
A Summary of datasets406

We show experimental results on four datasets: a recidivism dataset (COMPAS) [29], the Fair Isaac407

(FICO) credit risk dataset [30] used for the Explainable ML Challenge, the Diabetes dataset [31], and408

an ICU dataset MIMIC-II [32]. Table 1 summarizes all the datasets. We note that these are real-world409

datasets using features that are known to be used in systems of this type. Specifically, the COMPAS410

dataset is a criminal recidivism dataset and we use features that are based on criminal history, age, etc.411

For FICO, the data were provided by FICO itself based on how credit scores are usually constructed.412

MIMIC-II is based on features observed in ICU patients that are predictive of death, and the Diabetes413

dataset also uses typical measurements taken during pregnancy that are indicative of diabetes. The414

features for each dataset are generally available for the decision and they are interpretable.415

Dataset Samples Features Classification task
COMPAS 6907 7 Predict if someone will be arrested ≤ 2 years of release

FICO 10459 23 Predict if someone will default on a loan
Diabetes 768 9 Predict whether a pregnant woman has diabetes

MIMIC-II 24508 17 Predict whether a patient dies in the ICU
Table 1: Summary of datasets

B Sampling Uniformly from Ellipsoid416

Algorithm 1 SampleFromEllipsoid(Q,ωc)

Input: parameters of the ellipsoid Q ∈ Rm×m, ωc ∈ Rm

Output: a point inside the ellipsoid ω ∈ Rm

1: u ∼ N (0, I) // sample an m dimensional vector from standard multivariate Gaussian distribu-
tion
2: u← u/∥u∥2 // normalize it to get a unit-vector
3: r ∼ U(0, 1) // get a sample from uniform distribution
4: r ← r1/m // rescale to get the radius of a sample in a unit sphere
5: y← ru // y is a random point inside a unit sphere
6: Λ,V = Eig(Q) // Eigen-decomposition, diagonal of Λ are the eigenvalues, and columns of V
are eigenvectors
7: x← Λ− 1

2VTy // get a point in the ellipsoid xTQx ≤ 1
8: ω = x+ ωc // shift it so that the center is ωc

return ω

Algorithm 1 describes the algorithm to uniformly sample from the ellipsoid {ω ∈ Rm : (ω −417

ωc)
TQ(ω − ωc) ≤ 1}. The algorithm first samples a random point inside a high dimensional unit418

sphere (line 1-5), and applies a linear transformation (calculated from Q and ωc) to get the point in419

the target ellipsoid (line 6-8). The whole process can be decomposed into a purely stochastic part,420

i.e., sample in the unit sphere, and a deterministic part, which is differentiable. Using this sampling421

algorithm, we can get samples for objective (6) and use gradient-based methods to optimize Q and422

ωc. In addition, the algorithm is also used to sample data for the problem in Section 4.3 and to423

calculate precisions in Section 5.1.424

C Precision and volume of the approximated Rashomon set425

To run our method, we set the learning rate to 0.0001 and run 1000 iterations. C is set to 500. For426

the logistic regression and EBM baselines, we sample 2000 coefficient vectors by fitting GAMs on427

the bootstrap sampled subsets of data. We run logistic regression with ℓ2 penalty and EBM with no428

interaction terms. We then find the minimum volume ellipsoid that can cover most coefficient vectors.429

Given a set of coefficient vectors ωsamples, we solve the following problem:430

min
Q,ωc

−det(Q)
1

2m + ξ · 1

2000

2000∑
i=1

max(∥Q1/2(ωsamplei − ωc)∥2 − 1, 0). (13)
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We solve this problem via gradient descent. ξ is set to 1000. The number of iterations and learning431

rate in GD are set to 1000 and 0.01, respectively. We initialize Q by the ZCA whitening matrix and432

ωc by the average of ωsamples.433

After rescaling the Rashomon set approximated by baselines, we sample 10,000 points from our R̂434

and rescaled baseline Rashomon sets, calculate the loss, and get the precision. We include more435

figures in this appendix that are similar to Figure 1 to compare with baselines using different values436

of λs and θ.437

Figure 6: Precision of the approximated Rashomon sets as a function of θ. Our method always
dominates other baselines. hessian is our starting point.

