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Abstract

Multi-marginal Optimal Transport (mOT), a generalization of OT, aims at min-
imizing the integral of a cost function with respect to a distribution with some
prescribed marginals. In this paper, we consider an entropic version of mOT with
a tree-structured quadratic cost, i.e., a function that can be written as a sum of
pairwise cost functions between the nodes of a tree. To address this problem, we
develop Tree-based Diffusion Schrödinger Bridge (TreeDSB), an extension of
the Diffusion Schrödinger Bridge (DSB) algorithm. TreeDSB corresponds to a
dynamic and continuous state-space counterpart of the multi-marginal Sinkhorn
algorithm. A notable use case of our methodology is to compute Wasserstein
barycenters which can be recast as the solution of a mOT problem on a star-shaped
tree. We demonstrate that our methodology can be applied in high-dimensional
settings such as image interpolation and Bayesian fusion.

1 Introduction

In the last decade, computational Optimal Transport (OT) has shown great success with applications
in various fields such as biology (Schiebinger et al., 2019; Bunne et al., 2022), shape correspondence
(Su et al., 2015; Feydy et al., 2017; Eisenberger et al., 2020), control theory (Bayraktar et al., 2018;
Acciaio et al., 2019) and computer vision (Schmitz et al., 2018; Carion et al., 2020). While OT
commonly seeks at computing the transport plan that minimizes the cost of moving between two
distributions, it can naturally be extended to the multi-marginal setting (mOT) when considering
several distributions. This extension of OT has notably been studied in quantum chemistry (Cotar
et al., 2013), clustering (Cuturi & Doucet, 2014) and statistical inference (Srivastava et al., 2018). In
particular, a popular application in unsupervised learning of mOT with Euclidean cost consists in
computing the Wasserstein barycenter of a set of probability distributions (Agueh & Carlier, 2011;
Benamou et al., 2015; Álvarez-Esteban et al., 2016; Peyré et al., 2019).

Interior point methods can be used to solve OT and mOT problems but they come with computational
challenges (Pele & Werman, 2009). In order to mitigate these limitations, one often considers an
entropic regularization of OT, known as Entropic OT (EOT). This regularized formulation can be
efficiently solved in discrete state-spaces using the celebrated Sinkhorn algorithm (Cuturi, 2013;
Knight, 2008; Sinkhorn & Knopp, 1967), which admits a continuous state-space counterpart referred
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to as the Iterative Proportional Fitting (IPF) procedure (Fortet, 1940; Kullback, 1968; Ruschendorf,
1995). In the case of a quadratic cost, EOT is equivalent to the static formulation of the Schrödinger
Bridge (SB) problem (Schrödinger, 1932). Given a reference diffusion with finite time horizon T
and two probability measures, solving SB amounts to finding the closest diffusion to the reference
(in terms of Kullback–Leibler divergence on path spaces) with the given marginals at times t = 0
and t = T . This framework naturally arises in stochastic control (Dai Pra, 1991) where one aims at
controlling the marginal distribution of a stochastic process at a fixed time. Recently, De Bortoli et al.
(2021) introduced Diffusion Schrödinger Bridge (DSB), an approximation of a dynamic version of
the IPF scheme on path spaces, see also Vargas et al. (2021); Chen et al. (2022). This methodology
leverages advances in the field of denoising diffusion models (Song et al., 2021; Ho et al., 2020) in
order to derive a scalable and efficient scheme to solve SB, and thus EOT.

Similarly to OT, mOT admits an entropic regularization (EmOT), which can be solved via a multi-
marginal generalization of Sinkhorn/IPF algorithm (Benamou et al., 2015; Marino & Gerolin, 2020).
Recently, Haasler et al. (2021) proposed an extension of the static SB problem in discrete state-
space to any multi-marginal tree-based setting. They notably made the correspondence between this
formulation and EmOT, when the cost function writes as the sum of interaction energies onto the
given tree structure, and introduced an efficient version of Sinkhorn algorithm to solve it.

Motivations and contributions. In this work, we investigate the continuous and dynamic coun-
terpart of the tree-based framework from Haasler et al. (2021). To be more specific, we present an
extension of the static SB formulation in continuous state-space to any multi-marginal tree-based
setting, referred to as TreeSB. Then, we establish the equivalence between TreeSB and a formulation
of EmOT relying on a (quadratic) tree-structured cost function, analogously to Haasler et al. (2021).
Inspired by DSB, we develop TreeDSB, a dynamic counterpart of the multi-marginal IPF (mIPF)
to solve it, by operating on path spaces and using score-based diffusion techniques. To bridge gaps
in literature, we prove the convergence of mIPF iterations in a non-compact setting under mild
assumptions, by extending results on IPF convergence (Ruschendorf, 1995). Finally, we illustrate our
approach on examples of Wasserstein barycenters from statistical inference and image processing.

Although our approach can be applied to any tree, we focus on star-shaped trees. In this setting,
we show that TreeSB reduces to a regularized Wasserstein barycenter problem. Our method comes
with several benefits compared to existing works. First, it is out-of-sample, i.e., it does not require
re-running the full procedure when given a new data point. Second, our formulation of the Wasserstein
barycenter problem obtained from TreeSB allows us to avoid numerical issues of having to choose
the regularization too small, see Section 5. Finally, to the best of our knowledge, this is the
first methodology to extend ideas from diffusion-based models to the computation of Wasserstein
barycenters. In particular, we believe that the idea of iterative refinement, i.e., solving the dynamic
counterpart of a static problem, plays a key role in the efficiency and scalability of the method.

Notation. For any measurable space (X,X ), we denote by P(X) the space of probability measures
defined on (X,X ). Unless specified, X is defined as the Borel sets on X. For any ℓ ∈ N, let
P(ℓ) = P((Rd)ℓ); we denote P(1) by P . Assume that X = (Rd)ℓ for some ℓ ∈ N. For any
x ∈ X and any m,n ∈ {0, . . . , ℓ} such that m ≤ n, let xm:n = (xm, xm+1, . . . , xn). Let Leb be
the Lebesgue measure. For any non-negative function f : X → R+, such that

∫
X
fdLeb < +∞,

define H(f) = −
∫
X
f log fdLeb ∈ (−∞,+∞]. For any distribution µ ∈ P(X), we define the

entropy of µ as H(µ) = H(dµ/dLeb) if µ≪ Leb and H(µ) = +∞ otherwise. For any two arbitrary
measures µ and ν defined on (X,X ), define the Kullback–Leibler divergence between µ and ν as
KL(µ|ν) =

∫
X
log(dµ/dν)dµ−

∫
X
dµ+

∫
X
dν if µ≪ ν and KL(µ | ν) = +∞ otherwise. For any

T > 0, we denote by C([0, T ],Rd) the space of continuous functions from [0, T ] to Rd. For any path
measure P ∈ P(C([0, T ],Rd)), we denote by Ext(P) ∈ P(2) the coupling between the extremal
distributions of P, i.e., Ext(P) = P0,T . Note that, for a given coupling π0,T ∈P(2), there may exist
several path measures P verifying Ext(P) = π0,T . For any undirected tree T = (V,E) with vertices
V and edges E, we denote by {v, v′} (or {v′, v}) the undirected edge between v ∈ V and v′ ∈ V,
if it exists. Given r ∈ V, we denote by Tr = (V,Er) the directed version of T rooted in r, where
the directed edges Er are uniquely defined from the edges E, see Appendix B for further details. In
this case, the edge linking v ∈ V to v′ ∈ V in Tr is denoted by (v, v′). Finally, for any integers
(n,K) ∈ N× N∗, we define nmod(K) as the the remainder of the Euclidean division of n by K.
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2 Background and setting

Multi-marginal optimal transport. Let ℓ ∈ N∗. Given a cost function c : (Rd)ℓ+1 → R, a subset
S ⊂ {0, . . . , ℓ} and a family of probability measures {µi}i∈S ∈P |S|, mOT consists in solving

π⋆ = argmin
{∫

c(x0:ℓ)dπ(x0:ℓ) : π ∈P(ℓ+1), πi = µi ,∀i ∈ S
}
, (mOT)

where πi is the i-th marginal of π, i.e., πi(A) = π(proj−1
i (A)) for any A ∈ B(Rd), with proji : x0:ℓ 7→

xi. Given some weights (wi)i∈{1,...,ℓ} ∈ (R+)
ℓ, the Wasserstein barycenter between the measures

{µi}i∈S is given by π⋆0 in (mOT), in the case where S = {1, . . . , ℓ} and c(x0:ℓ) =
∑ℓ
i=1 wi∥x0−xi∥2

(Peyré et al., 2019). In particular, when wi = 1/ℓ, the distribution π⋆0 can be regarded as the Fréchet
mean (Karcher, 2014) of the measures {µi}i∈S for the Wasserstein distance of order 2. Similarly to
OT, (mOT) can be relaxed using the following entropic regularization

π⋆ = argmin
{∫

c(x0:ℓ)dπ(x0:ℓ) + εKL(π|ν) : π ∈P(ℓ+1), πi = µi ,∀i ∈ S
}
, (EmOT)

where ε > 0 is a hyperparameter and ν is an arbitrary measure defined on ((Rd)ℓ+1,B((Rd)ℓ+1)).

Link with Schrödinger Bridge. We first recall the relationship between Schrödinger Bridge and
EOT. Given T > 0, Q a (reference) path measure, i.e., Q ∈ P(C([0, T ] ,Rd)) and two measures
µ0, µ1 ∈P(Rd), solving the SB problem amounts to finding the path measure P⋆ defined by

P⋆ = argmin{KL(P|Q) : P ∈P(C([0, T ] ,Rd)), P0 = µ0, PT = µ1} . (SB)

If Q is associated with a Stochastic Differential Equation (SDE)2, of the form dXt = −aXtdt+dBt,
with a ≥ 0, then it can be shown, see (Léonard, 2014, Proposition 1) that P⋆0,T verifies

P⋆0,T = argmin{KL(π|Q0,T ) : π ∈P(2), π0 = µ0, π1 = µ1} . (static-SB)

This is called the static formulation of SB. It can be shown that solving (static-SB) is equivalent to
solving EOT with quadratic cost and regularization ε = 2 sinh(aT )/a if a > 0, ε = 2T if a = 0.
Moreover, since P⋆ = P⋆0,T ⊗Q|0,T , where Q|0,T is the measure Q conditioned on initial and terminal
conditions, solving the dynamic problem (SB) is equivalent to solving (static-SB).

Similarly, (EmOT) can be easily rewritten in a static multi-marginal SB fashion

π⋆ = argmin{KL(π|π0) : π ∈P(ℓ+1), πi = µi ,∀i ∈ S} , (mSB-like)

with (dπ0/dLeb)(x0:ℓ) ∝ exp[−c(x0:ℓ)/ε](dν/dLeb)(x0:ℓ), where π0 is the reference measure.

