
A Related Work479

Diffusion probabilistic models (DPMs) [50, 15, 54], also known as score-based generative models480

(SGMs), have achieved remarkable generation ability on image domain [10, 22], yielding extensive481

applications such as speech, singing and video synthesis [6, 29, 17, 14], controllable image gen-482

eration, translation and editing [40, 44, 45, 37, 60, 8], likelihood estimation [53, 24, 32, 62], data483

compression [24] and inverse problem solving [7, 23].484

A.1 Fast Sampling Methods for DPMs485

Fast sampling methods based on extra training or optimization include learning variances in the reverse486

process [48, 39, 2], learning sampling schedule [26, 56], learning high-order model derivatives [11],487

model refinement [31] and model distillation [47, 35, 52]. Though distillation-based methods can488

generate high-quality samples in less than 5 steps, they additionally bring onerous training costs.489

Moreover, the distillation process will inevitably lose part of the information of the original model,490

and is hard to be adapted to pre-trained large DPMs [45, 46, 44] and conditional sampling [36]. Some491

of distillation-based methods also lack the ability to make flexible trade-offs between sample speed492

and sample quality.493

In contrast, training-free samplers are more lightweight and flexible. Among them, samplers based on494

diffusion ODEs generally requires less steps than those based on diffusion SDEs [54, 42, 3, 51, 34],495

since SDEs introduce more randomness and make the denoising harder in the sampling process.496

Previous samplers handle the diffusion ODEs with different methods, such as Heun’s methods [22],497

splitting numerical methods [57], pseudo numerical methods [30], Adams methods [27] or exponential498

integrators [59, 33, 34, 61].499

A.2 Comparison with Existing Solvers Based on Exponential Integrators500

Table 1: Comparison between DPM-Solver-v3 and other high-order diffusion ODE solvers based on
exponential integrators.

DEIS
[59]

DPM-Solver
[33]

DPM-Solver++
[34]

UniPC
[61]

DPM-Solver-v3
(Ours)

First-Order DDIM DDIM DDIM DDIM Improved DDIM
Taylor Expanded Predictor εθ for t εθ for λ xθ for λ xθ for λ gθ for λ
Solver Type (High-Order) Multistep Singlestep Multistep Multistep Multistep
Applicable for Guided Sampling 3 7 3 3 3
Corrector Supported 7 7 7 3 3
Model-Specific 7 7 7 7 3

In this section, we make some theoretical comparisons between DPM-Solver-v3 and existing diffusion501

ODE solvers that are based on exponential integrators [59, 33, 34, 61]. We summarize the results in502

Table 1, and provide some analysis below.503

Previous ODE formulation as special cases of ours. First we compare the formulation of the ODE504

solution. Our reformulated ODE solution in Eq. (9) involves extra coefficients lλ, sλ, bλ, and it505

corresponds to a new predictor gθ to be approximated by Taylor expansion. By comparing ours with506

previous ODE formulations in Eq. (3) and their corresponding noise/data prediction, we can easily507

figure out that they are special cases of ours by setting lλ, sλ, bλ to specific values:508

• Noise prediction: lλ = 0, sλ = −1, bλ = 0509

• Data prediction: lλ = 1, sλ = 0, bλ = 0510

It’s worth noting that, though our ODE formulation can degenerate to previous ones, it may still result511

in different solvers, since previous works conduct some equivalent substitution of the same order in512

the local approximation (for example, the choice of B1(h) = h or B2(h) = eh − 1 in UniPC [61]).513

We never conduct such substitution, thus saving the efforts to tune it.514

14

Moreover, under our framework, we find that DPM-Solver++ is a model-agnostic approximation515

of DPM-Solver-v3, under the Gaussian assumption. Specifically, according to Eq. (5), we have516

l∗λ = argmin
lλ

Epθλ(xλ)‖σλ∇xεθ(xλ, λ)− lλ‖2F , (17)

If we assume qλ(xλ) ≈ N (xλ|αλx0, σ
2
λI) for some fixed x0, then the optimal noise predictor is517

εθ(xλ, λ) ≈ −σλ∇x log qλ(xλ) =
xλ − αtx0

σλ
. (18)

It follows that σλ∇xεθ(xλ, λ) ≈ I , thus l∗λ ≈ 1 by Eq. (5), which corresponds the data prediction518

model used in DPM-Solver++. Moreover, for small enough λ (i.e., t near to T), the Gaussian519

assumption is almost true (see Section 4.2), thus the data-prediction DPM-Solver++ approximately520

computes all the linear terms at the initial stage. To the best of our knowledge, this is the first521

explanation for the reason why the data-prediction DPM-Solver++ outperforms the noise-prediction522

DPM-Solver.523

First-order discretization as improved DDIM Previous methods merely use noise/data parameteri-524

zation, whether or not they change the time domain from t to λ. While they differ in high-order cases,525

they are proven to coincide in the first-order case, which is DDIM [51] (deterministic case, η = 0):526

x̂t =
αt
αs
x̂s − αt

(
σs
αs
− σt
αt

)
εθ(x̂s, λs) (19)

However, the first-order case of our method is527

x̂t =
αt
αs
A(λs, λt)

((
1 + lλs

∫ λt

λs

Eλs(λ)dλ

)
x̂s −

(
σs

∫ λt

λs

Eλs(λ)dλ

)
εθ(x̂s, λs)

)

− αtA(λs, λt)

∫ λt

λs

Eλs(λ)Bλs(λ)dλ

(20)

which is not DDIM since we choose a better parameterization by the estimated EMS. Empirically,528

our first-order solver performs better than DDIM, as detailed in Appendix G.529

B Proofs530

B.1 Assumptions531

In this section, we will give some mild conditions under which the local order of accuracy of532

Algorithm 1 and the global order of convergence of Algorithm 2 (predictor) are guaranteed.533

B.1.1 Local534

First we will give the assumptions to bound the local truncation error.535

Assumption B.1. The total derivatives of the noise prediction model dkεθ(xλ,λ)
dλk

, k = 1, . . . , n exist536

and are continuous.537

Assumption B.2. The coefficients lλ, sλ, bλ are continuous and bounded. dklλ
dλk

, d
ksλ
dλk

, d
kbλ
dλk

, k =538

1, . . . , n exist and are continuous.539

Assumption B.3. δk = Θ(λt − λs), k = 1, . . . , n540

Assumption B.1 is required for the Taylor expansion which is regular in high-order numerical541

methods. Assumption B.2 requires the boundness of the coefficients as well as regularizes the542

coefficients’ smoothness to enable the Taylor expansion for gθ(xλ, λ), which holds in practice given543

the smoothness of εθ(xλ, λ) and pθλ(xλ). Assumption B.3 makes sure δk and λt − λs is of the same544

order, i.e., there exists some constant rk = O(1) so that δk = rk(λt − λs), which is satisfied in545

regular multistep methods.546

15

B.1.2 Global547

Then we will give the assumptions to bound the global error.548

Assumption B.4. The noise prediction model εθ(x, t) is Lipschitz w.r.t. to x.549

Assumption B.5. h = max1≤i≤M (λi − λi−1) = O(1/M).550

Assumption B.6. The starting values x̂i, 1 ≤ i ≤ n satisfies x̂i − xi = O(hn+1).551

Assumption B.4 is common in the analysis of ODEs, which assures εθ(x̂t, t)−εθ(xt, t) = O(x̂t−xt).552

Assumption B.5 implies that the step sizes are rather uniform. Assumption B.6 is common in the553

convergence analysis of multistep methods [5].554

B.2 Order of Accuracy and Convergence555

In this section, we prove the local and global order guarantees detailed in Theorem 3.1 and Theo-556

rem 3.3.557

B.2.1 Local558

Proof. (Proof of Theorem 3.1) Denote h := λt − λs. Subtracting the Taylor-expanded exact solution559

in Eq. (12) from the local approximation in Eq. (14), we have560

x̂t−xt = −αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs , λs)− g

(k)
θ (xλs , λs)

k!