Figure 6 compares the precision of our method and baselines when the volume is fixed. The Rashomon438

set approximated by our method has the largest intersection with the true Rashomon set. This pattern439

is consistent across all datasets and values of λs. The Rashomon set approximated by the Hessian440

has lower precision but is always better than the other baselines. As θ becomes larger, the Hessian441

method becomes better and sometimes comes close to the result after optimization.442

Figure 7 shows the tradeoff between the size and precision of the approximated Rashomon set for443

each method. The Rashomon set approximated by our optimization method is better than baselines444

given different values of θ.445

We also report the optimization time of our method and baselines in Table 2. In most cases, our446

proposed method has a run time slightly longer than logistic regression with bootstrapping but shorter447

than the EBM baseline. Baselines “hessian” and “sphere” do not require the optimization step, so448

they finish instantaneously. For this table, we ran the gradient descent on a CPU, whereas had we449

used GPU, it would be at least 10x faster.450

Though we show that our method can find the ellipsoid with high precision, one may still wonder how451

well the ellipsoid approximates the true Rashomon set using other metrics. To answer this question,452

we show the scaling ratio that is needed to ensure points sampled from the surface of the ellipsoid453

are outside the true Rashomon set in Table 3. On average, each dimension needs to scale by only a454

13



Figure 7: Tradeoff between precision and the size of the approximated Rashomon set given different
θ. Note that the scaling factor to the power m is volume, which is proportional to recall. Our method
dominates baselines on all datasets. As the scaling ratio increases, the precision starts to decrease.

small ratio to cover the true Rashomon set. For example, ∼5% is needed on FICO to cover the true455

Rashomon set. A small scaling ratio means our ellipsoid captures almost the whole Rashomon set, so456

that scaling by a small amount can cover the whole set. (Note that in practice we would not want to457

do this, it would be better to use our optimized approximation to the Rashomon set to avoid false458

positives inside the approximation.)459

GAMs with different Support Sets: In these experiments, we keep 90%, 80%, and 70% of bins460

trained with λs = 0.0005, λ2 = 0.001. For the baseline method, C is set to 3000, and the learning461

rate and the number of iterations are set to 0.001 and 2500, respectively. Since
(K−p

K−K̃

)
could be very462

large, we first sample 10,000 different merging strategies and compare at most 100 RPS̃
. Table 4463

shows more detailed results. Merging 30% of bins for the MIMIC-II dataset leads to empty RPS̃
for464

10,000 merging strategies and merging bins for the Diabetes dataset also leads to empty RPS̃
.465

D Gradient-based optimization for log determinant466

As we discussed in Section 3.1, we find the maximum volume inscribed ellipsoid by optimizing467

Eq (6). Eq (6) is not guaranteed to be convex, but using the log determinant, we can construct a468
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Dataset λs Ours LR+sampling EBM+sampling Hessian
(our initialization) Sphere

Diabetes
5e-4 17.11 10.25 458.61 instant instant
1e-3 13.27 7.01 288.87 instant instant

1.5e-3 12.17 6.31 229.76 instant instant

MIMIC-II
5e-4 437.87 786.85 3142.36 instant instant
1e-3 390.49 576.31 1862.03 instant instant

1.5e-3 383.91 572.8 1556.97 instant instant

COMPAS
5e-4 94.92 22.65 246.14 instant instant
1e-3 84.61 18.92 155.77 instant instant

1.5e-3 81.05 18.38 170.49 instant instant

FICO
5e-4 131.71 89.61 1169.73 instant instant
1e-3 119.08 73.02 975.37 instant instant

1.5e-3 117.14 68.28 901.0 instant instant
Table 2: running time in seconds of our method compared to baselines using logistic regression and
explainable boosting machine. Baselines “hessian” and “sphere” do not require the optimization step,
so they finish instantaneously.

θ
scaling ratio (normalized)

Diabetes MIMIC-II COMPAS FICO
1.005L∗ 1.081 1.145 1.096 1.014
1.01L∗ 1.079 1.111 1.087 1.020
1.05L∗ 1.108 1.076 1.089 1.041
1.1L∗ 1.119 1.078 1.095 1.048

Table 3: Scaling ratio needed to ensure points sampled from the surface of the ellipsoid are outside
the true Rashomon set (λs = 0.001, λ2 = 0.001).

convex objective function. In this appendix, we explore how performance changes if we optimize a469

convex objective.470

Let us first define the new objective function:471

min
Q,ωc

− 1

2m
log(det(Q−1)) + C · Eω∼R̂(Q,ωc)