Diffusion Schrödinger Bridge. Recently, De Bortoli et al. (2021) introduced Diffusion Schrödinger
Bridge (DSB), a numerical scheme to solve (SB). It approximates the iterates of a dynamic version
of the Iterative Proportional Fitting (IPF) scheme (Sinkhorn & Knopp, 1967; Knight, 2008; Peyré
et al., 2019; Cuturi & Doucet, 2014), which can be described as follows: consider a sequence of path
measures (Pn)n∈N such that P0 = Q and for any n ∈ N

P2n+1 = argmin{KL(P|P2n) : PT = µ1}, P2n+2 = argmin{KL(P|P2n+1) : P0 = µ0} .
This procedure alternatively projects between the measures with fixed initial distribution and the ones
with fixed terminal distribution. For the first iteration, we get that P1 = µ1 ⊗Q|T . Assuming that
Q is given by dXt = ft(Xt)dt+ dBt, with f : [0, T ]× Rd → Rd, then P1 is associated with the
time-reversal of this SDE initialized at µ1. The time-reversal of an SDE has been derived under mild
assumptions on the drift and diffusion coefficients (Haussmann & Pardoux, 1986; Cattiaux et al.,
2021). In this case, we have (YT−t)t∈[0,T ] ∼ P1 , with Y0 ∼ µ1 and

dYt = {−fT−t(Yt) +∇ log pT−t(Yt)}dt+ dBt,

where pt is the density of P0
t w.r.t. the Lebesgue measure. The score∇ log pt is estimated using score

matching techniques (Hyvärinen, 2005; Vincent, 2011). The first iterate of DSB, P1, corresponds
to a denoising diffusion model (Ho et al., 2020; Song et al., 2021). DSB iterates further and not
only parameterizes the backward process but also the forward process. It can therefore be seen as a
refinement of diffusion models drawing a bridge between generative modeling and optimal transport.

2We refer to Appendix C for details on solutions of SDEs and associated measures.
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Tree-based framework. Consider an undirected tree T = (V,E), with vertices V and edges E,
such that V is identified with {0, . . . , ℓ}. Inspired by Haasler et al. (2021), we restrict our study of
(EmOT), to the case where the cost function c is the tree-structured quadratic cost derived from T

c(x0:ℓ) =
∑

{v,v′}∈E wv,v′∥xv − xv′∥22 , (1)

where wv,v′ is a weight on the edge {v, v′}, which links v to v′ (and v′ to v). Furthermore, as in
Haasler et al. (2021), we choose S, i.e., the set of vertices of T with constrained marginals, to coincide
with the leaves of T. This framework recovers important applications, from Wasserstein barycenters
to Wasserstein propagation, see Solomon et al. (2014, 2015). We emphasize that it differs from an OT
problem defined on the space of graphs (Chen et al., 2016). Here, each node represents a probability
measure (observed or to be inferred) and each edge represents a coupling between two distributions.

We consider an arbitrary vertex r ∈ V and choose ν in (EmOT) such that (dν/dLeb)(x0:ℓ) = φr(xr),
where φr is a density defined on Rd. Due to the form of ν and c, the reference measure π0 in
(mSB-like) is therefore a probability distribution which factorizes along Tr = (V,Er), the directed
version of T rooted in r. We refer to Appendix B for more details on the notion of directed trees. In
this setting, (EmOT) is equivalent to the tree-based problem

π⋆ = argmin{KL(π|π0) : π ∈P(|V|), πi = µi ,∀i ∈ S} , (TreeSB)

with π0 = π0
r

⊗
(v,v′)∈Er

π0
v′|v , (2)

where π0
v′|v(· | xv) = N(xv, ε/(2wv,v′)Id) and π0

r ≪ Leb with density φr. In a manner akin to
Haasler et al. (2021), we thus establish, in continuous state-space, the correspondence between
(TreeSB), a static tree-based version of SB, and a version of EmOT with tree-structured cost (1). In
our work, we make the following assumption on the constrained marginals {µi}i∈S.
A0. For any i ∈ S, µi ≪ Leb and H(µi) <∞.
In what follows, we define K as the number of leaves of T , denoting S = {i0, . . . , iK−1}, and
define the horizon times Tv,v′ = ε/(2wv,v′) for any {v, v′} ∈ E. For any ik ∈ S, we will denote
by Tk = (V,Ek) the directed version of T rooted in the leaf ik. In the next section, we present our
dynamic method to solve (TreeSB), called Tree-based Diffusion Schrödinger Bridge.

3 Tree-based Diffusion Schrödinger Bridge
In this section, we present a method to solve (TreeSB) in the case where r ∈ S, i.e., r is a leaf of T.
We refer to Appendix E for the extension to the case where r ∈ V\S. Without loss of generality, see
Appendix E, we assume that r = iK−1 and choose φr = dµiK−1

/dLeb, such that π0
iK−1

= µiK−1
.

Dynamic approach to mIPF. In order to approximate solutions of (TreeSB), we consider the
multi-marginal extension of the IPF algorithm, denoted by mIPF. Namely, we define a sequence of
probability distributions (πn)n∈N such that for any n ∈ N

πn+1 = argmin{KL(π|πn) : π ∈P(|V|), πikn+1
= µikn+1

} , (mIPF)
where kn = (n− 1) mod(K) and (kn + 1) is identified with n mod(K). We define a mIPF cycle
as a sequence of K consecutive mIPF updates. In particular, each marginal constraint is considered
exactly once during one mIPF cycle. In a practical setting, our main aim is to sample from the (mIPF)
iterates at the lowest cost. Although these updates can be made explicit, see Marino & Gerolin (2020)
for instance, direct sampling is unfeasible in practice when d is large. To overcome this limitation,
we suggest to compute these iterates in a dynamic fashion with equivalent path measures.

Since π0 factorizes along T, see (2), one can show that the iterates of (mIPF) also factorize along
T, see Section 4. Since these iterates all have a constrained marginal, we obtain the following
decomposition for any n ∈ N: πn = µikn

⊗(v,v′)∈Ekn
πnv′|v where Ekn denotes the set of edges of

the directed tree Tkn . Then, our approach consists in computing dynamic iterates, i.e., path measures,
along the edges of T that coincide on their extremal times with the static iterates (πn)n∈N. Namely,
for any n ∈ N, for any edge (v, v′) ∈ Ekn , we define a path measure Pn(v,v′) ∈P(C([0, Tv,v′ ],Rd))
such that Ext(Pn(v,v′)) = πnv,v′ , where Ext(Pn(v,v′)) stands for the joint distribution of Pn(v,v′) at times
0 and Tv,v′ . In particular, it comes that πnv′|v = Pn(v,v′),Tv,v′ |0. Using the tree-based form of the
(mIPF) iterates, we can thus sample from πn by (i) following the directed edges of Tkn , (ii) diffusing
along them the corresponding path measures (Pn(v,v′))(v,v′)∈Ekn

and (iii) picking the samples on the
vertices. When T is a bridge-shaped tree (2 vertices, 1 edge), it simply reduces to the dynamic
reformulation of the IPF scheme. In what follows, we explain how to obtain our dynamic sequence.
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Definition of the dynamic iterates. We first compute the iterate P0, corresponding to the dynamic
version of π0 defined (2), in Proposition 1. Then, we build the following iterates by recursion on
n ∈ N and prove their well-posedness in Proposition 2.
Proposition 1. Let TK−1 = (V,EK−1), the directed tree associated with T = (V,E) and root iK−1.
Then, for any (v, v′) ∈ EK−1, there exists P0

(v,v′) ∈ P(C([0, Tv,v′ ],Rd)) with Ext(P0
(v,v′)) =

π0
(v,v′) and such that P0

(v,v′)|0 is the distribution of (Bt)t∈[0,Tv,v′ ], recalling that Tv,v′ = ε/(2wv,v′).

Before deriving the dynamic counterpart of the (mIPF) iterates, we introduce several definitions. For
any path measure P, we denote by PR the time-reversal of P. For any directed tree and any vertex v
of this tree, p(v) refers to the (unique) parent of v, and c(v) to the unique child of v when it exists,
see Appendix B for more details.

Figure 1: Illustration of the change of root in
a toy tree with 5 vertices.

Let n ∈ N. Assume that we have de-
fined the sequence of our dynamic iterates
(Pm(v,v′))(v,v′)∈Ekm ,m≤n up to stage n.

Consider the path Pn = {(vj , vj+1)}Jj=1 in the di-
rected tree Tkn such that v1 = ikn and vJ+1 =
ikn+1. In particular, for any (v, v′) ∈ Ekn+1, ei-
ther (v′, v) ∈ Pn or (v, v′) ∈ Ekn\Pn. This is
illustrated in Figure 1 when V = {0, 1, 2, 3, 4},
S = {2, 3, 4}, ik = 3 and ik+1 = 4: in this case,
P = {(3, 1), (1, 0), (0, 4)} and (1, 2) is the only edge
common to Ek and Ek+1.

Consider now the directed tree Tkn+1
. We define the (n+ 1)-th iterate of our dynamic sequence by

recursion on the edges of this tree, following the breadth-first order. In this order, (ikn+1, c(ikn+1)) =
(vJ+1, vJ) is the first edge considered.

First, we define Pn+1
(vJ+1,vJ )

= µikn+1
⊗ (Pn(vJ ,vJ+1)

)R|0. In the case of a bridge-shaped tree, this is
exactly the (n+ 1)-th update described in DSB. Then, for any (v, v′) ∈ Ekn+1\{(vJ+1, vJ)},
(a) either (v, v′) ∈ Ekn\Pn, and we define Pn+1

(v,v′) = Pn+1
(p(v),v),Tp(v),v

⊗ Pn(v,v′)|0,

(b) or (v′, v) ∈ Pn, and we define Pn+1
(v,v′) = Pn+1

(p(v),v),Tp(v),v
⊗ (Pn(v′,v))

R
|0.

Proposition 2. Consider the sequence of dynamic iterates defined by (a) and (b). Then, for any
n ∈ N and any (v, v′) ∈ Ekn , Pn(v,v′) ∈P(C([0, Tv,v′ ],Rd)) and we have Ext(Pn(v,v′)) = πn(v,v′).

Proposition 2 highlights the equivalence between the (mIPF) iterates and our dynamic iterates. These
path measures are defined iteratively, by following the updates (a) and (b) along the edges of T.
The key observation here is that the computation of each dynamic iterate reduces to a sequence of
updates (b) on a path linking two leaves of T. We emphasize that our iterates could be similarly
obtained by directly considering a dynamic formulation of (TreeSB) and introducing the formalism
of deterministic time branching processes. We leave the study of this problem for future work. We
now get into the details of our practical implementation, which relies on score-based methods.

Approximation of the dynamic iterates. The time-reversal operated in the update (b) can be
computed explicitly, see Haussmann & Pardoux (1986) for instance. Indeed, assuming that Pn(v′,v)
is associated with dXt = ft,v′,v(Xt)dt + dBt with X0 ∼ πnv′ , then, under mild conditions, its
time-reversal (Pn(v′,v))

R is associated with dYt = {−fT−t,v′,v + ∇ log pv′,v,T−t}(Yt)dt + dBt

with Y0 ∼ πn+1
v , where pv′,v,t is the density of Pn(v′,v),t w.r.t. the Lebesgue measure. The score

∇ log pv′,v,T−t can then be approximated using score-matching techniques (Hyvärinen, 2005; Vin-
cent, 2011) which are now ubiquitous in diffusion models (Song et al., 2021) and used in DSB
De Bortoli et al. (2021). Therefore, at iteration (n+ 1), the update (b) is similar to the one of DSB
for each edge on the path joining ikn and ikn+1. In practice, we parameterize the drifts ft,v,v′ for any
{v, v′} ∈ E with neural networks ft,θv,v′ and use the mean-matching loss introduced by De Bortoli
et al. (2021). Note that doing so, we obtain 2|E| neural networks. The whole procedure consisting in
computing our dynamic iterates using the DSB framework is called Tree-based Diffusion Schrödinger
Bridge (TreeDSB) and is summarized in Algorithm 1.
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Algorithm 1 TreeDSB (Training)

1: Input: T = (V,E), {µi}i∈S, {θv,v′}{v,v′}∈E, N ∈ N
2: for n = 0, . . . , N do
3: Let kn = (n− 1) mod(K)
4: Get path between ikn and ikn+1, Pn = {vj , vj+1}Jj=1
5: while not converged do
6: for j = 1, . . . , J do
7: Sample from Pnvj ,vj+1

(Euler-Maruyama)
8: Compute mean matching loss ℓ(θvj+1,vj )
9: θvj+1,vj ← Gradient Step(ℓ(θvj+1,vj ))

10: Update ft,θvj+1,vj

11: end for
12: end while
13: end for
14: Output: {θv,v′}{v,v′}∈E

The algorithm is initialized with
ft,θv,v′ = 0 for all {v, v′} ∈ E. This
corresponds to Brownian motion dy-
namics when sampling at the first iter-
ation of TreeDSB, see Proposition 1.
Note that in Algorithm 1, when we
sample from Pn(vj ,vj+1)

, we update
ft,θvj+1,vj

which will be used to sam-
ple from Pn+1

(vj+1,vj)
in the next itera-

tions. In order to sample from the
dynamics Pn(vj ,vj+1)

, we consider its
Euler–Maruyama discretization, see
Appendix F for more details. We de-
scribe the different steps of the algo-
rithm in the case of a toy example
below, see Figure 2 for an illustration.