∫ λt

λs

Eλs(λ)(λ−λs)kdλ+O(hn+2)

(21)
First we examine the order ofA(λs, λt) and

∫ λt
λs
Eλs(λ)(λ− λs)kdλ. Under Assumption B.2, there561

exists some constant C1, C2 such that −lλ < C1, lλ + sλ < C2. So562

A(λs, λt) = e−
∫ λt
λs
lτdτ

< eC1h

= O(1)

(22)

563 ∫ λt

λs

Eλs(λ)(λ− λs)kdλ =

∫ λt

λs

e
∫ λ
λs

(lτ+sτ)dτ (λ− λs)kdλ

<

∫ λt

λs

eC2(λ−λs)(λ− λs)kdλ

= O(hk+1)

(23)

Next we examine the order of ĝ
(k)
θ (xλs ,λs)−g

(k)
θ (xλs ,λs)

k! . Under Assumption B.1 and Assumption B.2,564

since gθ is elementary function of εθ and lλ, sλ, bλ, we know g(k)θ (xλs , λs), k = 1, . . . , n exist and565

are continuous. Adopting the notations in Eq. (13), by Taylor expansion, we have566

gi1 = gs + δ1g
(1)
s + δ21g

(2)
s + · · ·+ δn1 g

(n)
s +O(δn+1

1)

gi2 = gs + δ2g
(1)
s + δ22g

(2)
s + · · ·+ δn2 g

(n)
s +O(δn+1

2)

. . .

gin = gs + δng
(1)
s + δ2ng

(2)
s + · · ·+ δnng

(n)
s +O(δn+1

n)

(24)

Comparing it with Eq. (13), we have567


δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn



ĝ
(1)
s − g(1)s
ĝ(2)s −g

(2)
s

2!
...

ĝ(n)
s −g

(n)
s

n!

 =


O(δn+1

1)
O(δn+1

2)
...

O(δn+1
n)

 (25)

16

From Assumption B.3, we know there exists some constants rk so that δk = rkh, k = 1, . . . , n. Thus568

569 
δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn

 =


r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn



h

h2

. . .
hn

 ,


O(δn+1

1)
O(δn+1

2)
...

O(δn+1
n)

 =


O(hn+1)
O(hn+1)

...
O(hn+1)


(26)

And finally we have570 
ĝ
(1)
s − g(1)s
ĝ(2)s −g

(2)
s

2!
...

ĝ(n)
s −g

(n)
s

n!

 =


h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1)
O(hn+1)

...
O(hn+1)



=


O(hn)
O(hn−1)

...
O(h1)


(27)

Substitute Eq. (22), Eq. (23) and Eq. (27) into Eq. (21), we can conclude that x̂t−xt = O(hn+2).571

B.2.2 Global572

First we provide a lemma which gives the local truncation error given inexact previous values when573

estimating the high-order derivatives.574

Lemma B.7. (Local truncation error with inexact previous values) Suppose inexact values x̂λik , k =575

1, . . . , n and x̂s are used in Eq. (13) to estimate the high-order derivatives, then the local truncation576

error of the local approximation Eq. (14) satisfies577

∆t =
αtA(λs, λt)

αs
∆s +O(h)

(
O(∆s) +

n∑
k=1

O(∆λik
) +O(hn+1)

)
(28)

where ∆· := x̂· − x·, h := λt − λs.578

Proof. By replacing x· with x̂· in Eq. (13) and subtracting Eq. (12) from Eq. (14), the expression for579

the local truncation error becomes580

∆t =
αtA(λs, λt)

αs
∆s − αtA(λs, λt) (gθ(x̂λs , λs)− gθ(xλs , λs))

∫ λt

λs

Eλs(λ)dλ

− αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs , λs)− g

(k)
θ (xλs , λs)

k!

∫ λt

λs

Eλs(λ)(λ− λs)kdλ+O(hn+2)

(29)
And the linear system for solving g(k)θ (xλs , λs), k = 1, . . . , n becomes581


δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn



ĝ
(1)
s

ĝ(2)s
2!
...

ĝ(n)
s

n!

 =


ĝi1 − ĝs
ĝi2 − ĝs

...
ĝin − ĝs

 (30)

where ĝ· = gθ(x̂λ· , λ·). Under Assumption B.4, we know ĝ· − g· = O(∆λ·). Thus, under582

Assumption B.1, Assumption B.2 and Assumption B.3, similar to the deduction in the last section,583

17

we have584 
ĝ
(1)
s − g(1)s
ĝ(2)s −g

(2)
s

2!
...

ĝ(n)
s −g

(n)
s

n!

 =


h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 + ∆s + ∆λi1
)

O(hn+1 + ∆s + ∆λi2
)

...
O(hn+1 + ∆s + ∆λin

)


(31)

Besides, under Assumption B.2, the orders of the other coefficients are the same as we obtain in the585

last section:586

A(λs, λt) = O(1),

∫ λt

λs

Eλs(λ)(λ− λs)kdλ = O(hk+1) (32)

Thus587

n∑
k=1

ĝ
(k)
θ (xλs , λs)− g

(k)
θ (xλs , λs)

k!

∫ λt

λs

Eλs(λ)(λ− λs)kdλ

=


∫ λt
λs
Eλs(λ)(λ− λs)1dλ∫ λt

λs
Eλs(λ)(λ− λs)2dλ

...∫ λt
λs
Eλs(λ)(λ− λs)ndλ


>

ĝ
(1)
s − g(1)s
ĝ(2)s −g

(2)
s

2!
...

ĝ(n)
s −g

(n)
s

n!



=


O(h2)
O(h3)

...
O(hn+1)


>

h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 + ∆s + ∆λi1
)

O(hn+1 + ∆s + ∆λi2
)

...
O(hn+1 + ∆s + ∆λin

)



=


O(h)
O(h)

...
O(h)


>

r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 + ∆s + ∆λi1
)

O(hn+1 + ∆s + ∆λi2
)

...
O(hn+1 + ∆s + ∆λin

)


=

n∑
k=1

O(h)O(hn+1 + ∆s + ∆λik
)

(33)
Combining Eq. (29), Eq. (32) and Eq. (33), we can obtain the conclusion in Eq. (28).588

Then we prove Theorem 3.3 below.589

Proof. (Proof of Theorem 3.3)590

As we have discussed, the predictor step from tm−1 to tm is a special case of the local approximation591

Eq. (14) with (tin , . . . , ti1 , s, t) = (tm−n−1, . . . , tm−2, tm−1, tm). By Lemma B.7 we have592

∆m =
αtmA(λtm−1

, λtm)

αtm−1

∆m−1 +O(h)

(
n∑
k=0

O(∆m−k−1) +O(hn+1)

)
(34)

It follows that there exists constants C,C0 irrelevant to h, so that593

|∆m| ≤
(
αtmA(λtm−1 , λtm)

αtm−1

+ Ch

)
|∆m−1|+ Ch

n∑
k=0

|∆m−k−1|+ C0h
n+2 (35)

Denote fm := max0≤i≤m |∆i|, we then have594

|∆m| ≤
(
αtmA(λtm−1

, λtm)

αtm−1

+ C1h

)
fm−1 + C0h

n+2 (36)

18

Since
αtmA(λtm−1

,λtm)

αtm−1
→ 1 when h → 0 and it has bounded first-order derivative due to As-595

sumption B.2, there exists a constant C2, so that for any C ≥ C2,
αtmA(λtm−1

,λtm)

αtm−1
+ Ch > 1 for596

sufficiently small h. Thus, by taking C3 = max{C1, C2}, we have597

fm ≤
(
αtmA(λtm−1 , λtm)

αtm−1

+ C3h

)
fm−1 + C0h

n+2 (37)

Denote Am−1 :=
αtmA(λtm−1

,λtm)

αtm−1
+ C3h, by repeating Eq. (37), we have598

fM ≤

(
M−1∏
i=n

Ai

)
fn +

 M∑
i=n+1

M−1∏
j=i

Aj

C0h
n+2 (38)

By Assumption B.5, h = O(1/M), so we have599

M−1∏
i=n

Ai =
αtMA(λtn , λtM)

αtn

M−1∏
i=n

(
1 +

αti−1C3h

αtiA(λti−1 , λti)

)

≤ αtMA(λtn , λtM)

αtn

M−1∏
i=n

(
1 +

αti−1
C4

αtiA(λti−1 , λti)M

)
≤ αtMA(λtn , λtM)

αtn

(
1 +

σ

M

)M−n
≤ C5e

σ

(39)

where σ = maxn≤i≤M−1
αti−1

C4

αtiA(λti−1
,λti)

. Then denote β := maxn+1≤i≤M
αtMA(λti ,λtM)

αti
, we600

have601
M∑

i=n+1

M−1∏
j=i

Aj ≤
M∑

i=n+1

αtMA(λti , λtM)

αti

(
1 +

σ

M

)M−i
≤ β

M−n−1∑
i=0

(
1 +

σ

M

)i
=
βM

σ

[(
1 +

σ

M

)M−n
− 1

]
≤ C6 (eσ − 1)M

(40)

Then we substitute Eq. (39) and Eq. (40) into Eq. (38). Note that M = O(1/h) by Assumption B.5,602

and fn = O(hn+1) by Assumption B.6, finally we conclude that |∆M | ≤ fM = O(hn+1).603

B.3 Pseudo-Order Solver604

First we provide a lemma which gives the explicit solution to Eq. (15).605

Lemma B.8. The solution to Eq. (15) is606

ĝ
(k)
s

k!
=

k∑
p=1

gip − gi0∏k
q=0,q 6=p(δp − δq)

(41)

Proof. Denote607

Rk =


δ1 δ21 · · · δk1
δ2 δ22 · · · δk2
...