[max(L(ω)− θ, 0)]. (14)

Similar to Eq (6), the first term is used to maximize the volume of the ellipsoid. The volume of an472

ellipsoid is proportional to det(Q− 1
2 ). We normalize it by m, i.e. (det(Q− 1

2 ))
1
m . Maximizing this473

term is equivalent to minimizing (det(Q− 1
2 ))−

1
m .474

Q is positive definite since it is the quadratic form for an ellipsoid. Then Q
1
2 is also positive definite475

and det(Q−1) = (det(Q))−1. We also know that det(Q
1
2 ) = (det(Q))

1
2 . Therefore,476

(det(Q− 1
2 ))−

1
m = (det(Q

1
2 ))

1
m

= (det(Q))
1

2m

= (det(Q−1))−
1

2m .

We can take the log on the right-hand side term, and the objective is to minimize is thus477

− 1
2m log(det(Q−1)). It is well known that the log determinant is concave. After multiplying478

by − 1
2m , this term is convex.479

The second term penalizes the points sampled from the ellipsoid if they are outside R(θ). L(ω) is480

convex w.r.t ω. Then L(ω)− θ is also convex. Finding the maximum between a convex function and481

a constant is convex and the expectation is known to be convex, so the second term is also convex.482

Therefore, the objective function is convex and we then use gradient descent to find the minimizer.483

The results obtained by minimizing Eq (14) are shown in Figure 8. They are almost the same as the484

results shown in Figures 6 and 7. And Table 5 shows similar results compared to Table 4. These485
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Dataset K̃ precision ratio volume ratio time Method 2 (sec) time Method 1 (sec)
COMPAS 15 1.01 ± 0.03 1.05 ± 0.07 4.84e-4 ± 6.25e-5 324.85 ± 8.70
COMPAS 14 1.01 ± 0.05 1.12 ± 0.12 4.76e-4 ± 9.33e-5 296.51 ± 41.46
COMPAS 13 0.99 ± 0.01 1.20 ± 0.12 4.77e-4 ± 1.13e-4 272.64 ± 6.64

FICO 28 1.01 ± 0.04 0.90 ± 0.06 9.99e-4 ± 4.54e-3 377.10 ± 14.95
FICO 26 0.99 ± 0.06 1.10 ± 0.13 5.59e-4 ± 1.12e-4 374.28 ± 10.24
FICO 24 0.99 ± 0.02 1.29 ± 0.13 5.55e-4 ± 4.04e-5 297.15 ± 8.26

MIMIC-II 35 1.00 ± 0.20 0.93 ± 0.10 5.89e-4 ± 1.72e-4 1127.10 ± 141.42
MIMIC-II 32 0.99 ± 0.01 1.10 ± 0.06 5.29e-4 ± 2.76e-5 1067.50 ±12.90

Table 4: Precision, volume, and time comparison between blocking method (Method 2) and optimiza-
tion (Method 1). This table shows that Method 2 is faster for the same task while performing equally
well.

results indicate that optimizing the convex function doesn’t bring us better results and during the486

experiments, we find hyperparameter tuning is even harder. Therefore, we use the previous results487

(optimizing the determinant, not the log determinant) in the remaining experiments.488

Dataset K̃ precision ratio volume ratio time method 2 (sec) time method 1 (sec)
COMPAS 15 1.00 ± 0.02 1.09 ± 0.06 4.33e-4 ± 7.14e-5 158.12 ± 4.16
COMPAS 14 1.00 ± 0.03 1.12 ± 0.08 3.23e-4 ± 6.79e-5 136.90 ± 3.73
COMPAS 13 0.99 ± 0.01 1.20 ± 0.12 5.33e-4 ± 1.28e-4 324.19 ± 8.71

FICO 28 1.00 ± 0.01 0.95 ± 0.04 5.04e-4 ± 8.99e-4 467.49 ± 5.02
FICO 26 1.00 ± 0.04 1.09 ± 0.08 3.44e-4 ± 1.04e-4 465.45 ± 5.05
FICO 24 0.99 ± 0.01 1.25 ± 0.10 3.02e-4 ± 2.67e-5 449.33 ± 15.93

MIMIC-II 35 0.99 ± 0.01 0.98 ± 0.06 6.42e-4 ± 1.91e-4 1683.11 ± 17.64
MIMIC-II 32 0.99 ± 0.02 1.05 ± 0.03 5.77e-4 ± 4.21e-5 1666.22 ±6.57

Table 5: Precision, volume, and time comparison between blocking method (Method 2) and optimiza-
tion (Method 1) trained by optimizing Eq (14). The results are almost the same as those shown in
Table 4.