TreeDSB on a toy tree. We consider a star-shaped tree with three leaves denoted {1, 2, 3} and
its central node {0}. Following (2), we define π0 with r = 3 and φr = (dµ3/dLeb). During the
first iteration of TreeDSB, T is rooted at vertex 3 and we compute samples from the forward path
P0 = {(3, 0), (0, 1)} with Brownian motions, see Proposition 1, in order to learn the backward path
{(1, 0), (0, 3)}. In the next iteration, we re-root the tree T at vertex 1 and consider the forward path
P1 = {(1, 0), (0, 2)}, where the edges (1, 0) and (0, 2) are respectively given by the first iteration
and the initialisation. This highlights that TreeDSB does not require to update the whole tree. The
following iterations are done similarly. At each iteration n ∈ N, we sample from πn by first sampling
from µkn at leaf ikn and then following the parameterized SDEs on the directed edges of Tkn .

Figure 2: Illustration of one mIPF cycle solved by TreeDSB for a toy star-shaped tree. At each
iteration, our method learns the backward stochastic process (dotted arrows) that goes from the
target leaf (green-circled), corresponding to the constrained marginal, to the current root of the tree
(red-circled) by using samples from the forward stochastic process (solid arrows).

4 Theoretical properties of mIPF
In this section, we study some of the theoretical properties of the static iterates (πn)n∈N, that are
equivalent to our dynamic iterates according to Proposition 2. In the case where the cost function c is
bounded in (EmOT), results of convergence of (mIPF) exist (Marino & Gerolin, 2020; Carlier, 2022).
However, our setting does not satisfy their assumptions, since our transport cost is quadratic and
the measures are defined on Rd. In what follows, we provide the first non-quantitative convergence
results for (mIPF) in a non-compact setting.

For the rest of the section, we consider a static formulation of the multi-marginal Schrödinger bridge
problem which is more general than (TreeSB), defined as

π⋆ = argmin{KL(π|π0) : π ∈P(ℓ+1), πi = µi ,∀i ∈ S} , (static-mSB)

where S ⊂ {0, . . . , ℓ}, π0 ∈P , {µi}i∈S ∈P |S|. We consider the following set of assumptions.

A1. There exists a family of measures {νi}i∈{0,...,ℓ} defined on (Rd,B(Rd)) such that π0 ≪
⊗ℓ

i=0 νi

with density h = dπ0/(d
⊗ℓ

i=0 νi) and µi ≪ νi with density ri = dµi/dνi for any i ∈ S.

A2. {π ∈P(ℓ+1) : KL(π | π0) <∞, πi = µi, ∀i ∈ S} ≠ ∅ .
A3. There exists a family of probability measures {µ̃j}j∈{0,...,ℓ}\S such that π0 ∼ π̃0, where
π̃0 =

⊗
i∈S µi

⊗
j∈{0,...,ℓ}\S µ̃j .
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In particular, (static-mSB) recovers (TreeSB) by considering νi = Leb for any i ∈ {0, . . . , ℓ} and
h(x0:ℓ) = φr(xr) exp[−c(x0:ℓ)/ε] in A1. We detail in Appendix D how A2 and A3 can be met in
(TreeSB). Under these assumptions, the multi-marginal Schrödinger Bridge exists.
Proposition 3. Assume A1 and A2. Then, there exists a unique solution π⋆ to (static-mSB). In
addition, assume A3. Then, there exists a family {ψ⋆i }i∈S of measurable functions ψ⋆i : Rd → R
such that

(dπ⋆/dπ0) = exp[
⊕

i∈S ψ
⋆
i ] π0-a.s.

In order to establish the existence and uniqueness result of Proposition 3, we extend results from Nutz
(2021) to the multi-marginal setting. A consequence of Proposition 3 is that the iterates of (mIPF)
can be described using potentials.
Corollary 4. Assume A1, A2 and A3. Let (πn)n∈N be the sequence given by (mIPF). Then, for any
n ∈ N∗ with kn = (n− 1) mod(K) and qn ∈ N such that n = qnK + kn + 1, there exists a family
of measurable functions {ψqn+1

i0
, . . . , ψqn+1

ikn
, ψqnikn+1

, . . . , ψqniK−1
} such that

(dπn/dπ0)(x0:ℓ) = exp[
⊕kn

j=0 ψ
qn+1
ij

(xij )
⊕K−1

j=kn+1 ψ
qn
ij
(xij )] π0-a.s.

In the tree-based setting, Corollary 4 explains why the (mIPF) iterations preserve the tree-based
Markovian nature of π0. We now prove that the marginal πni converges to µi for any i ∈ S, as n goes
to infinity, i.e., we have marginal convergence on the leaves of T.
Proposition 5. Assume A1 and A2. Let (πn)n∈N be the sequence given by (mIPF). Then, we have
limn→∞ ∥πni − µi∥TV = 0 for any i ∈ S.

The previous result does not ensure the convergence of (πn)n∈N to the solution to (static-mSB). In
particular, Proposition 5 does not provide the convergence of the marginals on the nodes v ∈ V\S,
which is key to compute regularized Wasserstein barycenters with TreeDSB. Relying on additional
assumptions, we now derive the convergence of (mIPF).
A4.

⊕
i∈S L

1(µi) ⊂ L1(π⋆) is closed.

A5. There exist c̄ ∈ (0,∞) such that exp(ψnik −ψ
n+1
ik

) ≤ c̄, for any n ∈ N, any k ∈ {0, . . . ,K− 2}.

These assumptions can be seen as multi-marginal extensions of the ones of Ruschendorf (1995), see
Appendix D for a discussion and examples.
Proposition 6. Assume A1, A2, A3, A4 and A5. Let (πn)n∈N be the sequence given by (mIPF).
Then, we have limn→∞ ∥πn − π⋆∥TV = 0, where π⋆ is given in Proposition 3.

To the best of our knowledge, Proposition 6 is the first convergence result of (mIPF) without assuming
that the space is compact or that the cost is bounded. We highlight that traditional techniques to prove
the convergence of IPF cannot be easily extended to the multi-marginal setting as pointed by Carlier
(2022). In the case of bounded cost, quantitative results exist (Marino & Gerolin, 2020; Carlier, 2022).
We leave the study of such results in the unbounded cost setting for future work.

5 Application to Wasserstein barycenters

Although Algorithm 1 can be applied to trees T with fixed marginals on the leaves, one case of
particular interest is star-shaped trees, i.e., trees with a central node, denoted by index 0, and such that
S = {1, . . . , ℓ} (see Figure 2 for an illustration with ℓ = 3). In this section, we draw a link between
(TreeSB) and regularized Wasserstein barycenters. We recall the definition of the Wasserstein distance
of order 2 with ε-entropic regularization between µ and ν (Peyré et al., 2019, Chapter 4)

W 2
2,ε(µ, ν) = inf{

∫
∥x1 − x0∥2dπ(x0, x1)− εH(π) : π ∈P(2), π0 = µ, π1 = ν} . (3)

In this work, we consider the (ℓε, (ℓ− 1)ε)-doubly-regularized Wasserstein-2 barycenter problem
(Chizat, 2023) defined as follows

µ⋆ε = argmin{
∑ℓ
i=1 wiW

2
2,ε/wi

(µ, µi) + (ℓ− 1)εH(µ) : µ ∈P} , (regWB)

where (wi)i∈{1,...,ℓ} ∈ (0,+∞)ℓ. The following proposition shows the equivalence between the
barycenter problem (regWB) and the multi-marginal Schrödinger bridge problem (TreeSB) over T.
In particular, it allows us to use TreeDSB to estimate the solution µ⋆ε of (regWB).
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Proposition 7. Let ε > 0. Assume A0. Also assume that T is a star-shaped tree with central node
indexed by 0, and that the reference measure of (TreeSB) defined in (2) verifies r = iK−1 and
φr = dµiK−1

/dLeb > 0. Under A2, (regWB) has a unique solution π⋆0 , where π⋆ solves (TreeSB).

The proof of this result is postponed to Appendix D. More generally, we show in Appendix D that, for
any tree T, (TreeSB) is equivalent to a regularized version of the Wasserstein propagation problem
(Solomon et al., 2014, 2015). Moreover, we present in Appendix E an extension of Proposition 7
in the case where the chosen root r is not a leaf of T. We finally emphasize that the formulation
of (regWB) leads to a minimization of the entropy of the barycenter. In particular, this allows us to
choose ε reasonably large in TreeDSB, which is a stability advantage compared to other regularized
methods which do not consider this further regularization.

6 Related work

Diffusion Schrödinger Bridge. Schrödinger Bridges (Schrödinger, 1932) have been extensively
studied using tools from stochastic control and probability theory (Léonard, 2014; Dai Pra, 1991;
Chen et al., 2021). More recently, algorithms were proposed to efficiently approximate such bridges
in the context of machine learning. In particular, De Bortoli et al. (2021) proposed DSB while Vargas
et al. (2021); Chen et al. (2022) developed related algorithms. In Chen et al. (2023), the authors
study a multi-marginal version of DSB in a linear tree-based setting, where the set of observed
nodes is the whole set of vertices. However, contrary to our setting, Chen et al. (2023) introduced
a momentum variable. This allows for smoother trajectories which are desirable for single-cell
trajectories applications and correspond to some spline interpolation in the space of probability
measures (Chen et al., 2018). A general framework for tree-based static Schrödinger Bridges on
discrete state-spaces was given in Haasler et al. (2021). In this work, we extend their formulation to a
dynamic and continuous setting, see Appendix D for more a thorough comparison.

Wasserstein barycenters. The notion of Wasserstein barycenter was first introduced in Rabin
et al. (2012) and then later studied in Agueh & Carlier (2011). The algorithms to solve this problem
can be split into two families: the in-sample based approaches and the parametric ones. In-sample
approaches require access to all the measures µi which are assumed to be empirical measures (Cuturi
& Doucet, 2014; Benamou et al., 2015; Solomon et al., 2015). Related to this class of algorithms is
the semi-discrete approach, which aims at computing a Wasserstein barycenter between continuous
distribution but rely on a discretization of the barycenter (Claici et al., 2018; Staib et al., 2017; Mi
et al., 2020). Most recent approaches do not rely on a discrete representation of the barycenter,
but instead parameterize it using neural networks. These approaches can be further split into two
categories. First, measure-based optimization approaches parameterize the measures using a neural
network. This is the case of Cohen et al. (2020), where the barycenter is given by a generative model,
which is then optimized . Fan et al. (2020) introduce an optimization procedure which relies on a
min-max-min problem using the framework of Makkuva et al. (2020). More recently, Korotin et al.
(2022) considered a fixed point-based algorithm introduced in Álvarez-Esteban et al. (2016) to update
a generative model parametrizing the barycenter. On the one hand, potential-based methods rely on a
dual formulation of the barycenter. Korotin et al. (2021) parameterized the dual potentials using Input
Convex Neural Network and considered regularizing losses imposing conjugacy and congruency. On
the other hand, Li et al. (2020) consider a dual version of the regularized Wasserstein barycenter
problem contrary to other works. Our approach applied to start-shaped trees also approximates
a regularized Wasserstein barycenter. However, contrary to Li et al. (2020), we do not consider
a parameterization of the potentials in the static setting but instead, parameterize the drift of an
associated dynamic formulation using Schrödinger bridges. To the best of our knowledge TreeDSB is
the first approach leveraging DSB-like algorithms to compute Wasserstein barycenters.