...
. . .

...
δk δ2k · · · δkk

 (42)

19

Then the solution to Eq. (15) can be expressed as608

ĝ
(k)
s

k!
=

k∑
p=1

(R−1k)kp(gip − gi0) (43)

where (R−1k)kp is the element ofR−1k at the k-th row and the p-th column. From previous studies of609

the inversion of the Vandermonde matrix [12], we know610

(R−1k)kp =
1

δp
∏k
q=1,q 6=p(δp − δq)

=
1

(δp − δ0)
∏k
q=1,q 6=p(δp − δq)

(44)

Substituting Eq. (44) into Eq. (43), we finish the proof.611

Then we prove Theorem 3.4 below:612

Proof. (Proof of Theorem 3.4) First we use mathematical induction to prove that613

D
(k)
l = D̃

(k)
l :=

k∑
p=1

gil+p − gil∏k
q=0,q 6=p(δl+p − δl+q)

, 1 ≤ k ≤ n, 0 ≤ l ≤ n− k (45)

For k = 1, Eq. (45) holds by the definition of D(k)
l . Suppose the equation holds for k, we then prove614

it holds for k + 1.615

Define the Lagrange polynomial which passes (δl+p, gil+p − gil) for 0 ≤ p ≤ k:616

P
(k)
l (x) :=

k∑
p=1

(
gil+p − gil

) k∏
q=0,q 6=p

x− δl+q
δl+p − δl+q

, 1 ≤ k ≤ n, 0 ≤ l ≤ n− k (46)

Then D̃(k)
l = P

(k)
l (x)[xk] is the coefficients before the highest-order term xk in P (k)

l (x). We then617

prove that P (k)
l (x) satisfies the following recurrence relation:618

P
(k)
l (x) = P̃

(k)
l (x) :=

(x− δl)P (k−1)
l+1 (x)− (x− δl+k)P

(k−1)
l (x)

δl+k − δl
(47)

By definition, P (k−1)
l+1 (x) is the (k − 1)-th order polynomial which passes (δl+p, gil+p − gil) for619

1 ≤ p ≤ k, and P (k−1)
l (x) is the (k − 1)-th order polynomial which passes (δl+p, gil+p − gil) for620

0 ≤ p ≤ k − 1.621

Thus, for 1 ≤ p ≤ k − 1, we have622

P̃
(k)
l (δl+p) =

(δl+p − δl)P (k−1)
l+1 (δl+p)− (δl+p − δl+k)P

(k−1)
l (δl+p)

δl+k − δl
= gil+p − gil (48)

For p = 0, we have623

P̃
(k)
l (δl) =

(δl − δl)P (k−1)
l+1 (δl)− (δl − δl+k)P

(k−1)
l (δl)

δl+k − δl
= gil − gil (49)

for p = k, we have624

P̃
(k)
l (δl+k) =

(δl+k − δl)P (k−1)
l+1 (δl+k)− (δl+k − δl+k)P

(k−1)
l (δl+k)

δl+k − δl
= gil+k − gil (50)

Therefore, P̃ (k)
l (x) is the k-th order polynomial which passes k+ 1 distince points (δl+p, gil+p −gil)625

for 0 ≤ p ≤ k. Due to the uniqueness of the Lagrange polynomial, we can conclude that P (k)
l (x) =626

P̃
(k)
l (x). By taking the coefficients of the highest-order term, we obtain627

D̃
(k)
l =

D̃
(k−1)
l+1 − D̃(k−1)

l

δl+k − δl
(51)

20

where by the induction hypothesis we have D(k−1)
l+1 = D̃

(k−1)
l+1 , D

(k−1)
l = D̃

(k−1)
l . Comparing628

Eq. (51) with the recurrence relation of D(k)
l in Eq. (16), it follows that D(k)

l = D̃
(k)
l , which629

completes the mathematical induction.630

Finally, by comparing the expression for D̃(k)
l in Eq. (45) and the expression for ĝ(k)s in Lemma B.8,631

we can conclude that ĝ(k)s = k!D
(k)
0 .632

B.4 Local Unbiasedness633

Proof. (Proof of Theorem 3.2) Subtracting the local exact solution in Eq. (9) from the (n + 1)-th634

order local approximation in Eq. (14), we have the local truncation error635

x̂t − xt = αtA(λs, λt)

(∫ λt

λs

Eλs(λ)gθ(xλ, λ)dλ−
n∑
k=0

ĝ
(k)
θ (xλs , λs)

∫ λt

λs

Eλs(λ)
(λ− λs)k

k!
dλ

)

= αtA(λs, λt)

∫ λt

λs

Eλs(λ) (gθ(xλ, λ)− gθ(xλs , λs)) dλ

− αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs , λs)

∫ λt

λs

Eλs(λ)
(λ− λs)k

k!
dλ

= αtA(λs, λt)

∫ λt

λs

Eλs(λ) (gθ(xλ, λ)− gθ(xλs , λs)) dλ

− αtA(λs, λt)

n∑
k=1

(
n∑
l=1

(R−1n)kl(gθ(xλil , λil)− gθ(xλs , λs))

)∫ λt

λs

Eλs(λ)
(λ− λs)k

k!
dλ

(52)
where xλ is on the ground-truth ODE trajectory passing xλs , and (R−1n)kl is the element of the636

inverse matrixR−1n at the k-th row and the l-th column, as discussed in the proof of Lemma B.8. By637

Newton-Leibniz theorem, we have638

gθ(xλ, λ)− gθ(xλs , λs) =

∫ λ

λs

g
(1)
θ (xτ , τ)dτ (53)

Also, since xλil , l = 1, . . . , n are on the ground-truth ODE trajectory passing xλs , we have639

gθ(xλil , λil)− gθ(xλs , λs) =

∫ λil

λs

g
(1)
θ (xτ , τ)dτ (54)

where640

g
(1)
θ (xτ , τ) = e−

∫ τ
λs
srdr

(
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

)
(55)

Note that sλ, lλ are the solution to the least square problem in Eq. (11), which641

makes sure Epθτ (xτ)
[
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

]
= 0. It follows that642

Epθλs (xλs)
[
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

]
= 0, since xτ is on the ground-truth ODE643

trajectory passing xλs . Therefore, we have Epθλs (xλs) [gθ(xλ, λ)− gθ(xλs , λs)] = 0 and644

Epθλs (xλs)
[
gθ(xλil , λil)− gθ(xλs , λs)

]
= 0. Substitute them into Eq. (52), we conclude that645

Epθλs (xλs) [x̂t − xt] = 0.646

647

C Implementation Details648

C.1 Computing the EMS and Related Integrals in the ODE Formulation649

The ODE formulation and local approximation require computing some complex integrals involving650

lλ, sλ, bλ. In this section, we’ll give details about how to estimate l∗λ, s
∗
λ, b
∗
λ on a few datapoints, and651

how to use them to compute the integrals efficiently.652

21

C.1.1 Computing the EMS653

First for the computing of l∗λ in Eq. (5), note that654

∇xNθ(xλ, λ) = σλ∇xε(xλ, λ)− diag(lλ) (56)

Since diag(lλ) is a diagonal matrix, minimizing Epθλ(xλ)
[
‖∇xNθ(xλ, λ)‖2F

]
is equivalent to mini-655

mizing Epθλ(xλ)
[
‖diag−1(∇xNθ(xλ, λ))‖22

]
= Epθλ(xλ)

[
‖diag−1(σλ∇xε(xλ, λ))− lλ‖22

]
, where656

diag−1 denotes the operator that takes the diagonal of a matrix as a vector. Thus we have657

l∗λ = Epθλ(xλ)
[
diag−1(σλ∇xε(xλ, λ))

]
.658

However, this formula for l∗λ requiring computing the diagonal of the full Jacobian of the noise659

prediction model, which typically has O(d2) time complexity for d-dimensional data and is unaccept-660

able when d is large. Fortunately, the cost can be reduced to O(d) by utilizing stochastic diagonal661

estimators and employing the efficient Jacobian-vector-product operator provided by forward-mode662

automatic differentiation in deep learning frameworks.663

For a d-by-d matrixD, its diagonal can be unbiasedly estimated by [4]664

diag−1(D) =

[
s∑

k=1

(Dvk)� vk

]
�

[
s∑

k=1

vk � vk

]
(57)

where vk ∼ p(v) are d-dimensional i.i.d. samples with zero mean, � is the element-wise multiplica-665

tion i.e., Hadamard product, and � is the element-wise division. The stochastic diagonal estimator666

is analogous to the famous Hutchinson’s trace estimator [21]. By taking p(v) as the Rademacher667

distribution, we have vk � vk = 1, and the denominator can be omitted. For simplicity, we use668

regular multiplication and division symbol, assuming they are element-wise between vectors. Then669

l∗λ can be expressed as:670

l∗λ = Epθλ(xλ)p(v) [(σλ∇xεθ(xλ, λ)v)v] (58)

which is unbiased estimation when we replace the expectation with mean on finite samples xλ ∼671

pθλ(xλ),v ∼ p(v). The process for estimating l∗λ can easily be paralleled on multiple devices by672

computing
∑

(σλ∇xεθ(xλ, λ)v)v on separate datapoints and gather them in the end.673

Next, for the computing of s∗λ, b
∗
λ in Eq. (11), note that it’s a simple least square problem. By taking674

partial derivatives w.r.t. sλ, bλ and set them to 0, we have675 Epθλ(xλ)
[(
f
(1)
θ (xλ, λ)− s∗λfθ(xλ, λ)− b∗λ