E Variable importance range489

We first show more results on variable importance range and then compare the time taken to compute490

V I+ for MIP-based formulation and LP formulation.491

We show the shape functions of “Glucose” when the lowest and highest variable importance are492

achieved in Figure 3. When the importance of “Glucose” is minimized or maximized, one might be493

interested in how the shape function changes for other features. We show such variations in Figure 9.494

Most features keep the trend as ωc with some variation in magnitude.495

Figure 10 shows the variable importance range on the MIMIC-II, FICO, and COMPAS datasets.496

For the MIMIC-II dataset (left subfigure), features “PFratio”, “GCS”, and “Age” have relatively497

higher V I−, which means these features are, in general, important for GAMs in the Rashomon set.498

For the FICO dataset (mid subfigure), features “ExternalRiskEstimate” and “MSinceMostRecentIn-499

qexcl7days” have higher V I− either fixing or not fixing other coefficients, indicating that these two500

features are important. Feature “prior count” in the COMPAS dataset has slightly higher V I− than501

feature “age.”502

As we mentioned in Section 4.1, the lower bound of variable importance V I− is obtained by solving503

a linear programming problem with a quadratic constraint, while to get the upper bound of variable504

importance we need to solve a mixed integer programming problem. We use Python CVXPY505

package [35, 36] for solving LP problems and Cplex 12.8 for MIP problems. Note that as long as506

M ≥ 2|ωj,k|, the MIP formulation is valid. We set M to 200. This is usually large enough to bound507

the absolute value of each coefficient given that we have the ℓ2 penalty. Since solving a MIP problem508

is usually time-consuming, we also propose another way to get V I+. Note that it’s the absolute509

value in the objective that restricts us to use LP solver. Therefore, we enumerate all positive-negative510
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(a) Precision of the approximated Rashomon set as a function of θ.

(b) Tradeoff between precision and the size of the approximated Rashomon set given different θ. The scaling
factor to the power m is volume, which is proportional to recall.

Figure 8: Precision and volume of the approximated Rashomon set obtained by optimizing Eq (14).
They are almost the same as the results shown in Figure 6 and 7.
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Figure 9: Shape functions of other features in the Diabetes dataset when the importance of “Glucose”
is minimized or maximized.

Figure 10: The variable importance range of the MIMIC-II, FICO, and COMPAS datasets. Each line
connects V I− and V I+. (λs = 0.001, λ2 = 0.001, θ = 1.01L∗)
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Algorithm 2 GetV I+FromLP(πj ,Q,ωc)

Input: proportion of samples in each bin of feature j πj ∈ RBj , parameters of the ellipsoid
Q ∈ Rm×m,ωc ∈ Rm

Output: a point inside the ellipsoid ω ∈ Rm

1: Obj∗ ← −∞
2: for I ∈ {−1, 1}Bj // try all positive-negative combinations for ωj,k, k ∈ {0, ...Bj − 1}

// solve the LP problem
3: Obj,ω ← maxωj

(πj ⊙ I)Tωj such that (ω − ωc)
TQ(ω − ωc) ≤ 1

4: if Obj > Obj∗:
5: ω∗ ← ω, Obj∗ ← Obj
6: return ω∗

Figure 11: 100 different shape functions of the Diabetes dataset. The shape function at ωc is colored
in gray. (λs = 0.001, λ2 = 0.001, θ = 1.01L∗)

combinations of ωj,k, k ∈ {0, Bj − 1}, and then solve LP problem with the sign constraint enforced511

(see Algorithm 2). Table 6 compares the running time by solving both MIP and LP problems for512

V I+. The runtime required to solve LP problems with the sign constraint enforced is usually less513

than that required to solve a MIP problem.514

Dataset Fix other coefs Not fix other coefs
MIP LP MIP LP

Diabetes 18.876 ± 10.025 4.780±4.996 35.597 ± 17.413 1.961 ± 2.164
MIMIC-II 11.450 ± 6.259 0.497± 0.166 14.977 ± 12.921 0.265 ± 0.139
COMPAS 23.193 ± 0.176 4.138 ± 0.033 46.782 ± 5.709 3.043 ± 0.017

FICO 11.749 ± 7.841 0.816 ± 0.766 30.133 ± 7.11 0.425 ± 0.457
Table 6: Time comparison in seconds between solving MIP and LP problem with the sign constraint
enforced for V I+.