7 Experiments
In our experiments3, we illustrate the performance of TreeDSB to compute entropic regularized
Wasserstein barycenters for various tasks . We choose to compare our method with state-of-the-art
regularized algorithms: fast free-support Wasserstein barycenter (fsWB) (Cuturi & Doucet, 2014) ,
and continuous regularized Wasserstein barycenter (crWB) (Li et al., 2020). In all of our settings,
we consider a star-shaped tree with K leaves and edge weights that are equal to 1/K, resulting in a

3Code available at https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge.
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sequential training procedure over 2K neural networks. The initial diffusion is always a Brownian
motion parameterized as explained in Proposition 1. Hence, the time horizon on each edge is
defined by T = Kε/2. The order of the leaves is randomly shuffled between the mIPF cycles. We
consider 50 steps for the time discretization on [0, T ]. We refer to Appendix G for details on the
choice of the schedule, the architecture of the neural networks and the settings of our experiments.

Synthetic two dimensional datasets. We first il-
lustrate TreeDSB in a synthetic two dimensional
setting. We consider three different datasets Swiss-
roll (vertex 0, starting node r), Circle (vertex 2)
and Moons (vertex 3) and compute their Wasser-
stein barycenter (vertex 1) by running TreeDSB
for 50 mIPF cycles with ε = 0.1. In Figure 3,
we show the estimated densities of the datasets on
the leaves of the tree (we emphasize that the dis-
tributions plotted on each leaf are generated from
the central barycenter measure). In Figure 4, we
observe the consistency between the barycenters
generated from the different leaves. In Appendix G,
we present additional results for this setting. Figure 3: Estimated densities on the leaves.

Figure 4: From left to right: barycenter estimated from the leaves Swiss-roll, Circle and Moons.

Synthetic Gaussian datasets. Next, we consider three independent Gaussian distributions with
zero mean and random non-diagonal covariance matrices whose conditional number is less than 10,
following Fan et al. (2020). In this case, the non-regularized barycenter can be exactly computed.
To evaluate the performance of the algorithms, we use the Bures-Wasserstein Unexplained Variance
Percentage (UVP), following (Korotin et al., 2021, Section 5). Given a target distribution µ⋆ ∈P
and some approximation µ ∈P , we define

BW2
2-UVP(µ, µ⋆) = 100 · 2BW2

2(µ, µ
⋆)/Var(µ⋆)% ,

where BW2
2(µ, µ

⋆) =W 2
2 (N(E[µ],Cov(µ)),N(E[µ⋆],Cov(µ⋆)).

Method d = 2 d = 16 d = 64 d = 128 d = 256

fsWB (Cuturi & Doucet, 2014) 0.06±0.01 2.86±0.06 11.12±0.06 14.47±0.07 17.41±0.05

crWB (Li et al., 2020) 0.02±0.01 1.52±0.11 11.41±0.73 5.75±0.02 18.27±0.54

Tree DSB 0.63±0.26 1.07±0.58 1.39±0.07 1.92±0.02 2.62±0.07

Table 1: Gaussian setting: comparison with the regularized methods crWB and fsWB.

In this setting, we choose µ⋆ to be the non-regularized barycenter and assess the dependency w.r.t.
the dimension of the algorithms using the BW2

2-UVP metric. In Table 1, we compare ourselves with
the two regularized methods Li et al. (2020) (L2-reg. equal to 10−4) and Cuturi & Doucet (2014).
We run TreeDSB for 10 mIPF cycles with ε = 0.1. Bold numbers represent the best values up to
statistical significance. While Li et al. (2020) and Cuturi & Doucet (2014) enjoy better performance
in low dimensions (d = 2), TreeDSB outperforms these methods as the dimension increases.

MNIST Wasserstein barycenter. We then turn to an image experiment using MNIST dataset
(LeCun, 1998). Here, an image is not considered as a 2D-dimensional distribution as in Cuturi &
Doucet (2014) and Li et al. (2020), but as a sample from a high-dimensional probability measure
(d = 784). We aim at computing a Wasserstein barycenter between the digits 2,4 and 6. To do so, we
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run TreeDSB for 10 mIPF cycles with r that corresponds to the digit 6 and ε = 0.5. In Figure 5, we
display samples from the estimated marginals on the leaves, to assess the reconstruction of the digits
2, 4 and 6, and samples from the barycenter, obtained by diffusing from the leaf corresponding to the
digit 6. Our results prove the scalability of TreeDSB to the high-dimensional setting, compared to
state-of-the-art regularized methods. Additional results on MNIST dataset are given in Appendix G.

Figure 5: Samples from the estimated MNIST 2-4-6 marginals and from their Wasserstein barycenter.

Method Without het. With het.

fsWB (Cuturi & Doucet, 2014) 12.95±0.35 14.43±0.51

crWB (Li et al., 2020) 20.66±0.71 23.06±0.12

Tree DSB 8.69±0.12 8.90±0.68

Table 2: Bayesian fusion setting: comparison with the
regularized methods crWB and fsWB.

Subset posterior aggregation. Finally,
we evaluate TreeDSB in the context of
Bayesian fusion (Srivastava et al., 2018),
also called posterior aggregation. Given
a Bayesian model and a dataset parti-
tioned into several shards, this task aims
at recovering the full data posterior dis-
tribution from the posterior distributions
computed on each shard.

In particular, it has been proved that the barycenter of the subdataset posteriors is close to the full data
posterior under mild assumptions (Srivastava et al., 2018). Here, we consider a logistic regression
model applied to the wine dataset4 (d = 42) and proceed as follows. We first split this dataset into 3
subsets, with or without heterogeneity, and estimate the posterior parameters on each shard. Then,
we draw samples from the obtained logistic distributions to define µ1, µ2, µ3. Then, we compute
the Wasserstein barycenter of these measures, and compare it to the posterior computed on the full
dataset. As in the synthetic Gaussian experiment, we run TreeDSB for 10 mIPF cycles ε = 0.1 and
we compare ourselves with Li et al. (2020) (L2-reg. equal to 10−4) and Cuturi & Doucet (2014).
We evaluate the methods using the BW2

2-UVP metric, where µ⋆ is the estimated full data posterior,
and report the results in Table 2. In both settings, we observe that our method outperforms existing
regularized methods to compute Wasserstein barycenters.

Limitations. One of the main limitation of entropic regularized OT approach is that their behavior
is usually badly conditioned as ε→ 0. In our setting, we observe that if ε, or equivalently T , is too
low then the algorithm becomes less stable as the training of the models slows down. In the future,
we plan to mitigate this issue by incorporating fixed point techniques like the one used in Korotin
et al. (2022). Finally, since our algorithm is based on DSB (De Bortoli et al., 2021), it suffers from
the same limitations. In particular, training different neural networks iteratively incurs some bias in
the SDE which is harmful for large number of mIPF iterations.

8 Discussion

In this paper, we introduced Tree-based Diffusion Schrödinger Bridge (TreeDSB) a scalable scheme
to approximate solutions of entropic-regularized multi-marginal Optimal Transport (mOT) prob-
lems. Our methodology leverages tools from the diffusion model literature and extends Diffusion
Schrödinger Bridge (De Bortoli et al., 2021). In particular, it approximates the iterates of the multi-
marginal Iterative Proportional Fitting (mIPF) algorithm, for which we prove its convergence under
mild assumptions. We illustrate the efficiency of TreeDSB for image processing and Bayesian fusion,
using the link between mOT and Wasserstein barycenters. In future work, we would like to study
quantitative convergence bounds for mIPF in the unbounded cost setting. Another line of work would
be to scale TreeDSB to higher dimensional problems building on recent developments in the diffusion
model and flow matching community (Lipman et al., 2023; Peluchetti, 2023; Shi et al., 2023).

4https://archive.ics.uci.edu/ml/datasets/wine
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Appendix organization

First, additional notation is introduced in Appendix A. Then, we briefly recall some notions on
undirected and directed trees in Appendix B. Similarly, martingale problems are introduced in
Appendix C. The proofs of the main manuscript and additional theoretical results on Tree Schrödinger
Bridges are given in Appendix D. Additional details on our consideration of the tree-based static
SB problem are described in Appendix E. Details on the implementation of TreeDSB are given in
Appendix F and the experiments are investigated in Appendix G.

A Additional notation

For any finite set E, we equivalently refer to the cardinal of E as card(E) or |E|. Let (X,X )
be a measurable space. For any x ∈ (Rd)ℓ+1 and any m ∈ {0, . . . , ℓ}, let x−m =
(x0, . . . , xm−1, xm+1, . . . , xℓ). For any family of measures {νj}j∈{0,...,ℓ} defined on (X,X ) and
any i ∈ {0, . . . , ℓ}, let ν−i =

⊗
j∈{0,...,ℓ}\{i} νj . Let I = {i1, . . . , iq} ⊂ {1, . . . , ℓ} and µ ∈P(ℓ)

such that µ ≪ Leb. We define Ic = {1, . . . , ℓ}\I and denote it by {ic1, . . . , icq̄} where q̄ = ℓ − q.
We denote the marginal of µ along I by µI , i.e., µI ∈ P(q) and we have for any A ∈ B((Rd)q),
µI(A) =

∫
X
µ(x)

∏q
j=1 δxij

(Aj)dx. In addition, note that µI ≪ Leb. We denote the conditional
distribution of µ given I by µ|I(·|·), i.e., µ|I(·|·) ∈ P(q̄) × (Rd)q and we have for any y ∈ (Rd)q

and any A ∈ B((Rd)q̄), µ|I(A|y) =
∫
X
µ(x)/µI(y)

∏q
j=1 δ(xij − yj)

∏q̄
j′=1 δxic

j′
(Aj′)dx. Remark

that for any y ∈ (Rd)q, µ|I(·|y) ≪ Leb. For any subset J ⊂ Ic with card(J) = qJ, we also
define µJ|I(·|·) ∈ P(qJ) × (Rd)q such that for any y ∈ (Rd)q, µJ|I(·|y) = {µ|I(·|y)}J. For a col-
lection of functions {fi}i∈I, with I ⊂ {1, . . . , n} and n ∈ N such that fi : Rd → R, we define
⊕i∈Ifi : (Rd)n → R such that for any x = (x1, . . . , xn) ∈ (Rd)n, ⊕i∈If(x) =

∑
i∈I fi(xi).