)
fθ(xλ, λ)

]
= 0

Epθλ(xλ)
[
f
(1)
θ (xλ, λ)− s∗λfθ(xλ, λ)− b∗λ

]
= 0

(59)

And we obtain the explicit formula for s∗λ, b
∗
λ676

s∗λ =
Epθλ(xλ)

[
fθ(xλ, λ)f

(1)
θ (xλ, λ)

]
− Epθλ(xλ) [fθ(xλ, λ)]Epθλ(xλ)

[
f
(1)
θ (xλ, λ)

]
Epθλ(xλ)[fθ(xλ, λ)fθ(xλ, λ)]− Epθλ(xλ)[fθ(xλ, λ)]Epθλ(xλ)[fθ(xλ, λ)]

(60)

b∗λ = Epθλ(xλ)[f
(1)(xλ, λ)]− s∗λEpθλ(xλ)[fθ(xλ, λ)] (61)

which are unbiased least square estimators when we replace the expectation with mean on finite677

samples xλ ∼ pθλ(xλ). Also, the process for estimating s∗λ, b
∗
λ can be paralleled on multiple devices678

by computing
∑
fθ,
∑
f
(1)
θ ,

∑
fθfθ,

∑
fθf

(1)
θ on separate datapoints and gather them in the end.679

Thus, the estimation of s∗λ, b
∗
λ involving evaluating fθ and f (1)

θ on xλ. fθ is a direct transformation680

of εθ and requires a single forward pass. For f (1)
θ , we have681

f
(1)
θ (xλ, λ) =

∂fθ(xλ, λ)

∂λ
+∇xfθ(xλ, λ)

dxλ
dλ

= e−λ
(
ε
(1)
θ (xλ, λ)− εθ(xλ, λ)

)
− l̇λαλ − α̇λlλ

α2
λ

xλ −
lλ
αλ

(
α̇λ
αλ
xλ − σλεθ(xλ, λ)

)
= e−λ

(
(lλ − 1)εθ(xλ, λ) + ε

(1)
θ (xλ, λ)

)
− l̇λxλ

αλ
(62)

22

After we obtain lλ, l̇λ can be estimated by finite difference. To compute ε(1)θ (xλ, λ), we have682

ε
(1)
θ (xλ, λ) = ∂λεθ(xλ, λ) +∇xεθ(xλ, λ)

dxλ
dλ

= ∂λεθ(xλ, λ) +∇xεθ(xλ, λ)

(
α̇λ
αλ
xλ − σλεθ(xλ, λ)

) (63)

which can also be computed with the Jacobian-vector-product operator.683

In conclusion, for any λ, l∗λ, s
∗
λ, b
∗
λ can be efficiently and unbiasedly estimated by sampling a few684

datapoints xλ ∼ pθλ(xλ) and using the Jacobian-vector-product.685

C.1.2 Integral Precomputing686

In the local approximation in Eq. (14), there are three integrals involving the EMS, which are687

A(λs, λt),
∫ λt
λs
Eλs(λ)Bλs(λ)dλ,

∫ λt
λs
Eλs(λ) (λ−λs)k

k! dλ. Define the following terms, which are688

also evaluated at λj0 , λj1 , . . . , λjN and can be precomputed in O(N) time:689

Lλ =

∫ λ

λT

lτdτ

Sλ =

∫ λ

λT

sτdτ

Bλ =

∫ λ

λT

e
−

∫ r
λT
sτdτbrdr =

∫ λ

λT

e−Srbrdr

Cλ =

∫ λ

λT

(
e
∫ u
λT

(lτ+sτ)dτ
∫ u

λT

e
−

∫ r
λT
sτdτbrdr

)
du =

∫ λ

λT

eLu+SuBudu

Iλ =

∫ λ

λT

e
∫ r
λT

(lτ+sτ)dτdr =

∫ λ

λT

eLr+Srdr

(64)

Then for any λs, λt, we can verify that the first two integrals can be expressed as690

A(λs, λt) = eLλs−Lλt∫ λt

λs

Eλs(λ)Bλs(λ)dλ = e−Lλs (Cλt −Cλs −Bλs(Iλt − Iλs))
(65)

which can be computed in O(1) time. For the third and last integral, denote it as E(k)
λs,λt

, i.e.,691

E
(k)
λs,λt

=

∫ λt

λs

Eλs(λ)
(λ− λs)k

k!
dλ (66)

We need to compute it for 0 ≤ k ≤ n and for every local transition time pair (λs, λt) in the sampling692

process. For k = 0, we have693

E
(0)
λs,λt

= e−Lλs−Sλs (Iλt − Iλs) (67)

which can also be computed in O(1) time. But for k > 0, we no longer have such simplification694

technique. Still, for any fixed timestep schedule {λi}Mi=0 during the sampling process, we can use a695

lazy precomputing strategy: compute E(k)
λi−1,λi

, 1 ≤ i ≤M when generating the first sample, store it696

with a unique key (k, i) and retrieve it in O(1) in the following sampling process.697

C.2 Algorithm698

We provide the pseudocode of the local approximation and global solver in Algorithm 1 and Algo-699

rithm 2, which concisely describes how we implement DPM-Solver-v3.700

23

Algorithm 1 (n+ 1)-th order local approximation: LUpdaten+1

Require: noise schedule αt, σt, coefficients lλ, sλ, bλ
Input: transition time pair (s, t), xs, n extra timesteps {tik}nk=1, gθ values (gin , . . . , gi1 , gs) at
{(xλik , tik)}nk=1 and (xs, s)

Input Format: {tin , gin}, . . . , {ti1 , gi1}, {s,xs, gs}, t
1: ComputeA(λs, λt),

∫ λt
λs
Eλs(λ)Bλs(λ)dλ,

∫ λt
λs
Eλs(λ) (λ−λs)k

k! dλ (Appendix C.1.2)
2: δk = λik − λs, k = 1, . . . , n

3:


ĝ
(1)
s

ĝ(2)s
2!
...

ĝ(n)
s

n!

←

δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn


−1

gi1 − gs
gi2 − gs

...
gin − gs

 (Eq. (13))

4: x̂t ← αtA(λs, λt)

(
xs
αs
−
∫ λt

λs

Eλs(λ)Bλs(λ)dλ−
n∑
k=0

ĝ(k)s

∫ λt

λs

Eλs(λ)
(λ− λs)k

k!
dλ

)
(Eq. (14))

Output: x̂t

Algorithm 2 (n+ 1)-th order multistep predictor-corrector algorithm
Require: noise prediction model εθ, noise schedule αt, σt, coefficients lλ, sλ, bλ, cache Q1, Q2

Input: timesteps {ti}Mi=0, initial value x0

1: Q1
cache← x0

2: Q2
cache← εθ(x0, t0)

3: for m = 1 to M do
4: nm ← min{n+ 1,m}
5: x̂m−nm , . . . , x̂m−1

fetch← Q1

6: ε̂m−nm , . . . , ε̂m−1
fetch← Q2

7: ĝl ← e
−

∫ λl
λm−1

sτdτ σλl ε̂l − lλl x̂l
αλl

−
∫ λl

λm−1

e−
∫ r
λs
sτdτbrdr, l = m − nm, . . . ,m − 1

(Eq. (8))
8: x̂m ← LUpdatenm({tm−nm , ĝm−nm}, . . . , {tm−2, ĝm−2}, {tm−1, x̂m−1, ĝm−1}, tm)
9: if m 6= M then

10: ε̂m ← εθ(x̂m, tm)

11: ĝm ← e
−

∫ λm
λm−1

sτdτ σλm ε̂m − lλm x̂m
αλm

−
∫ λm

λm−1

e−
∫ r
λs
sτdτbrdr (Eq. (8))

12: x̂cm ← LUpdatenm({tm−nm+1, ĝm−nm+1}, . . . , {tm−2, ĝm−2}, {tm, ĝm},
{tm−1, x̂m−1, ĝm−1}, tm)

