as Founders787

and Canine, while DF-Locate is able to provide accurate results while scaling to large datasets.788

DF-Locate consistently exhibits superior performance compared to all benchmarking methods across789

most datasets. The only exception observed is with the Phenotypes dataset, where selectKBest790

slightly outperforms DF-Locate in locating the corrupted features. Nevertheless, for the remaining791

datasets, DF-Locate surpasses all competing approaches and is only slightly surpassed or equaled792
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Figure 10: Median F-1 scores of shift location methods by fraction of manipulated features on real
datasets.

in performance on a few occasions by Deep-SM (*) or KNN-KS (*), both of which use the ground793

truth |C|. Additionally, it is worth noting that MI always outperforms selectKbest on datasets with794

continuous features, while the opposite holds true for datasets with categorical features.795

Figure 11: Mean F-1 scores of shift location methods by real datasets. ’x’ indicates missing
experiment. Higher is better.

Figure 12 shows the median F-1 scores of DF-Locate and other competing methods, categorized796

by the feature manipulation type applied to the real datasets. The average F-1 score is computed797
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across fractions of manipulated features, followed by the computation of the median F-1 score798

across different datasets. The symbol ’x’ is used to indicate missing experiments for MB-KS and799

manipulation types 6.1-6.3 and 10. These manipulations are applied to categorical datasets only800

(Phenotypes, Founders, Canine), and the MB-KS method did not yield results for any of these three801

datasets within the specified time constraint of 30 hours. Manipulations involving shifts caused802

by the correlation between features (manipulations 3 and 8) are not detected by methods such as803

MI, selectKbest, MRMR and Fast-CMIM, while being accurately detected by MB-SM, KNN-KS,804

Deep-SM, and our proposed method. Note that while manipulation type 8 breaks the theoretical805

equivalence between feature selection and feature shift localization problem (see previous sections),806

it is still accurately localized by DataFix. Manipulation 10, consisting of replacing feature values807

with the ones predicted with a k-NN, is the most challenging to detect by DataFix. Note that such808

manipulation can lead, in some scenarios, to small or undetectable distribution shifts, as k-NN809

provides perfect predictions when its training dataset size goes to infinity.810

Figure 12: Median F-1 scores of shift location methods by feature manipulation type on real datasets.
’x’ indicates missing experiment. Higher is better.

Figure 13 displays the mean F-1 scores of shift location methods by simulated datasets. Similar to the811

real datasets, DF-Locate outperforms or matches all competing methods, except in datasets 7 and 8,812

where MB-SM and Deep-SM obtain a higher F-1 localization score when using |C| as extra ground813

truth information. Note that in a fair comparison where |C| is not used, MB-SM and Deep-SM814

perform poorly (see Figure 3). DF-Locate obtains lower F-1 scores in simulated datasets 5, 7, and815

8, with respect to the other datasets, which involve shifts originated by a mismatching correlation816

between distributions.817
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Figure 13: Mean F-1 scores of shift location methods by simulated datasets. Higher is better.

H Extended Feature Shift Correction Results818

Figures 14 and 15 provide a comprehensive evaluation of the performance of DF-Correct and819

competing shift correction methods across real datasets, by using the evaluation metrics W 2
2 , Dhp,820

and Dskl. The reported metrics provide empirical estimates of the divergences between the corrected821

query datasets and the reference datasets. Note that first, the empirical divergences between the822

reference and query dataset (prior to any manipulation) are computed, and subtracted from the reported823

metrics. In terms of empirical divergences, DataFix outperforms all other methods by a significant824

margin for most datasets, demonstrating its high effectiveness in providing corrected query datasets825

that are close to the reference distribution. Following DataFix, simpler methods like k-NN and linear826

regression demonstrate competitive performance for most datasets, while benchmarks such as ICE,827

HyperImpute, INB, Sinkhorn, and MLPs yield favorable results for specific datasets. Furthermore,828

DataFix consistently achieves the lowest W 2
2 values across most datasets, with exceptions being829

MNIST and Phenotypes. Specifically, for the MNIST dataset, k-NN, MLP, HyperImpute, and ICE830

surpass DataFix achieving the best W 2
2 value of 0. Note that for high-dimensional datasets such831

as Dilbert, Phenotypes, Founders, and Canine, the W 2
2 metric saturates to 0 for multiple methods,832

making the other metrics a better alternative to compare the quality between methods. DataFix833

is outperformed by MIRACLE in terms of Dhp and Dskl in the Dilbert and Phenotypes dataset,834

however, it is important to note that Miracle’s slow execution time prevents it from providing results835

for the Founders and Canine datasets.836
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Figure 14: W 2
2 , Dhp, and Dskl of shift correction methods by real datasets. Lower is better. (Part 1)

Figure 15: W 2
2 , Dhp, and Dskl of shift correction methods by real datasets. Lower is better. (Part 2)
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I Classifier Analysis for Localization and Correction837

Figure 16 provides the F-1 score results for DF-Locate when using different classifiers as discrimi-838

nators within the iterative process applied to the simulated datasets. Tree-based methods including839

Random Forest (RF), CatBoost, ExtraTree, and LightGBM (LGBM) provide highly similar results,840

with high F-1 scores, surpassing linear models such as logistic regression (LogReg) and a support841

vector classifier (SVC). We selected RF as our discriminator as it provided much faster training times842

while being highly competitive in localization accuracy.843

Figure 16: Mean F-1 scores by DF-Locate using different classifiers on simulated datasets. Higher is
better.

Figure 17 provides the feature shift correction metrics for DF-Correct when using different classifiers844

as discriminators within the iterative process within the real and simulated datasets. Similar to DF-845

Locate, Tree-based methods provide similar results, surpassing the linear methods in most metrics.846

We use Dhp as a metric to select our method because it provides an estimate that tightly bounds the847

total variation distance. Namely, we select CatBoost as our discriminator as it provides competitive848

performance with the other tree-based methods in the simulated datasets, and clearly outperforms the849

others in the real datasets.850

Figure 17: Mean W 2
2 , Dhp, and Dskl by DF-Correct using different classifiers on simulated (top)

and real (bottom) datasets. Lower is better.
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J DataFix Analysis851

Figures 18 and 19 provide two additional examples that illustrate the iterative process of DF-Locate852

before and after shift correction in simulated datasets 1 and 2, respectively. In each dataset, there are853

200 corrupted features out of 1000. Similar to Figure 5, Figures 18 and 19 (left) display the TVD854

estimated by the random forest (blue), which provides a lower bound for its ground truth Monte Carlo855

estimate (black), as the iterative process detects and removes corrupted features. The F-1 detection856

score progressively increases until all corrupted features are identified, leading to the termination of857

the iterative process. Figures 18 and 19 (right) showcase the iterative process applied to the corrected858

query using different methods.859

In simulated dataset 1 (Figure 18 ), both MIRACLE and MLP yield an updated query that results in a860

lower empirical divergence. However, for simulated dataset 2 (Figure 19), only MLP produces an861

updated query that leads to a lower empirical divergence. The other shift correction benchmarking862

methods generate an updated query that increases the shift instead of reducing it. Notably, DF-Correct863

(Purple) provides a precisely corrected query with no empirical divergence detected by DF-Locate.864

Figure 18: DF-Locate iterative process before and after shift correction.

Figure 19: DF-Locate iterative process before and after shift correction.
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