B Introduction to trees

Undirected tree. An undirected graph T = (V,E), with vertices V and edges E, is said to be an
undirected tree if it is acyclic and connected (Valiente, 2002, Definition 1.19.). In particular, we have
card(E) = card(V)− 1. The undirected edge between two nodes v1 and v2 is similarly denoted by
{v1, v2} or {v2, v1}. We say that T′ = (V′,E′) is a sub-tree of T if T′ is an undirected tree with
vertices V′ ⊂ V and edges E′ ⊂ E. For any vertex v ∈ V, we define the set of its neighbours Nv as
the set of vertices v′ ∈ V such that {v, v′} ∈ E. The integer card(Nv) is referred to as the degree of v.
The vertices with degree 1 are called leaves, and we denote the set of leaves by VL ⊂ V. The (unique)
path in T between two vertices v and v′ is the sequence of two-by-two distinct edges {{vi, vi+1}}ni=1
(with n ≥ 1) such that vk = vk+1 for any k ∈ {1, . . . , n} such that k = 0 mod(2), v1 = v and
vn+1 = v′. This path can be seen as a linear sub-tree of T, and we define n as the length of this
path. We say that T is weighted if there exists a map w : E 7→ R+; in this case, w({v1, v2}), or
equivalently w({v2, v1}) (also denoted by wv1,v2 or wv2,v1 ) is called the weight of the edge {v1, v2}.
The tree T is said to be rooted in r ∈ V if r defines a partial ordering ≤T,r⊂ V × V such that for any
v1, v2 ∈ V, v1 ≤T,r v2 if the node v1 lies on the unique path between r and v2.

Directed tree. Consider a directed graph Tr = (V,Er) rooted in r ∈ V. Any directed edge e ∈ Er
from v1 ∈ V to v2 ∈ V is denoted by (v1, v2). Tr is a said to be a directed tree rooted in r if (i) the
underlying undirected graph T = (V,E) is an undirected tree rooted in r and (ii) any (v1, v2) ∈ Er is
directed according to the partial ordering ≤T,r, i.e., {v1, v2} ∈ E and v1 ≤T,r v2. For any vertices
(v, v′) ∈ V × V such that v ≤T,r v

′, the (unique) path in Tr from v to v′, denoted by pathTr
(v, v′),

is defined as the directed version of the path in T between v and v′ (viewed as a sub-tree of T),
which is rooted in v. We say that Tr is weighted, if T is weighted and the edges of Tr have the same
weights as the corresponding undirected edges of T. For any (v1, v2) ∈ Er, we denote this weight
by wv1,v2 . We say that Tr is the (unique) directed version of T rooted in r. It is endowed with a
canonical vertex numbering ζ : V→ {0, . . . , card(V)− 1}, corresponding to a depth-first traversal
of its nodes, starting from the root r (Valiente, 2002, Definition 3.1.). This numbering is consistent
with the partial ordering on T, i.e., if v1 ≤T,r v2, ζ(v1) ≤ ζ(v2), and satisfies ζ(r) = 0. In the rest
of the paper, we will write in an equivalent manner v or ζ(v).
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For any vertices (v1, v2) ∈ E× E such that v1 ≤T,r v2, pathTr
(v1, v2) corresponds to the ordered

set of edges in Er which define the ordered path between two vertices v1 and v2. For any vertex
v ∈ V, we define:

(a) the set of its children Cv as the set of vertices v′ ∈ V such that (v, v′) ∈ Er. In particular, for any
v ∈ VL, the set of leaves, one has Cv = ∅.
(b) its parent as the unique vertex p(v) such that (p(v), v) ∈ Er, if v ̸= r (the parent of the root is
not defined).

Note that Nr = Cr and, for any vertex v ∈ V\{r}, Nv = {p(v)} ∪ Cv .
Definition 8 (Tree-structured directed Probabilistic Graphical Model (PGM)). Consider a directed
tree Tr = (V,Er). The directed PGM induced by Tr (Koller & Friedman, 2009, Definition 3.4.),
denoted by PTr , is the family of distributions π ∈ P(|V|) which have a Markovian factorization
along Tr, i.e.,

PTr
= {π ∈P(|V|) : π = πr

⊗
(v,v′)∈Er

πv′|v} .

Lemma 9. Consider an undirected tree T = (V,E). Let (r, r′) ∈ V × V. Let T′ be a sub-tree of T
with vertices V′ such that r′ ∈ V′. Denote by T′

r′ the directed version of T′ rooted in r′. Then, for
any π ∈PTr

, we have πV′ ∈PT′
r′

.

Proof. Let (r, r′) ∈ V × V. We denote by Tr = (V,Er), respectively Tr′ = (V,Er′), the directed
version of T rooted in r, respectively r′. We define the paths Pr,r′ = pathTr

(r, r′) ⊂ Er and
Pr′,r = pathTr′

(r′, r) ⊂ Er′ . It is easy to see that

(a) Er\Pr,r′ = Er′\Pr′,r,

(b) Pr,r′ = {(v2, v1) : (v1, v2) ∈ Pr′,r},

(c) Pr′,r = {(v2, v1) : (v1, v2) ∈ Pr,r′}.

Let π ∈PTr . First note that for any (v1, v2) ∈ Er, we have by Bayes decomposition πv1πv2|v1 =
πv2πv1|v2 = πv1,v2 . Then it comes

π = πr
⊗

(v1,v2)∈Er
πv2|v1

= πr
⊗

(v1,v2)∈Pr,r′
πv2|v1

⊗
(v1,v2)∈Er\Pr,r′

πv2|v1

= πr
⊗

(v2,v1)∈Pr′,r
πv2|v1

⊗
(v1,v2)∈Er′\Pr′,r

πv2|v1

= πr′
⊗

(v1,v2)∈Pr′,r
πv2|v1

⊗
(v1,v2)∈Er′\Pr′,r

πv2|v1

= πr′
⊗

(v1,v2)∈Er′
πv2|v1 ,

and therefore, we have π ∈PTr′ .

Let T′ be a sub-tree of T with vertices V′ such that r′ ∈ V′. First note that E′
r′ ⊂ Er′ . Using the

previous computation, we have for any A ∈ B((Rd)|V
′|),

πV′(A) =
∫
(Rd)|V|

πr′(xr′)
⊗

(v1,v2)∈Er′
πv2|v1(xv2 |xv1)

∏
v′∈V′ δxv′ (Av′)dx

=
∫
(Rd)|V|−|V′|{πr′(Ar′)

⊗
(v1,v2)∈E′

r′
πv2|v1(Av2 |xv1)}

⊗
(v1,v2)∈Er′\E′

r′
πv2|v1(xv2 |xv1)dxV\V′

= {πr′
⊗

(v1,v2)∈E′
r′
πv2|v1}(A) ,

which proves that πV′ ∈PT′
r′

.

Discretized undirected tree. Let N ≥ 1. Consider an undirected tree T = (V,E) with weights
w. We say that T(N) = (V(N),E(N)) is a N -discretized version of T if it is an undirected tree with
weights w(N) such that

(a) V(N) = V
⊔
∪ e∈E,
k∈{1,...,N−1}

{vke},
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(b) E(N) = ∪e∈E ∪k=0,...,N−1

{
{vke , vk+1

e }
}

with the convention that the vertices vNe and vNe are
defined such that {v0e , vNe } = e,

(c)
∑
e∈pathT(v,v

′) 1/w
(N)
e = 1/wv,v′ , if {v, v′} ∈ E.

Remark that the leaves of T(N) are exactly the original leaves of T and that T(1) = T. The non-
uniqueness of T(N) comes from the freedom of choice on the weights of its edges.

Discretized directed tree. Let N ≥ 1. Consider a directed tree Tr = (V,Er) rooted in r ∈ V with
weights w. We say that T(N)

r = (V(N),E
(N)
r ) is a N -discretized version of Tr if it is the directed

version of T(N) rooted in r, where T(N) is a N -discretized version of the underlying undirected tree
of Tr.

C Background on martingale problems

In this section, we introduce the background on Stochastic Differential Equations (SDEs) and weak
solutions of SDEs following the framework of (Stroock & Varadhan, 1997, Section 10.1, page 249).
We recall that C∞

0 (Rd) is the space of infinitely differentiable real-valued functions which vanish at
infinity. In addition, we have that Sd+ is the space of d× d, symmetric, non-negative matrices.

Definition 10. Let T > 0 or T = +∞, σ : [0, T )× Rd → Sd+ and b : [0, T )× Rd → Rd, locally
bounded measurable functions. We define the infinitesimal generator, A, given for any f ∈ C∞

0 (Rd),
t ∈ [0, T ) and x ∈ Rd by

At(f)(x) = ⟨bt(x),∇f(x)⟩+ 1
2 ⟨σt(x)σt(x)

⊤,∇2f(x)⟩. (4)

We say that a probability measure P satisfies the martingale problem for A if for any t ∈ [0, T ) and
f ∈ C∞

0 (Rd), we have that (f(Xt)−
∫ t
0
As(f)(Xs)ds)s∈[0,t] is a P-martingale.

In the main document, see Section 2, we say that “a path measure P is associated with dXt =
b(t,Xt)dt+σ(t,Xt)dBt with (Bt)t≥0 a d-dimensional Brownian motion” if P solves the martingale
problem associated with A given by (4). Unless specified, we always assume that such a path
measure exists and is unique. Below, we recall the following theorem, see (Stroock & Varadhan, 1997,
Theorem 10.2.2), which gives sufficient conditions for the existence and uniqueness of solutions to
the martingale problem.
Theorem 11. Assume that for any x ∈ Rd we have

inf{⟨θ, σσ⊤(s, x)θ⟩ : θ ∈ Rd, ∥θ∥ = 1, s ∈ [0, T ]} > 0,

lim
y→x

sup{∥σ(s, x)− σ(s, y)∥ : s ∈ [0, T ]} = 0.

In addition, assume that there exists C > 0 such that for any x ∈ Rd

sup{∥σσ⊤(t, x)∥ : s ∈ [0, T ]}+ sup{⟨x, b(t, x)⟩ : s ∈ [0, T ]} ≤ C(1 + ∥x∥2).

Then, there exists a unique solution to the martingale problem with initialization x0 ∈ Rd.

D Theoretical results on Tree Schrödinger Bridges

We respectively provide in Appendix D.1, Appendix D.2 and Appendix D.3 the proofs of the results
of the main manuscript presented in Section 3, Section 4 and Section 5. Finally, we make a detailed
comparison between our setting and the framework of Haasler et al. (2021) in Appendix D.4. In the
rest of this section, we consider an undirected tree T = (V,E), where |V| = ℓ+ 1, and some subset
S ⊂ V which we denote by S = {i0, . . . , iK−1}. We define Sc = V\S.

D.1 Proofs of Section 3

Proposition 1 is straightforward to obtain by combining the definition of the Brownian motion with
the definition of π0 given in (2). The following lemma details the recursion relation between the
(mIPF) iterates, which is key to prove Proposition 2.
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Lemma 12. Let (πn)n∈N be the sequence given by (mIPF). Let n ∈ N, kn = (n − 1) mod(K),
kn + 1 = nmod(K). Denote by Tkn , respectively Tkn+1 with edges Ekn+1, the directed version of
T rooted in ikn , respectively in ikn+1. We have:

(i) πn ∈PTkn
,

(ii) πn+1 = µikn+1

⊗
(v,v′)∈Ekn+1

πnv′|v . In particular, for any (v, v′) ∈ Ekn+1, πn+1
v′|v = πnv′|v .

Proof. We show the result (i) by recursion on n ∈ N, and will deduce (ii) from the proof. Using (2),
we first have π0 ∈PTr

, where r is chosen as iK−1, see Section 3. Thus, we obtain the result (i) at
step n = 0. Assume now that πn ∈PTkn

for some n ∈ N.