13: ε̂cm ← ε̂m + lλm(x̂cm − x̂m)/σλm (to ensure ĝcm = ĝm)
14: Q1

cache← x̂cm

15: Q2
cache← ε̂cm

16: end if
17: end for
Output: x̂M

D Experiment Details701

In this section, we provide more experiment details for each setting, including the codebases and the702

configurations for evaluation, EMS computing and sampling. Unless otherwise stated, we utilize the703

forward-mode automatic differentiation (torch.autograd.forward_ad) provided by PyTorch [41]704

to compute the Jacobian-vector-products (JVPs). Also, as stated in Section 3.4, we draw datapoints705

24

xλ from the marginal distribution qλ defined by the forward diffusion process starting from some706

data distribution q0, instead of the model distribution pθλ.707

D.1 ScoreSDE on CIFAR10708

Codebase and evaluation For unconditional sampling on CIFAR10 [25], one experiment set-709

ting is based on the pretrained pixel-space diffusion model provided by ScoreSDE [54]. We use710

their official codebase of PyTorch implementation, and their checkpoint checkpoint_8.pth under711

vp/cifar10_ddpmpp_deep_continuous config. We adopt their own statistic file and code for712

computing FID.713

EMS computing We estimate the EMS at N = 1200 uniform timesteps λj0 , λj1 , . . . , λjN by714

drawing K = 4096 datapoints xλ0
∼ q0, where q0 is the distribution of the training set. We compute715

two sets of EMS, corresponding to start time ε = 10−3 (NFE≤ 10) and ε = 10−4 (NFE>10) in the716

sampling process respectively. The total time for EMS computing is ∼7h on 8 GPU cards of NVIDIA717

A40.718

Sampling Following previous works [33, 34, 61], we use start time ε = 10−3 (NFE≤ 10) and719

ε = 10−4 (NFE>10), end time T = 1 and adopt the uniform logSNR timestep schedule. For720

DPM-Solver-v3, we use 3rd-order predictor with 3rd-order corrector by default. Specially, we change721

to pseudo 3rd-order predictor at 5 NFE to further boost the performance.722

D.2 EDM on CIFAR10723

Codebase and evaluation For unconditional sampling on CIFAR10 [25], another experiment setting724

is based on the pretrained pixel-space diffusion model provided by EDM [22]. We use their official725

codebase of PyTorch implementation, and their checkpoint edm-cifar10-32x32-uncond-vp.pkl.726

For consistency, we borrow the statistic file and code from ScoreSDE [54] for computing FID.727

EMS computing Since the pretrained models of EDM are stored within the pickles,728

we fail to use torch.autograd.forward_ad for computing JVPs. Instead, we use729

torch.autograd.functional.jvp, which is much slower since it employs the double back-730

wards trick. We estimate two sets of EMS. One corresponds to N = 1200 uniform timesteps731

λj0 , λj1 , . . . , λjN and K = 1024 datapoints xλ0
∼ q0, where q0 is the distribution of the training732

set. The other corresponds to N = 120,K = 4096. They are used when NFE<10 and NFE≥10733

respectively. The total time for EMS computing is ∼3.5h on 8 GPU cards of NVIDIA A40.734

Sampling Following EDM, we use start time tmin = 0.002 and end time tmax = 80.0, but adopt the735

uniform logSNR timestep schedule which performs better in practice. For DPM-Solver-v3, we use736

3rd-order predictor and additionally employ 3rd-order corrector when NFE≤ 6. Specially, we change737

to pseudo 3rd-order predictor at 5 NFE to further boost the performance.738

D.3 Latent-Diffusion on LSUN-Bedroom739

Codebase and evaluation The unconditional sampling on LSUN-Bedroom [58] is based on the740

pretrained latent-space diffusion model provided by Latent-Diffusion [45]. We use their official741

codebase of PyTorch implementation and their default checkpoint. We borrow the statistic file and742

code from Guided-Diffusion [10] for computing FID.743

EMS computing We estimate the EMS atN = 120 uniform timesteps λj0 , λj1 , . . . , λjN by drawing744

K = 1024 datapoints xλ0
∼ q0, where q0 is the distribution of the latents of the training set. The745

total time for EMS computing is ∼12min on 8 GPU cards of NVIDIA A40.746

Sampling Following previous works [61], we use start time ε = 10−3, end time T = 1 and adopt the747

uniform t timestep schedule. For DPM-Solver-v3, we use 3rd-order predictor with pseudo 4th-order748

corrector.749

D.4 Guided-Diffusion on ImageNet-256750

Codebase and evaluation The conditional sampling on ImageNet-256 [9] is based on the pre-751

trained pixel-space diffusion model provided by Guided-Diffusion [10]. We use their official752

codebase of PyTorch implementation and their two checkpoints: the conditional diffusion model753

25

256x256_diffusion.pt and the classifier 256x256_classifier.pt. We adopt their own statistic754

file and code for computing FID.755

EMS computing We estimate the EMS atN = 500 uniform timesteps λj0 , λj1 , . . . , λjN by drawing756

K = 1024 datapoints xλ0
∼ q0, where q0 is the distribution of the training set. Also, we find that the757

FID metric on ImageNet-256 dataset behaves specially, and degenerated lλ (lλ = 1) performs better.758

The total time for EMS computing is ∼9.5h on 8 GPU cards of NVIDIA A40.759

Sampling Following previous works [33, 34, 61], we use start time ε = 10−3, end time T = 1 and760

adopt the uniform t timestep schedule. For DPM-Solver-v3, we use 2nd-order predictor with pseudo761

3rd-order corrector.762

D.5 Stable-Diffusion on MS-COCO2014 prompts763

Codebase and evaluation The text-to-image sampling on MS-COCO2014 [28] prompts is based on764

the pretrained latent-space diffusion model provided by Stable-Diffusion [45]. We use their official765

codebase of PyTorch implementation and their checkpoint sd-v1-4.ckpt. We compute MSE on766

randomly selected captions from the MS-COCO2014 validation dataset, as detailed in Section 4.1.767

EMS computing We estimate the EMS atN = 250 uniform timesteps λj0 , λj1 , . . . , λjN by drawing768

K = 1024 datapoints xλ0
∼ q0. Since Stable-Diffusion is trained on LAION-5B dataset [49], there769

is a gap between the images in MS-COCO2014 validation dataset and the images generated by770

Stable-Diffusion with certain guidance scale. Thus, we choose q0 to be the distribution of the latents771

generated by Stable-Diffusion with corresponding guidance scale, using 200-step DPM-Solver++ [34].772

We generate these latents with random captions and Gaussian noise different from those we use to773

compute MSE. The total time for EMS computing is ∼11h on 8 GPU cards of NVIDIA A40 for each774

guidance scale.775

Sampling Following previous works [34, 61], we use start time ε = 10−3, end time T = 1 and776

adopt the uniform t timestep schedule. For DPM-Solver-v3, we use 2nd-order predictor with pseudo777

3rd-order corrector.778

D.6 License779

Table 2: The used datasets, codes and their licenses.

Name URL Citation License

CIFAR10 https://www.cs.toronto.edu/~kriz/cifar.html [25] \
LSUN-Bedroom https://www.yf.io/p/lsun [58] \
ImageNet-256 https://www.image-net.org [9] \
MS-COCO2014 https://cocodataset.org [28] CC BY 4.0
ScoreSDE https://github.com/yang-song/score_sde_pytorch [54] Apache-2.0
EDM https://github.com/NVlabs/edm [22] CC BY-NC-SA 4.0
Guided-Diffusion https://github.com/openai/guided-diffusion [10] MIT
Latent-Diffusion https://github.com/CompVis/latent-diffusion [45] MIT
Stable-Diffusion https://github.com/CompVis/stable-diffusion [45] CreativeML Open RAIL-M
DPM-Solver++ https://github.com/LuChengTHU/dpm-solver [34] MIT
UniPC https://github.com/wl-zhao/UniPC [61] \

We list the used datasets, codes and their licenses in Table 2.780

E Runtime Comparison781

As we have mentioned in Section 4, the runtime of DPM-Solver-v3 is almost the same as other782

solvers (DDIM [51], DPM-Solver [33], DPM-Solver++ [34], UniPC [61], etc.) as long as they use783

the same NFE. This is because the main computation costs are the serial evaluations of the large784

neural network εθ, and the other coefficients are either analytically computed [51, 33, 34, 61], or785

precomputed (DPM-Solver-v3), thus having neglectable costs.786

Table 3 shows the runtime of DPM-Solver-v3 and some other solvers on a single NVIDIA A40787

under different settings. We use torch.cuda.Event and torch.cuda.synchronize to accurately788

compute the runtime. We evaluate the runtime on 8 batches (dropping the first batch since it contains789

26

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.yf.io/p/lsun
https://www.image-net.org
https://cocodataset.org
https://github.com/yang-song/score_sde_pytorch
https://github.com/NVlabs/edm
https://github.com/openai/guided-diffusion
https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/stable-diffusion
https://github.com/LuChengTHU/dpm-solver
https://github.com/wl-zhao/UniPC

Table 3: Runtime of different methods to generate a single batch (second / batch, ±std) on a single
NVIDIA A40, varying the number of function evaluations (NFE). We don’t include the runtime of
the decoding stage for latent-space DPMs.