F Shape functions of GAMs in the Rashomon set515

Next, we show a diverse set of coefficient vectors sampled from the approximated Rashomon set.516

Figure 11 and Figure 12 depict 100 coefficient vectors (in red) sampled from the ellipsoid and ωc517

(in gray), the center of the optimized ellipsoid of the Diabetes and MIMIC-II dataset, respectively.518

Various different red lines in each subfigure indicate that the approximated Rashomon set contains519

many different coefficient vectors. And these models are actually within the true Rashomon sets.520

Many of them may generally follow similar patterns as we can see from the trend of these shape521

functions, while some of them may have some variations (see Figure 5). In summary, using the522

approximated Rashomon set, we can easily get a diverse set of shape functions for each feature.523

19



Figure 12: 100 different shape functions of the MIMIC-II dataset. The shape function at ωc is colored
in gray. (λs = 0.0002, λ2 = 0.001, θ = 1.01L∗)

G User preferred shape functions524

In real applications, users might have preference for shape functions that are consistent with their do-525

main knowledge. Our approximated Rashomon set makes it easy to incorporate such user preferences526

by finding a model within the set that satisfies some constraints. We show two case studies here.527

Diabetes: Figure 11 shows that a jump occurs when blood pressure is around 60. One possible user528

request might be making this blood pressure shape function monotonically decreasing. By solving529

the quadratic programming problem with linear constraints, we can get the shape functions colored in530

yellow in Figure 13a. The updated shape function for “BloodPressure” is monotonically decreasing.531

And the shape functions for other features are also updated. Almost all of them follow the trend in532

ωc (in gray), the center of the optimized ellipsoid, with small changes in magnitude. Note that this533

optimization problem is solved in 0.04 seconds.534

One might also be interested in making the shape function of “BMI” monotonically increasing. By535

solving the optimization problem, we can get the shape functions shown in Figure 13b. The updated536

shape function for “BMI” is monotonically increasing (in yellow). The sudden decrease that occurs at537

“BMI”=40 is removed by connecting the left step. Similar to Figure 13a, the updated shape functions538

of other features follow the trend in ωc (in gray), the center of the optimized ellipsoid, with small539

changes in magnitude. And this optimization problem is solved in 0.0004 seconds.540

Sometimes a monotonic constraint is not what users want; they might have more specific preferences541

on the shape functions. Here we show some examples using hypothetical shape functions. Figure 14542

extends the visualizations in Figure 4. It shows shape functions after imposing two different requests543

on “BloodPressure”.544

Figure 15 shows shape functions after imposing two different requests on “BMI.” In Figure 15a, the545

requested shape function of “BMI” (colored in red in the top-left subfigure) shifts below the original546

shape function but maintains a monotonically increasing pattern. While the closest shape function547
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(a) Shape functions of the Diabetes dataset with the monotonic constraint on the “BloodPressure” (in yellow).
The optimization problem is solved in 0.04 seconds.

(b) Shape functions of the Diabetes dataset with the monotonic constraint on the “BMI” (in yellow). The
optimization problem is solved in 0.0004 seconds.

Figure 13: Shape functions with monotonic constraints.

in the approximated Rashomon set is also below the original shape function, it is not necessarily548

monotonically increasing. Instead, it is more likely to follow the trend observed in the original shape549

function, as we aim to minimize the Euclidean distance between the requested shape function and the550

shape function in R̂. Shape functions of other features change only slightly in magnitude. Figure 15b551

shows a different case. The requested shape function of “BMI” forces certain steps to have the same552

coefficient. However, after solving the QP problem, the updated shape function shown in green in the553

top-middle subfigure is a combination of theshape function before editing and the requested shape554

function.555

MIMIC-II: In Figure 12, we can see jumps in several shape functions. For example, “PFratio” has556

a sudden jump around 330, and “Bilirubin” has a jump close to 0. PFratio is a measurement of557

lung function; it measures how well patients convert oxygen from the air into their blood. And558

bilirubin is a red-orange compound that breaks down heme. The bilirubin level reflects the balance559

between production and excretion. The elevated levels may indicate certain diseases. Missing values560

commonly exist in the real dataset and imputation is widely used. [28] shows these jumps are caused561

by mean imputation, and have no physical meaning. We can impose monotonic constraints on these562

two features simultaneously. We want the shape function of “PFratio” to be monotonically decreasing,563

while the shape function of “Bilirubin” is monotonically increasing. Figure 16 shows the shape564

functions after optimization. The shape functions of “PFratio” and “Bilirubin” satisfy the request as565

shown in the inset plots, and the shape functions of other features are only slightly changed.566