Consider the paths Pn = pathTkn
(ikn , ikn+1) and Pn+1 = pathTkn+1

(ikn+1, ikn). Note that these
two paths have the same length, denoted by J , and contain the same vertices, denoted by Vn. Let
π ∈P(ℓ+1) such that KL(π|πn) < +∞. We have the following decomposition

KL(π|πn) = KL(πVn
|πnVn

) +
∫
(Rd)J+1 KL(π|Vn

|πn|Vn
)dπVn

(xVn
) .

Hence, the (n+ 1)-th iterate of (mIPF) is given by πn+1 = πn+1
Vn
⊗ πn|Vn

, with

πn+1
Vn

= argmin{KL(π|πnVn
) : π ∈P(J+1), πikn+1

= µikn+1
} .

Since πn ∈ PTkn
, we have (i) πn|Vn

=
⊗

(v,v′)∈Ekn\Pn
πnv′|v and (ii) πnVn

∈ PPn+1 by Lemma 9,
where Pn+1 is viewed as a directed tree rooted in ikn+1. Defining Vn+1 = Vn\{ikn+1}, we thus
have πnVn

= πnikn+1
⊗ πnVn+1|ikn+1

where πnVn+1|ikn+1
=

⊗
(v,v′)∈Pn+1

πnv′|v .

Let π ∈ P(J+1) such that πikn+1
= µikn+1

and KL(π|πnVn
) < +∞. Similarly to the previous

computation, we have the following decomposition

KL(π|πnVn
) = KL(πikn+1

|πnikn+1
) +

∫
Rd KL(π|ikn+1

|πnVn+1|ik+1
)dπikn+1

(xikn+1
)

= KL(µikn+1
|πnikn+1

) +
∫
Rd KL(π|ikn+1

|πnVn+1|ikn+1
)dµikn+1

(xikn+1
) .

Therefore, we obtain

πn+1
Vn

= µikn+1
⊗ πnVn+1|ik+1

= µik+1

⊗
(v,v′)∈Pn+1

πnv′|v .

Noting that Ekn\Pn = Ekn+1\Pn+1 and recalling that πn+1 = πn+1
Vn
⊗ πn|Vn

, it finally comes

πn+1 = µikn+1

⊗
(v,v′)∈Pn+1

πnv′|v
⊗

(v,v′)∈Ekn+1\Pn+1

πnv′|v = µikn+1

⊗
(v,v′)∈Ekn+1

πnv′|v . (5)

Therefore, πn+1 ∈PTkn+1
, which achieves the recursion for (i), and we obtain (ii) by (5).

Hence, Lemma 12 shows that the (mIPF) iterates admit a Markovian factorization on T, and can be
defined recursively using the edges of T. We now provide the proof of Proposition 2.

Proof of Proposition 2. We will prove this result by recursion on n ∈ N. Observe that the initial-
isation is directly given by Proposition 1. Assume now that the result of Proposition 2 stands for
some n ∈ N. Let kn = (n − 1) mod(K), kn + 1 = n mod(K). Denote by Tkn with edges
Ekn , respectively Tkn+1 with edges Ekn+1, the directed version of T rooted in ikn , respectively
in ikn+1. For any vertex v of Tkn+1, we define p(v) as the (unique) parent of v and c(v) as the
unique child of v when it exists. Consider the (n+ 1)-th dynamic iterate defined by (a) and (b), i.e.,
(Pn+1

(v,v′))(v,v′)∈Ekn+1
. To prove that this iterate has the properties stated in Proposition 2, we proceed

by recursion on the edges of Tkn+1, following the bread-first order in Tkn+1. In this order, the edge
(ikn+1, c(ikn+1)) is the first to be considered. Remark that c(ikn+1) is well defined since ikn+1 is a
leaf of T.

Here, we denote Tc(ikn+1),ikn+1
by T . By construction, we have Pn+1

(ikn+1,c(ikn+1))
= µikn+1

⊗
(Pn(c(ikn+1),ikn+1)

)R|0. By recursion assumption, Pn(c(ikn+1),ikn+1)
∈ P(C([0, T ],Rd)) since

18



(c(ikn+1), ikn+1) ∈ Ekn . Then, Pn+1
(ikn+1,c(ikn+1))

is a well defined path measure on [0, T ]. By

definition of the (mIPF) sequence, we have µikn+1
= πn+1

ikn+1
. By recursion assumption, we also

have that Ext(Pn(c(ikn+1),ikn+1)
) = πnc(ikn+1),ikn+1

. Hence, it comes that (Pn(c(ikn+1),ikn+1)
)RT |0 =

πnc(ikn+1)|ikn+1
= πn+1

c(ikn+1)|ikn+1
, where the last equality comes from Lemma 12. Finally, we obtain

that Ext(Pn+1
(ikn+1,c(ikn+1))

) = πn+1
ikn+1,c(ikn+1)

, which proves the initialisation.

Assume now that Pn+1 is well defined and has the right properties, up to some edge in Tkn+1.
Consider the following edge, denoted by (v, v′) ∈ Ekn+1, in the breadth-first order. By edge
recursion, we have that Ext(Pn+1

(p(v),v)) = πn+1
p(v),v, and thus Pn+1

(p(v),v),Tp(v),v
= πn+1

v . Define the path
Pn = pathTkn

(ikn , ikn+1). Then, we face two cases.

(i) Either (v, v′) ∈ Ekn\Pn. Then, we have by (a) that

Pn+1
(v,v′) = Pn+1

(p(v),v),Tp(v),v
⊗ Pn(v,v′)|0 = πn+1

v ⊗ Pn(v,v′)|0

In particular, Pn+1
(v,v′) is a well defined path measure on [0, Tv,v′ ]. Since (v, v′) ∈ Ekn , Ext(Pn(v,v′)) =

πnv,v′ by recursion assumption. In particular, Pn(v,v′),Tv,v′ |0 = πnv′|v = πn+1
v′|v where the last equality

comes from Lemma 12. We thus have Ext(Pn+1
(v,v′)) = πn+1

v,v′ .

(ii) Or (v′, v) ∈ Pn. Then, we have by (b) that

Pn+1
(v,v′) = Pn+1

(p(v),v),Tv,v′
⊗ (Pn(v′,v))

R
|0 = πn+1

v ⊗ (Pn(v′,v))
R
|0

In particular, Pn+1
(v,v′) is a well defined path measure on [0, Tv,v′ ]. Here, (v′, v) ∈ Ekn and thus,

Ext(Pn(v′,v)) = πnv′,v by recursion assumption. In particular, (Pn(v′,v))
R
Tv′,v|0

= πnv′|v = πn+1
v′|v where

the last equality comes from Lemma 12. We thus have Ext(Pn+1
(v,v′)) = πn+1

v,v′ .

This achieves the recursion.

D.2 Proofs of Section 4

Remark on assumption A1. Although A1 is not needed to establish the result of Proposition 3,
Corollary 4 and Proposition 5, it is however crucial in the proof of convergence of (mIPF) stated
in Proposition 6. Nevertheless, we choose to keep A1 as an assumption in the statement of every
theoretical result presented in Section 4 for sake of clarity.

Additional definitions. We define the set PS = ∩i∈SPi, where Pi = {π ∈P(ℓ+1) : πi = µi},
i.e., PS is the set of all probability measures π ∈P(ℓ+1) which verify∫

(Rd)ℓ+1 fi(xi)dπ(x0:ℓ) =
∫
Rd fi(xi)dµi(xi) ,

for any family of bounded measurable functions {fi}i∈S ∈ C(Rd,R)K . Since Rd is separable, there
exists a dense family of functions {fki }k∈N∗,i∈S, with fki ∈ L∞(µi) for any k ∈ N∗ and any i ∈ S,
such that π ∈PS if and only if∫

(Rd)ℓ+1 f
k
i (xi)dπ(x0:ℓ) =

∫
Rd f

k
i (xi)dµi(xi)

or equivalently, upon centering fki ,∫
(Rd)ℓ+1 f

k
i (xi)dπ(x0:ℓ) = 0 .

In the rest of the section, we consider such family {fki }k∈N∗,i∈S.

For any n ∈ N∗, we also define Pn
S = ∩i∈SPn

i , where Pn
i = {π ∈ P(ℓ+1) :∫

(Rd)ℓ+1 f
k
i (xi)dπ(x0:ℓ) = 0, ∀k ∈ {1, . . . , n}}. In particular, we have

PS = ∩n∈N∗Pn
S . (6)

Finally, (static-mSB) can be rewritten as

π⋆ = argmin{KL(π | π0) : π ∈PS} . (7)
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Proof of Proposition 3 and Corollary 4. In this part of the section, we present an extension of
the theoretical results from Nutz (2021) to the multi-marginal setting. We first present two technical
results, Lemma 13 and Lemma 14, which are respectively adapted from (Nutz, 2021, Lemma 2.10.)
and (Nutz, 2021, Lemma 2.11.).
Lemma 13. Let {µ̃j}j∈Sc be a family of probability measures defined on (Rd,B(Rd)). We define
π̃0 =

⊗
i∈S µi

⊗
j∈Sc µ̃j . Let A ∈

⊗ℓ
m=0 B(Rd) such that π̃0(A) = 1. Then, for π̃0-almost any

x⋆ ∈ A, there exists a family of sets {X0
m}ℓm=0 ⊂ (Rd)ℓ+1 such that

(a) µi(X0
i ) = 1 for any i ∈ S, and µ̃j(X0

j ) = 1 for any j ∈ Sc,

(b) A0 = A ∩ (
∏ℓ
m=0 X

0
m) satisfies x⋆ ∈ A0 and

(x⋆0, . . . , x
⋆
m−1, xm, x

⋆
m+1, . . . , x

⋆
ℓ ) ∈ A0,∀x ∈ A0,∀m ∈ {0, . . . , ℓ} .

Proof. Consider such set A. We define for any m ∈ {0, . . . , ℓ} the set

Xm = {u ∈ Rd : π̃0
−m(Aum) = 1} ,

where Aum = {y ∈ (Rd)ℓ : (y0, . . . , ym−1, u, ym, . . . , yℓ−1) ∈ A}.
Take i ∈ S. Assume that µi(Xi) < 1. We recall that π̃0 = π̃0

−i ⊗ µi. Using Fubini’s theorem and
that

∫
A
xi
i
dπ̃0

−i(x−i) < 1 for any xi ̸∈ Xi, we have

1 = π̃0(A) =
∫
A
dπ̃0

−i(x−i)⊗ dµi(xi)

=
∫
Rd{

∫
A
xi
i
dπ̃0

−i(x−i)}dµi(xi)

=
∫
Xi
{
∫
A
xi
i
dπ̃0

−i(x−i)}dµi(xi) +
∫
Xc
i
{
∫
A
xi
i
dπ̃0

−i(x−i)}dµi(xi)

< µi(Xi) + µi(X
c
i ) = 1 ,

which is absurd. Therefore, we obtain µi(Xi) = 1, and similarly, we have µ̃j(Xj) = 1 for any j ∈ Sc.
For any y ∈ (Rd)ℓ, any m ∈ {0, . . . , ℓ}, we define the set

Āym = {u ∈ Rd : (y0, . . . , ym−1, u, ym, . . . , yℓ−1) ∈ A} .