Method NFE

5 10 15 20

CIFAR10 [25], ScoreSDE [54] (batch size = 128)

DPM-Solver++ [34] 1.253(±0.0014) 2.503(±0.0017) 3.754(±0.0042) 5.010(±0.0048)
UniPC [61] 1.268(±0.0012) 2.532(±0.0018) 3.803(±0.0037) 5.080(±0.0049)
DPM-Solver-v3 1.273(±0.0005) 2.540(±0.0023) 3.826(±0.0039) 5.108(±0.0055)

CIFAR10 [25], EDM [22] (batch size = 128)

DPM-Solver++ [34] 1.137(±0.0011) 2.278(±0.0015) 3.426(±0.0024) 4.569(±0.0031)
UniPC [61] 1.142(±0.0016) 2.289(±0.0019) 3.441(±0.0035) 4.590(±0.0021)
DPM-Solver-v3 1.146(±0.0010) 2.293(±0.0015) 3.448(±0.0018) 4.600(±0.0027)

LSUN-Bedroom [58], Latent-Diffusion [45] (batch size = 32)

DPM-Solver++ [34] 1.302(±0.0009) 2.608(±0.0010) 3.921(±0.0023) 5.236(±0.0045)
UniPC [61] 1.305(±0.0005) 2.616(±0.0019) 3.934(±0.0033) 5.244(±0.0043)
DPM-Solver-v3 1.302(±0.0010) 2.620(±0.0027) 3.932(±0.0028) 5.290(±0.0030)

ImageNet256 [9], Guided-Diffusion [10] (batch size = 4)

DPM-Solver++ [34] 1.594(±0.0011) 3.194(±0.0018) 4.792(±0.0031) 6.391(±0.0045)
UniPC [61] 1.606(±0.0026) 3.205(±0.0025) 4.814(±0.0049) 6.427(±0.0060)
DPM-Solver-v3 1.601(±0.0059) 3.229(±0.0031) 4.807(±0.0068) 6.458(±0.0257)

MS-COCO2014 [28], Stable-Diffusion [45] (batch size = 4)

DPM-Solver++ [34] 1.732(±0.0012) 3.464(±0.0020) 5.229(±0.0027) 6.974(±0.0013)
UniPC [61] 1.735(±0.0012) 3.484(±0.0364) 5.212(±0.0015) 6.988(±0.0035)
DPM-Solver-v3 1.731(±0.0008) 3.471(±0.0011) 5.211(±0.0030) 6.945(±0.0022)

extra initializations) and report the mean and std. We can see that the runtime is proportional to NFE790

and has a difference of about ±1% for different solvers, which confirms our statement. Therefore,791

the speedup for the NFE is almost the actual speedup of the runtime.792

F Quantitative Results793

Table 4: Quantitative results on CIFAR10 [25]. We report the FID↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 50k samples. †We borrow the results reported
in their original paper directly.

Method Model NFE

5 6 8 10 12 15 20 25
†DEIS [59]

ScoreSDE [54]

15.37 \ \ 4.17 \ 3.37 2.86 \
DPM-Solver++ [34] 28.53 13.48 5.34 4.01 4.04 3.32 2.90 2.76
UniPC [61] 23.71 10.41 5.16 3.93 3.88 3.05 2.73 2.65
DPM-Solver-v3 12.76 7.40 3.94 3.40 3.24 2.91 2.71 2.64
Heun’s 2nd [22]

EDM [22]

320.80 103.86 39.66 16.57 7.59 4.76 2.51 2.12
DPM-Solver++ [34] 24.54 11.85 4.36 2.91 2.45 2.17 2.05 2.02
UniPC [61] 23.52 11.10 3.86 2.85 2.38 2.08 2.01 2.00
DPM-Solver-v3 12.21 8.56 3.50 2.51 2.24 2.10 2.02 2.00

We present the detailed quantitative results of Section 4.1 for different datasets in Table 4, Table 5,794

Table 6 and Table 7 respectively. They clearly verify that DPM-Solver-v3 achieves consistently better795

or comparable performance under various settings, especially in 5∼10 NFEs.796

27

Table 5: Quantitative results on LSUN-Bedroom [58]. We report the FID↓ of the methods with differ-
ent numbers of function evaluations (NFE), evaluated on 50k samples. †DPM-Solver++ abnormally
collapses at 15 and 20 NFE, so we instead use its singlestep version with order 3 and 2 respectively.

Method Model NFE

5 6 8 10 12 15 20
†DPM-Solver++ [34]

Latent-Diffusion [45]
18.59 8.50 4.19 3.63 3.43 3.25 4.33

UniPC [61] 12.24 6.19 4.00 3.56 3.34 3.18 3.07
DPM-Solver-v3 7.54 4.79 3.53 3.16 3.06 3.05 3.05

Table 6: Quantitative results on ImageNet-256 [9]. We report the FID↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 10k samples.

Method Model NFE

5 6 8 10 12 15 20

DPM-Solver++ [34] Guided-Diffusion [10]
(s = 2.0)

16.87 13.09 9.95 9.12 8.72 8.37 8.11
UniPC [61] 15.62 11.91 9.29 8.35 7.95 7.64 7.44
DPM-Solver-v3 15.10 11.39 8.96 8.27 7.94 7.62 7.39

G Ablations797

In this section, we conduct some ablations to further evaluate and analyze the effectiveness of798

DPM-Solver-v3.799

G.1 Varying the number of timesteps and datapoints for the EMS800

First we’d like to investigate how the number of timesteps N and the number of datapoints K for801

computing the EMS affects the performance. We conduct experiments with the DPM ScoreSDE [54]802

on CIFAR10 [25], by decreasing N and K from our default choice N = 1200,K = 4096.803

We list the FID results using the EMS of different N and K in Table 8. We can observe that the804

number of datapoints K is crucial to the performance, while the number of timesteps N is less805

significant and affects mainly the performance in 5∼10 NFEs. When NFE>10, we can decrease806

N to as little as 50, which gives even better FID. Note that the time cost for computing the EMS807

is proportional to NK, so how to choose appropriate N and K for both efficiency and accuracy is808

worth studying.809

G.2 First-order comparison810

As stated in Appendix A, the first-order case of DPM-Solver-v3 (DPM-Solver-v3-1) is different from811

DDIM [51], which is the previous best first-order solver for DPMs. Note that DPM-Solver-v3-1812

applies no corrector, since any corrector has an order of at least 2.813

In Table 9 and Figure 7, we compare DPM-Solver-v3-1 with DDIM both quantitatively and qual-814

itatively, using the DPM ScoreSDE [54] on CIFAR10 [25]. The results verify our statement that815

DPM-Solver-v3-1 performs better than DDIM.816

G.3 Effects of pseudo-order solvers817

We now demonstrate the effectiveness of pseudo-order solvers, including pseudo-order predictor and818

pseudo-order corrector.819

Pseudo-order predictor The pseudo-order predictor is only applied in few cases (at 5 NFE on820

CIFAR10 [25]) to achieve maximum performance improvement. In such cases, without pseudo-order821

predictor, the FID results will degenerate from 12.76 to 15.91 for ScoreSDE [54], and from 12.21 to822

12.72 for EDM [22]. While they are still better than previous methods, the pseudo-order predictor is823

proven to further boost the performance at NFEs as small as 5.824

28

Table 7: Quantitative results on MS-COCO2014 [28] prompts. We report the MSE↓ of the methods
with different numbers of function evaluations (NFE), evaluated on 10k samples.

Method Model NFE

5 6 8 10 12 15 20

DPM-Solver++ [34] Stable-Diffusion [45]
(s = 1.5)

0.076 0.056 0.028 0.016 0.012 0.016 0.0085
UniPC [61] 0.055 0.039 0.024 0.012 0.0065 0.0046 0.0018
DPM-Solver-v3 0.037 0.027 0.024 0.0065 0.0048 0.0014 0.0022

DPM-Solver++ [34] Stable-Diffusion [45]
(s = 7.5)

0.60 0.65 0.50 0.46 0.42 0.39 0.30
UniPC [61] 0.65 0.71 0.56 0.46 0.43 0.35 0.31
DPM-Solver-v3 0.55 0.64 0.49 0.40 0.45 0.34 0.29

Table 8: Ablation of the number of timesteps N and datapoints K for the EMS, experimented with
ScoreSDE [54] on CIFAR10 [25]. We report the FID↓ with different numbers of function evaluations
(NFE), evaluated on 50k samples.