Suppose a user prefers to remove the jump in the shape function of “PFratio.” One way is to remove567

the jump while keeping the last step unchanged (top-left subfigure in Figure 17a). Fortunately, by568

solving Problem (12), we find that the specified shape function is within the Rashomon set (shown by569
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(a) Case 1

(b) Case 2

Figure 14: Shape functions on the Diabetes dataset after a hypothetical shape function on “Blood-
Pressure” is requested. The red curve in the top-left subfigure is the required shape function. The
shape function colored in green in the top-middle subfigure is the closest shape function within R̂.
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(a) Case 1

(b) Case 2

Figure 15: Shape functions on the Diabetes dataset after a hypothetical shape function on “BMI” is
requested. The red curve in the top-left subfigure is the required shape function. The shape function
colored in green in the top-middle subfigure is the closest shape function within R̂.
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Figure 16: Shape functions of the MIMIC-II dataset with the monotonic constraints on the “PFratio”
and “Bilirubin” (in yellow).
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Dataset θ (constant * L∗) ω∗ ω sampled from R̂
accuracy auc accuracy auc

COMPAS

1.005

0.696 0.748

0.683 ± 0.010 0.744 ± 0.004
1.01 0.683 ± 0.010 0.742 ± 0.005
1.05 0.668 ± 0.017 0.724 ± 0.012
1.1 0.649 ± 0.026 0.704 ± 0.021

FICO

1.005

0.720 0.792

0.717 ± 0.003 0.791 ± 0.001
1.01 0.716 ± 0.004 0.790 ± 0.002
1.05 0.708 ± 0.008 0.780 ± 0.006
1.1 0.700 ± 0.010 0.770 ± 0.009

Diabetes

1.005

0.760 0.819

0.761 ± 0.004 0.818 ± 0.002
1.01 0.760 ± 0.005 0.818 ± 0.003
1.05 0.758 ± 0.011 0.816 ± 0.006
1.1 0.755 ± 0.014 0.814 ± 0.009

MIMIC-II

1.005

0.886 0.803

0.886 ± 0.001 0.803 ± 0.002
1.01 0.886 ± 0.001 0.802 ± 0.002
1.05 0.885 ± 0.002 0.794 ± 0.005
1.1 0.884 ± 0.003 0.784 ± 0.009

Table 7: Test accuracy and AUC comparison between ω∗ and ω sampled from the approximated
Rashomon set with respect to different θs.

the green curve in the top-mid subfigure in Figure 17a). Another user might not like this idea and570

prefers to remove the jump by connecting to the left step (Figure 17b). However, this specified shape571

function is not within the Rashomon set, and we find the closest solution in green, which still has572

a small jump at 330 (see the inset plot). Different user-specified shape functions lead to different573

solutions. The Rashomon set can serve as a small but computationally efficient space in which users574

can find a model that is closest to their needs.575

H Test performance576

We now show the test performance of models sampled from our approximated Rashomon set. We577

compare the test accuracy and AUC between ω∗ and ωs sampled from R̂ on the four datasets with578

different values of θ and results are shown in Table 7. We sample 1000 ω from R̂ and show the579

average and one standard deviation. The larger value of θ leads to a larger Rashomon set, which580

means we allow models with higher loss. Therefore, as θ increases, both accuracy and AUC decrease.581

But when the constant is slightly larger than 1, such as 1.005 and 1.01, the test performance of582

models sampled from R̂ usually covers the performance achieved by ω∗ in one standard deviation.583

This means in general our approximated Rashomon set can return a diverse set of models without584

compromising the performance.585
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(a) Case 1

(b) Case 2

Figure 17: Shape functions on the MIMIC-II dataset after a hypothetical shape function on “PFratio”
is requested. The red curve in the top-left subfigure is the requested shape function. The shape
function colored in green in the top-middle subfigure is the closest shape function within R̂.
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