Let i ∈ S. We have by Fubini’s theorem

1 = π̃0(A) =
∫
A
dµi(xi)⊗ dπ̃0

−i(x−i)

=
∫
(Rd)ℓ
{
∫
Ā
x−i
i

dµi(xi)}dπ̃0
−i(x−i)

=
∫∏ℓ

m=0
m ̸=i

Xi
{
∫
Ā
x−i
i

dµi(xi)}dπ̃0
−i(x−i) ,

where the last equality comes from the fact that µi(Xi) = 1 for any i ∈ S, µ̃j(Xj) = 1 for any j ∈ Sc

and that π̃0 =
⊗

i∈S µi
⊗

j∈Sc µ̃j . Consequently, there exists a measurable set A−i ⊂
∏ℓ
m=0
m̸=i

Xi such

that the following properties hold: (a) µi(Ā
y
i ) = 1 for any y ∈ A−i, (b) π̃0

−i(A−i) = 1. Similarly,
this result holds for any j ∈ Sc, i.e., there exists a measurable set A−j ⊂

∏ℓ
m=0
m̸=j

Xi such that the

following properties hold: (a) µ̃j(Ā
y
j ) = 1 for any y ∈ A−j , (b) π̃0

−j(A−j) = 1. We consider such
sets {A−m}ℓm=0 for the rest of the proof and finally define the set

Ã = ∩ℓm=0Ãm ,

where Ãm = A−m × {u ∈ Āym : y ∈ A−m}. By definition, we have Ã ⊂ A ∩
∏ℓ
m=0 Xm, using the

fact that Ãm ⊂ A for any m ∈ {0, . . . , ℓ}. In addition, for any i ∈ S, we get by Fubini’s theorem

π̃0(Ãi) =
∫
Ãi

dµi(xi)⊗ dπ̃0
−i(x−i) =

∫
A−i
{
∫
Ā
x−i
i

dµi(xi)}dπ̃0
−i(x−i) = π̃0

−i(A−i) = 1 ,

and similarly, we get π̃0(Ãj) = 1 for any j ∈ Sc. We can deduce that π̃0(Ã) = 1 since π̃0(Ãc) ≤∑ℓ
m=0 π̃

0(Ãc
m) = 0.
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Let x⋆ ∈ Ã. In particular, x⋆ ∈ A. We define the set A0 = A∩(
∏ℓ
m=0 X

0
m), where X0

m = Xm∩Ā
x⋆
−m
m

for any m ∈ {0, . . . , ℓ}. We now establish the result of Lemma 13.

We first prove (a). Let i ∈ S. Since x⋆ ∈ Ã, we have x⋆ ∈ Ãi and therefore x⋆−i ∈ A−i. By definition

of A−i, we obtain that µi(Ā
x⋆
−i

i ) = 1 and thus,

µi({X0
i }c) ≤ µi(Xc

i ) + µi({Ā
x⋆
−i

i }
c) = 0,

which gives µi(X0
i ) = 1, and similarly, we have µ̃j(X0

j ) = 1 for any j ∈ Sc.

We now prove (b). Let m ∈ {0, . . . , ℓ}. Since x⋆ ∈ Ã ⊂ A, we get x⋆m ∈ Ā
x⋆
−m
m . Using that Ã ⊂

A ∩ℓm=0 Xm, we get x⋆ ∈ A0. Let x ∈ A0. We denote xm = (x⋆0, . . . , x
⋆
m−1, xm, x

⋆
m+1, . . . , x

⋆
ℓ ).

We need to show that xm ∈ A and xm ∈
∏ℓ
j=1 X

0
j =

∏ℓ
j=1(Xj ∩ Ā

x⋆
−m

j ). First, since xmj = xj or
x⋆j for any j ∈ {0, . . . , ℓ}, and x ∈ A0 and x⋆ ∈ A0, we get that for any j ∈ {0, . . . , ℓ}, xmj ∈ Xj .

Similarly, for any j ∈ {0, . . . , ℓ− 1}, xmj ∈ Ā
x⋆
m
j . Therefore, we get that xm ∈

∏ℓ
j=1(Xj ∩ Ā

x⋆
−m

j ).

Since xm ∈ A
x⋆
−m
m (because x ∈

∏ℓ
j=1(Xj ∩ Ā

x⋆
−m

j )), we get that x ∈ A, which concludes the
proof.

Lemma 14. Let A0 ⊂ (Rd)ℓ+1. For any m ∈ {0, . . . , ℓ}, we denote X0
m = projm(A0). We make

the following assumptions.

(a) Assume there exists x⋆ ∈ A0 such that for any x ∈ A0, for any m ∈ {0, . . . , ℓ}, we have
(x⋆0, . . . , x

⋆
m−1, xm, x

⋆
m+1, . . . , x

⋆
ℓ ) ∈ A0.

(b) Assume there exists a family of functions {φnik}n∈N∗,k∈{0,...,K−1} with φnik : X0
ik
→ [−∞,+∞)

such that for any n ∈ N∗ and any k ∈ {0, . . . ,K − 2}, we have φnik(x
⋆
ik
) = 0.

(c) Denote Fn(x) =
∑K−1
k=0 φnik(xik) for any x ∈ A0. Assume that for any x ∈ A0, F (x) =

limn→∞ Fn(x) exists and is such that F (x) ∈ [−∞,+∞) with F (x⋆) ∈ R.

Then, for any i ∈ S, for any xi ∈ X0
i , φi(xi) = limn→∞ φni (xi) exists and is such that φi(xi) ∈

[−∞,+∞).

Proof. Consider A0 ⊂ (Rd)ℓ+1 such that assumptions (a), (b) and (c) hold. Remark that we have
Fn(x⋆) = φniK−1

(x⋆iK−1
).

Let x ∈ A0. We denote xm = (x⋆1, . . . , x
⋆
m−1, xm, x

⋆
m+1, . . . , x

⋆
l ) for any m ∈ {0, . . . , ℓ}. In

particular, we have xm ∈ A0 by assumption (a). Let us define

φik(xik) = F (xik)− F (x⋆), ∀k ∈ {0, . . . ,K − 2} ,
φiK−1

(xiK−1
) = F (xiK−1) .

Using assumption (c), we have φi(xi) ∈ [−∞,+∞) for any i ∈ S. Let k ∈ {0, . . . ,K − 2}. We
have by definition of Fn,

φnik(xik) = Fn(xik)−
∑K−1

m=0
m̸=k

φnim(x⋆im) = Fn(xik)− Fn(x⋆) ,

where we used assumption (b) in the last equality. Since xik ∈ A0 and x⋆ ∈ A0, we have by
assumption (c),

lim
n→∞

φnik(xik) = F (xik)− F (x⋆) = φik(xik) .

Furthermore, by combining the definition of Fn with assumption (b), we have

lim
n→∞

φniK−1
(xiK−1

) = F (xiK−1) = φiK−1
(xiK−1

),

which concludes the proof.
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In what follows, before proving Proposition 3, we respectively show in Proposition 15 and Proposi-
tion 16 how A2 and A3 can be satisfied in the case where π0 ∈PTr , as in (2), that is

π0 = π0
r

⊗
(v,v′)∈Er

π0
v′|v.

Proposition 15. Let π0 ∈PTr
. Assume that π0

r = µr if r ∈ S or π0
r = N(mr, σrId), with mr ∈ Rd

and σr > 0 if r ∈ Sc. In addition, assume that for any (v, v′) ∈ Er, π0
v′|v(·|xv) = N(xv, σv,v′Id)

with σv,v′ > 0. Finally, assume that for any i ∈ S,
∫
Rd ∥x∥2dµi(x) < +∞ and H(µi) < +∞. Then

A2 is satisfied.

Proof. Let π = ⊗i∈Sµi ⊗i∈Sc νi with νi any Gaussian measure with positive definite covariance
matrix. First, we have that

KL(π | π0) = KL(πr | π0
r) +

∑
(v,v′)∈Er

∫
Rd KL(πv′|v|π0

v′|v)dπv .

For any (v, v′) ∈ Er, there exists Cv,v′ ≥ 0 such that∫
Rd KL(πv′|v|π0

v′|v)dπv ≤ Cv,v′ −H(πv′) +
∫
Rd×Rd ∥xv − xv′∥2/(2σ2

v,v′)dπv ⊗ πv′(xv, xv′)

≤ Cv,v′ −H(πv′) + (1/σ2
v,v′)

∫
Rd ∥xv∥2dπv(xv) + (1/σ2

v,v′)
∫
Rd ∥xv′∥2dπv′(xv′) < +∞.

We conclude the proof upon remarking that KL(πr | π0
r) < +∞.

Proposition 16. Let π0 ∈PTr
. Assume that π0

r = µr if r ∈ S or π0
r = N(mr, σrId), with mr ∈ Rd

and σr > 0 if r ∈ Sc. In addition, assume that for any (v, v′) ∈ Er, π0
v′|v(·|xv) = N(xv, σv,v′Id)

with σv,v′ > 0. Finally, assume that for any i ∈ S, µi admits a positive density w.r.t. the Lebesgue
measure. Then A3 is satisfied.

Proof. We have that π0 admits a positive density w.r.t the Lebesgue measure. Letting π̃0 =⊗
i∈S µi

⊗
j∈Sc µ̃j where µ̃j which admits a positive density w.r.t. the Lebesgue measure for any

j ∈ Sc, we get that π̃0 admits a positive density w.r.t. the Lebesgue measure and therefore π0 ∼ π̃0,
which concludes the proof.

Using the preliminary results presented above, we are now ready to prove Proposition 3.

Proof of Proposition 3. Assume A1 and A2. Since PS is convex and closed in total-variation norm,
there exists a probability distribution π⋆ solution to (7), or equivalently to (static-mSB), by using
A2 with (Csiszár, 1975, Theorem 2.1.). Moreover, this solution is unique by strict convexity of
KL(· | π0).

We now turn to the proof of existence of potentials defining (dπ⋆/dπ0), by adapting the arguments
of (Nutz, 2021, Section 2.3.). Define νn = argmin{KL(π | π0) : π ∈Pn

S } for any n ∈ N∗. Since
{Pn

S }n∈N∗ ⊂P(ℓ+1) is a decreasing sequence of sets that are convex and closed in total-variation
norm such that (6) holds, we get from (Nutz, 2021, Proposition 1.17.) with A2 that

lim
n→∞

∥νn − π⋆∥TV = 0 ,

or equivalently

lim
n→∞

∥(dνn/dπ0)− (dπ⋆/dπ0)∥L1(π0) = 0 . (8)

Following (Nutz, 2021, Example 1.18), there exists a family of bounded measurable functions
{φni }n∈N∗,i∈S with φni : Rd → R such that for any n ∈ N∗

(dνn/dπ0) = exp[
⊕

i∈S φ
n
i ] . (9)

We consider such family {φni }n∈N∗,i∈S for the rest of the proof. By combining (8) and (9), we obtain,
up to extraction,

(dπ⋆/dπ0) = limn→∞ exp[
⊕

i∈S φ
n
i ] π0-a.s. . (10)

22



We now define the following sets
A⋆ = {x ∈ (Rd)ℓ+1 : limn→∞

⊕
i∈S φ

n
i (xi) ∈ [−∞,+∞)} ,

B⋆ = {x ∈ (Rd)ℓ+1 : limn→∞
⊕

i∈S φ
n
i (xi) > −∞} ⊂ A⋆

Using (10), we have π0(A⋆) = 1. Using A3, it comes π̃0(A⋆) = 1. Moreover, we also get that
π⋆(B⋆) = 1 by (10). Thus, it comes π0(B⋆) > 0, and π̃0(B⋆) > 0 using A3.

We then apply Lemma 13 to π̃0 and A = A⋆. Since π̃0(B⋆) > 0, it implies that there exists x⋆ ∈ B⋆

and a measurable set A0 ⊂ B⋆ verifying the properties (a) and (b). Following (Nutz, 2021, Corollary
2.12), we may assume without loss of generality in the statement of Lemma 13 that the sets X0

m are
measurable with

∏ℓ
m=0 X

0
m ⊂ A. In this case, we obtain that µi(proji(A

0)) = 1 for any i ∈ S.