N K
NFE

5 6 8 10 12 15 20

1200 256 18.84 7.90 4.49 3.74 3.88 3.52 3.12
1200 1024 15.52 7.55 4.17 3.56 3.37 3.03 2.78
120 4096 13.67 7.60 4.09 3.49 3.24 2.90 2.70
250 4096 13.28 7.56 4.00 3.45 3.22 2.92 2.70
1200 4096 12.76 7.40 3.94 3.40 3.24 2.91 2.71

Pseudo-order corrector We show the comparison between true and pseudo-order corrector in825

Table 10. We can observe a consistent improvement when altering to pseudo-order corrector. Thus,826

it suggests that if we use n-th order predictor, we’d better combine it with pseudo (n+ 1)-th order827

corrector rather than (n+ 1)-th order corrector.828

G.4 Effects of half-corrector829

We demonstrate the effects of half-corrector in Table 11, using the popular Stable-Diffusion830

model [45]. We can observe that under the relatively large guidance scale 7.5 which is neces-831

sary for producing samples of high-quality, the corrector adopted by UniPC [61] has a negative effect832

on the convergence to the ground-truth samples, making UniPC even worse than DPM-Solver++ [34].833

When we employ the half-corrector technique, the problem is partially alleviated. Still, it lags behind834

our DPM-Solver-v3, since we further incorporate the EMS.835

H Additional Samples836

We provide more visual samples in Figure 8, Figure 9, Figure 10 and Table 12 to demonstrate the837

qualitative effectiveness of DPM-Solver-v3. It can be seen that the visual quality of DPM-Solver-v3838

outperforms previous state-of-the-art solvers. Our method can generate images which have reduced839

bias (less “shallow”), higher saturation level and more visual details, as mentioned in Section 4.3.840

29

Table 9: Quantitative comparison of first-order solvers (DPM-Solver-v3-1 and DDIM [51]), ex-
perimented with ScoreSDE [54] on CIFAR10 [25]. We report the FID↓ with different numbers of
function evaluations (NFE), evaluated on 50k samples.

Method NFE

5 6 8 10 12 15 20

DDIM [51] 54.56 41.92 27.51 20.11 15.64 12.05 9.00
DPM-Solver-v3-1 39.18 29.82 20.03 14.98 11.86 9.34 7.19

NFE = 5 NFE = 10 NFE = 20

DDIM
[51]

FID 54.56 FID 20.11 FID 9.00

DPM-Solver-v3-1
(Ours)

FID 39.18 FID 14.98 FID 7.19

Figure 7: Random samples by first-order solvers (DPM-Solver-v3-1 and DDIM [51]) of
ScoreSDE [54] on CIFAR10 dataset [25], using 5, 10 and 20 NFE.

Table 10: Effects of pseudo-order corrector under different settings. We report the FID↓ with
different numbers of function evaluations (NFE).

Method NFE

5 6 8 10 12 15 20

LSUN-Bedroom [58], Latent-Diffusion [45]

4th-order corrector 8.83 5.28 3.65 3.27 3.17 3.14 3.13
→pseudo (default) 7.54 4.79 3.53 3.16 3.06 3.05 3.05
ImageNet-256 [9], Guided-Diffusion [10] (s = 2.0)

3rd-order corrector 15.87 11.91 9.27 8.37 7.97 7.62 7.47
→pseudo (default) 15.10 11.39 8.96 8.27 7.94 7.62 7.39
MS-COCO2014 [28], Stable-Diffusion [45] (s = 1.5)

3rd-order corrector 0.037 0.028 0.028 0.014 0.0078 0.0024 0.0011
→pseudo (default) 0.037 0.027 0.024 0.0065 0.0048 0.0014 0.0022

30

Table 11: Ablation of half-corrector/full-corrector on MS-COCO2014 [28] prompts with Stable-
Diffusion model [45] and guidance scale 7.5. We report the MSE↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 10k samples.

Method Corrector Usage NFE

5 6 8 10 12 15 20

DPM-Solver++ [34] no corrector 0.60 0.65 0.50 0.46 0.42 0.39 0.30

UniPC [61] full-corrector 0.65 0.71 0.56 0.46 0.43 0.35 0.31
→half-corrector 0.59 0.66 0.50 0.46 0.41 0.38 0.30

DPM-Solver-v3 full-corrector 0.65 0.67 0.49 0.40 0.47 0.34 0.30
→half-corrector 0.55 0.64 0.51 0.44 0.45 0.36 0.29

NFE = 5 NFE = 10

DPM-Solver++
[34]

FID 28.53 FID 4.01

UniPC
[61]

FID 23.71 FID 3.93

DPM-Solver-v3
(Ours)

FID 12.76 FID 3.40

Figure 8: Random samples of ScoreSDE [54] on CIFAR10 dataset [25] with only 5 and 10 NFE.

31

NFE = 5 NFE = 10

Heun’s 2nd
[22]

FID 320.80 FID 16.57

DPM-Solver++
[34]

FID 24.54 FID 2.91

UniPC
[61]

FID 23.52 FID 2.85

DPM-Solver-v3
(Ours)

FID 12.21 FID 2.51

Figure 9: Random samples of EDM [22] on CIFAR10 dataset [25] with only 5 and 10 NFE.

32

DPM-Solver++
[34]

(FID 11.02)

UniPC
[61]

(FID 10.19)

DPM-Solver-v3
(Ours)

(FID 9.70)

Figure 10: Random samples of Guided-Diffusion [10] on ImageNet-256 dataset [9] with a classifier
guidance scale 2.0, using only 7 NFE. We manually remove the potentially disturbing images such as
those containing snakes or insects.

33

Table 12: Additional samples of Stable-Diffusion [45] with a classifier-free guidance scale 7.5, using
only 5 NFE and selected text prompts. Some displayed prompts are truncated.

Text Prompts
DPM-Solver++

[34]
(MSE 0.60)

UniPC
[61]

(MSE 0.65)

DPM-Solver-v3
(Ours)

(MSE 0.55)

“pixar movie still portrait photo of madison beer, jessica alba, woman, as
hero catgirl cyborg woman by pixar, by greg rutkowski, wlop, rossdraws,
artgerm, weta, marvel, rave girl, leeloo, unreal engine, glossy skin,
pearlescent, wet, bright morning, anime, sci-fi, maxim magazine cover”

“oil painting with heavy impasto of a pirate ship and its captain, cosmic
horror painting, elegant intricate artstation concept art by craig mullins
detailed”

“environment living room interior, mid century modern, indoor garden with
fountain, retro, m vintage, designer furniture made of wood and plastic,
concrete table, wood walls, indoor potted tree, large window, outdoor
forest landscape, beautiful sunset, cinematic, concept art, sunstainable
architecture, octane render, utopia, ethereal, cinematic light”

“the living room of a cozy wooden house with a fireplace, at night, interior
design, concept art, wallpaper, warm, digital art. art by james gurney
and larry elmore.”

“Full page concept design how to craft life Poison, intricate details, in-
fographic of alchemical, diagram of how to make potions, captions,
directions, ingredients, drawing, magic, wuxia”

“Fantasy art, octane render, 16k, 8k, cinema 4d, back-lit, caustics, clean
environment, Wood pavilion architecture, warm led lighting, dusk, Land-
scape, snow, arctic, with aqua water, silver Guggenheim museum spire,
with rays of sunshine, white fabric landscape, tall building, zaha hadid
and Santiago calatrava, smooth landscape, cracked ice, igloo, warm
lighting, aurora borialis, 3d cgi, high definition, natural lighting, realis-
tic, hyper realism”

“tree house in the forest, atmospheric, hyper realistic, epic composition,
cinematic, landscape vista photography by Carr Clifton & Galen Rowell,
16K resolution, Landscape veduta photo by Dustin Lefevre & tdraw, de-
tailed landscape painting by Ivan Shishkin, DeviantArt, Flickr, rendered
in Enscape, Miyazaki, Nausicaa Ghibli, Breath of The Wild, 4k detailed
post processing, artstation, unreal engine”

“A trail through the unknown, atmospheric, hyper realistic, 8k, epic com-
position, cinematic, octane render, artstation landscape vista photogra-
phy by Carr Clifton & Galen Rowell, 16K resolution, Landscape veduta
photo by Dustin Lefevre & tdraw, 8k resolution, detailed landscape paint-
ing by Ivan Shishkin, DeviantArt, Flickr, rendered in Enscape, Miyazaki,
Nausicaa Ghibli, Breath of The Wild, 4k detailed post processing, artsta-
tion, rendering by octane, unreal engine”

“postapocalyptic city turned to fractal glass, ctane render, 8 k, exploration,
cinematic, trending on artstation, by beeple, realistic, 3 5 mm camera, un-
real engine, hyper detailed, photo–realistic maximum detai, volumetric
light, moody cinematic epic concept art, realistic matte painting, hyper
photorealistic, concept art, cinematic epic, octane render, 8k, corona
render, movie concept art, octane render, 8 k, corona render, trending
on artstation, cinematic composition, ultra–detailed, hyper–realistic,
volumetric lighting”

““WORLDS”: zoological fantasy ecosystem infographics, magazine lay-
out with typography, annotations, in the style of Elena Masci, Studio
Ghibli, Caspar David Friedrich, Daniel Merriam, Doug Chiang, Ivan
Aivazovsky, Herbert Bauer, Edward Tufte, David McCandless”

34

References313

[1] Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of ordinary differential314

equations, volume 108. John Wiley & Sons, 2011.315

[2] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal316

covariance with imperfect mean in diffusion probabilistic models. In International Conference317

on Machine Learning, pages 1555–1584. PMLR, 2022.318

[3] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: An analytic estimate of319

the optimal reverse variance in diffusion probabilistic models. In International Conference on320

Learning Representations, 2022.321

[4] Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a322

matrix. Applied numerical mathematics, 57(11-12):1214–1229, 2007.323

[5] Mari Paz Calvo and César Palencia. A class of explicit multistep exponential integrators for324

semilinear problems. Numerische Mathematik, 102:367–381, 2006.325

[6] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan.326

Wavegrad: Estimating gradients for waveform generation. In International Conference on327

Learning Representations, 2021.328

[7] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-329

sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,330

2022.331

[8] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-332

based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427, 2022.333

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-334

scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern335

Recognition, pages 248–255. IEEE, 2009.336

[10] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image337

synthesis. In Advances in Neural Information Processing Systems, volume 34, pages 8780–338

8794, 2021.339

[11] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion340

solvers. arXiv preprint arXiv:2210.05475, 2022.341

[12] Alfredo Eisinberg and Giuseppe Fedele. On the inversion of the vandermonde matrix. Applied342

mathematics and computation, 174(2):1384–1397, 2006.343

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil344

Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in345

Neural Information Processing Systems, volume 27, pages 2672–2680, 2014.346

[14] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,347

Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High348

definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.349

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In350

Advances in Neural Information Processing Systems, volume 33, pages 6840–6851, 2020.351

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint352

arXiv:2207.12598, 2022.353

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J354

Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.355

[18] Marlis Hochbruck and Alexander Ostermann. Explicit exponential Runge-Kutta methods for356

semilinear parabolic problems. SIAM Journal on Numerical Analysis, 43(3):1069–1090, 2005.357

10

[19] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209–358

286, 2010.359

[20] Marlis Hochbruck, Alexander Ostermann, and Julia Schweitzer. Exponential rosenbrock-type360

methods. SIAM Journal on Numerical Analysis, 47(1):786–803, 2009.361

[21] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian362

smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–363

1076, 1989.364

[22] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of365

diffusion-based generative models. In Advances in Neural Information Processing Systems,366

2022.367

[23] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration368

models. In Advances in Neural Information Processing Systems, 2022.369

[24] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.370

In Advances in Neural Information Processing Systems, 2021.371

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.372

2009.373

[26] Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and Dong Yu. Bilateral denoising diffusion374

models. arXiv preprint arXiv:2108.11514, 2021.375

[27] Shengmeng Li, Luping Liu, Zenghao Chai, Runnan Li, and Xu Tan. Era-solver: Error-376

robust adams solver for fast sampling of diffusion probabilistic models. arXiv preprint377

arXiv:2301.12935, 2023.378

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr379

Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer380

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,381

Proceedings, Part V 13, pages 740–755. Springer, 2014.382

[29] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice383

synthesis via shallow diffusion mechanism. In Proceedings of the AAAI Conference on Artificial384

Intelligence, volume 36, pages 11020–11028, 2022.385

[30] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models386

on manifolds. arXiv preprint arXiv:2202.09778, 2022.387

[31] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate388

and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.389

[32] Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum390

likelihood training for score-based diffusion odes by high order denoising score matching. In391

International Conference on Machine Learning, pages 14429–14460. PMLR, 2022.392

[33] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A393

fast ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in394

Neural Information Processing Systems, 2022.395

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-396

solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint397

arXiv:2211.01095, 2022.398

[35] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for399

improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.400

[36] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.401

On distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022.402

11

[37] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:403

Image synthesis and editing with stochastic differential equations. In International Conference404

on Learning Representations, 2022.405

[38] Eric Harold Neville. Iterative interpolation. St. Joseph’s IS Press, 1934.406

[39] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic407

models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.408

[40] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,409

Bob Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image genera-410

tion and editing with text-guided diffusion models. In International Conference on Machine411

Learning, pages 16784–16804. PMLR, 2022.412

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,413

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas414

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,415

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-416

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-417

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,418

volume 32. Curran Associates, Inc., 2019.419

[42] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov, and420

Jiansheng Wei. Diffusion-based voice conversion with fast maximum likelihood sampling421

scheme. In International Conference on Learning Representations, 2022.422

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,423

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual424

models from natural language supervision. In International conference on machine learning,425

pages 8748–8763. PMLR, 2021.426

[44] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical427

text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.428

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-429

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF430

Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.431

[46] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed432

Kamyar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, et al.433

Photorealistic text-to-image diffusion models with deep language understanding. In Advances434

in Neural Information Processing Systems.435

[47] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.436

In International Conference on Learning Representations, 2022.437

[48] Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion438

models. arXiv preprint arXiv:2104.02600, 2021.439

[49] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,440

Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-441

5b: An open large-scale dataset for training next generation image-text models. In Thirty-sixth442

Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.443

[50] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-444

vised learning using nonequilibrium thermodynamics. In International Conference on Machine445

Learning, pages 2256–2265. PMLR, 2015.446

[51] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In447

International Conference on Learning Representations, 2021.448

[52] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv449

preprint arXiv:2303.01469, 2023.450

12

[53] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training451

of score-based diffusion models. In Advances in Neural Information Processing Systems,452

volume 34, pages 1415–1428, 2021.453

[54] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,454

and Ben Poole. Score-based generative modeling through stochastic differential equations. In455

International Conference on Learning Representations, 2021.456

[55] Hideyuki Tachibana, Mocho Go, Muneyoshi Inahara, Yotaro Katayama, and Yotaro Watanabe.457

Itô-taylor sampling scheme for denoising diffusion probabilistic models using ideal derivatives.458

arXiv e-prints, pages arXiv–2112, 2021.459

[56] Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers460

for diffusion models by differentiating through sample quality. In International Conference on461

Learning Representations, 2022.462

[57] Suttisak Wizadwongsa and Supasorn Suwajanakorn. Accelerating guided diffusion sampling463

with splitting numerical methods. In The Eleventh International Conference on Learning464

Representations.465

[58] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao.466

LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop.467

arXiv preprint arXiv:1506.03365, 2015.468

[59] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential469

integrator. arXiv preprint arXiv:2204.13902, 2022.470

[60] Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image transla-471

tion via energy-guided stochastic differential equations. In Advances in Neural Information472

Processing Systems, 2022.473

[61] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. UniPC: A unified predictor-474

corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,475

2023.476

[62] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum477

likelihood estimation for diffusion odes. arXiv preprint arXiv:2305.03935, 2023.478

13

	Introduction
	Background
	Diffusion Probabilistic Models
	Fast Sampling of DPMs with Exponential Integrators

	Method
	Improved Formulation of Exact Solutions of Diffusion ODEs
	Developing High-Order Solvers
	Practical Techniques
	Implementation Details
	Comparison with Existing Methods

	Experiments
	Main Results
	Visualizations of estimated EMS
	Visual quality

	Conclusion
	Related Work
	Fast Sampling Methods for DPMs
	Comparison with Existing Solvers Based on Exponential Integrators

	Proofs
	Assumptions
	Local
	Global

	Order of Accuracy and Convergence
	Local
	Global

	Pseudo-Order Solver
	Local Unbiasedness

	Implementation Details
	Computing the EMS and Related Integrals in the ODE Formulation
	Computing the EMS
	Integral Precomputing

	Algorithm

	Experiment Details
	ScoreSDE on CIFAR10
	EDM on CIFAR10
	Latent-Diffusion on LSUN-Bedroom
	Guided-Diffusion on ImageNet-256
	Stable-Diffusion on MS-COCO2014 prompts
	License

	Runtime Comparison
	Quantitative Results
	Ablations
	Varying the number of timesteps and datapoints for the EMS
	First-order comparison
	Effects of pseudo-order solvers
	Effects of half-corrector

	Additional Samples