We now aim at applying Lemma 14 to the set A0. Remark that A0 directly satisfies assumption (a).
For any n ∈ N∗, consider the following transformation of the functions {φni }i∈S

φnik ←− φ
n
ik
− φnik(x

⋆
ik
), ∀k ∈ {0, . . . ,K − 2} ,

φniK−1
←− φniK−1

+
∑K−2
k=0 φnik(x

⋆
ik
) .

For any i ∈ S, we restrict φnik to X0
ik

, so that the family {φni }n∈N∗,i∈S now verifies assumption (b).
Finally, since A0 ⊂ A⋆ and x⋆ ∈ B⋆, we directly obtain assumption (c).

Therefore, Lemma 14 may be applied. It provides us with the family of functions {φi}i∈S defined by
φi : X

0
i → [−∞,+∞) with φi = limn→∞ φni µi-a.s. for any i ∈ S. Since µi(proji(A

0)) = 1 for
any i ∈ S, we may extend the functions φi to Rd. In particular, we can find a family of functions
{ψ⋆i }i∈S with ψ⋆i : Rd → [−∞,+∞) such that ψ⋆i = φi µi-a.s. Note that these functions are
measurable as limits of measurable functions.

Since π0 ∼ π̃0 by A3, (10) turns into
(dπ⋆/dπ0) = exp[

⊕
i∈S ψ

⋆
i ] π0-a.s. . (11)

Finally, we show that the functions ψ⋆i are µi-a.s. finite. Let i ∈ S. Let us define Ai = {xi ∈ Rd :
ψ⋆i (xi) = −∞}. Using (11), we obtain (dπ⋆/dπ0)(Ai × (Rd)ℓ) = 0. Since π⋆i = µi, we have

µi(Ai) = π⋆(Ai × (Rd)ℓ) =
∫
Ai×(Rd)ℓ

(dπ⋆/dπ0)dπ0 = 0 ,

which gives the result.

We now turn to the proof of Corollary 4, which states that the iterates of (mIPF) can be expressed via
potentials, in the same manner as the solution π⋆ to (static-mSB).

Proof of Corollary 4. Assume A1, A2 and A3. We prove the result of this corollary by recursion on
n ∈ N∗. First take n = 1. In this case, the first iteration of (mIPF) is a multi-marginal SB problem of
the form (static-mSB) where S = {i0} with reference measure π0. Therefore, using A2 and A3, we
can apply Proposition 3 and obtain existence of ψ1

i0
: Rd → R such that

(dπ1/dπ0) = exp[ψ1
i0 ] π0-a.s .

By taking ψ0
ik

= 0 for k ∈ {1, . . . ,K − 1}, we thus obtain the result at step n = 1.

Now assume that the result is verified for some n ∈ N∗, with kn = (n − 1) mod(K). We define
kn + 1 = n mod(K) and qn ∈ N as the quotient of the Euclidean division of n by K. In this
case, the (n + 1)-th iteration of (mIPF) is a multi-marginal SB problem of the form (static-mSB)
where S = {ikn+1} with reference measure πn. Using (13), we have that A2 is satisfied for this new
(static-mSB) problem. A1 and A3 are satisfied for this problem, given the form of πn. Therefore, we
can apply Proposition 3 and obtain existence of ψqn+1

ikn+1
: Rd → R such that

(dπn+1/dπn) = exp[ψqn+1
ikn+1

] πn-a.s . (12)

By assumption, we have that πn ≪ π0. Hence, we obtain πn+1 ≪ π0 and thus,
(dπn+1/dπ0) = (dπn+1/dπn)(dπn/dπ0) π0-a.s .

By combining (12) with the result of the recursion at step n, we directly obtain the result at step
n+ 1, which achieves the proof.
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Proofs of Proposition 5 and Proposition 6. In this part of the section, we establish the proofs of
results related to the convergence of (mIPF), respectively Proposition 5 and Proposition 6, which
can be seen as a natural extension of (Ruschendorf, 1995, Proposition 2.1.) and (Ruschendorf, 1995,
Theorem 3.1.).

Proof of Proposition 5. Under A1 and A2, we obtain by Proposition 3 existence and uniqueness of a
solution to (static-mSB), which we denote by π⋆. Since π⋆ ∈PS, using recursively (Csiszár, 1975,
Theorem 3.12.), the fact that {πik = µik : π ∈P(|V|)} is convex for any k ∈ {0, . . . ,K − 1} and
(mIPF), we obtain

KL(π⋆ | π0) = KL(π⋆ | πn) +
∑n
i=1 KL(πi | πi−1) . (13)

Therefore, we have
∑∞
i=1 KL(πi | πi−1) ≤ KL(π⋆ | π0) <∞ and thus,

limi→+∞ KL(πi | πi−1) = 0 . (14)

Let n ∈ N∗ with n > 2K, k ∈ {0, . . . ,K − 1} and let qn ∈ N be the quotient of the Euclidean
division of n − 1 by K. We define nk = qnK + k + 1 with (nk − 1) = k mod(K) if nk ≤ n.
Otherwise, we set nk = (qn − 1)K + k + 1 with (nk − 1) = k mod(K). Note that we always have
|n− nk| ≤ 2K. In particular, we have πnk

ik
= µik by definition of (mIPF). Therefore, we obtain

∥πnik − µik∥TV ≤ ∥πn − πnk∥TV

≤ ∥πn − πn−1∥TV + . . .+ ∥πnk+1 − πnk∥TV (triangle inequality)

≤ (2KL(πn | πn−1))1/2 + . . .+ (2KL(πnk+1 | πnk))1/2 , (Pinsker’s inequality)
where each term goes to 0 as n→ +∞ in the last inequality by (14), which achieves the proof.

We now turn to the proof Proposition 6, which requires several preliminary technical results. For the
rest of this section, we define, for any n ∈ N, qn as the quotient of the Euclidean division of n− 1 by
K (in particular, q0 = −1).

Schrödinger equations. Under A1, A2 and A3, we know from Proposition 3 that the unique
solution π⋆ to (static-mSB) can be π0-a.s. written as (dπ⋆/dπ0) = exp[

⊕
i∈S ψ

⋆
i ], where {ψ⋆i }i∈S

are measurable potentials, referred to as Schrödinger potentials. These functions are determined by
the fixed-point Schrödinger equations

ψ⋆i (xi) = log[ri(xi)/
∫
(Rd)ℓ

exp[
∑
j∈S\{i} ψ

⋆
j (xj)]h(x0:ℓ)dν−i(x−i)] µi-a.s., ∀i ∈ S ,

which are obtained by marginalising π⋆ along its constrained marginals. This family of potentials is
not unique. Indeed, for any family of real numbers {λik}k∈{0,...,K−2}, we have

(dπ⋆/dπ0) = exp[
⊕

i∈S ψ̃i] ,

where ψ̃ik = ψ⋆ik + λ̃ik for any k ∈ {0, . . . ,K − 1} with λ̃ik = λik if k ∈ {0, . . . ,K − 2} and
λ̃iK−1

= −
∑K−2
i=0 λik .

Remark on the initialisation of (mIPF). Consider a probability measure π̄0 ∈P(ℓ+1) of the form
(dπ̄0/dπ0) = exp[

⊕
i∈S ψ

0
i ] , (15)

where {ψ0
i }i∈S is a family of measurable potentials with ψ0

i : Rd → R such that
∣∣∫

Rd ψ
0
i dµi

∣∣ <∞
for any i ∈ S. Then, for any π ∈PS, we have

KL(π | π0) = KL(π | π̄0) +
∫
(Rd)K

⊕
i∈S ψ

0
i dπ = KL(π | π̄0) +

∑
i∈S

∫
Rd ψ

0
i dµi .

Hence, (static-mSB) is equivalent to the multi-marginal SB problem

argmin{KL(π|π̄0) : π ∈P(ℓ+1), πi = µi ,∀i ∈ S} .
We refer to (Peyré et al., 2019, Proposition 4.2) for the EOT counterpart of this result. This means
that the solutions of the multi-marginal Schrödinger Bridge problem are invariant by multiplication
of the reference measure by potentials on the fixed marginals. Consequently, the initialisation of the
(mIPF) sequence may be chosen as π̄0 instead of π0.

For sake of clarity, we now refer to the reference probability measure of (static-mSB) as π̄ or
π−1 and to the initialisation of the (mIPF) iterates as π0.
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Solving (mIPF) with potentials. To prove the convergence of the (mIPF) iterates to the solution π⋆
given by Proposition 3, we first rewrite these iterates with potentials, following the form of π⋆.

To do so, we recursively define the sequence of potentials {ψni }n∈N,i∈S by

ψ0
i0 = . . . = ψ0

iK−2
= 0 , (16)

ψ0
iK−1

(xiK−1
) = log(riK−1

(xiK−1
)/

∫
(Rd)ℓ

h(x0:ℓ)dν−iK−1
(x−iK−1

)) ,

and for any n ∈ N∗ and k ∈ {0, . . . ,K − 1}
ψqn+1
ik

(xik) = log[rik(xik)/
∫
(Rd)ℓ

exp[
⊕k

ℓ=0 ψ
qn+1
iℓ

(xiℓ)
⊕K−1

m=k+1 ψ
qn
im
(xim)]

× h(x0:ℓ)dν−ik(x−ik)] , (17)
recalling that qn is the quotient of the Euclidean division of n− 1 by K.

We now define the sequence of probability measures {πn}n∈N by

dπn/dπ̄ = exp[
⊕kn

ℓ=0 ψ
qn+1
iℓ

⊕K−1
m=kn+1 ψ

qn
im
], kn = (n− 1) mod(K), n = qnK + kn + 1.

(18)

In particular, we have (dπ0/dπ̄) = exp[⊕K−1
ℓ=0 ψ

0
iℓ
] = exp[ψ0

iK−1
], and thus

∫
Rd ψ

0
iK−1

dµiK−1
=

KL(µiK−1
| π̄iK−1

). Consequently, π0 can be chosen as the initialisation of (mIPF), following the
previous remark, if we assume that KL(µiK−1

| π̄iK−1
) <∞. In (TreeSB) with r = iK−1, the latter

assumption is directly verified since we choose π̄iK−1
= µiK−1

.

Let n ∈ N, with kn = (n − 1) mod(K), kn + 1 = n mod(K). Using (16) and (17), we get that
πnikn

= µikn
. Moreover, we have

dπn/dπn−1 = exp[ψqn+1
ikn

− ψqnikn
] , (19)

with the convention that ψ−1
iK−1

= 0. In particular, we obtain that πn+1
|ikn+1

= πn|ikn+1
.

In conclusion, the sequence {πn}n∈N defined in (18) verifies πn+1 = µikn+1
πn|ikn+1

for any n ∈ N.
By decomposition property of the Kullback-Leibler divergence, this sequence solves (mIPF) with
initialisation π0. We consider such iterates in the following.

Since πnikn
= µikn

, we have that

KL(πn | πn−1) =
∫
Rd(ψ

qn+1
ikn

− ψqnikn
)dµikn

. (20)

Before proving a multi-marginal counterpart to (Ruschendorf, 1995, Lemma 4.1), we state and prove
the following result.
Proposition 17. Let π0, π1 two probability measures on Rd such that π0 ≪ π1. Then, denoting
f = dπ0/dπ1, the following assertions are equivalent:

(a) KL(π0 | π1) < +∞

(b)
∫
Rd | log(f)(x)|dπ0(x) < +∞

(c)
∫
Rd log(f)(x)1f(x)>1dπ0(x) < +∞

If one of these conditions is satisfied then
∫
Rd |log(f)(x)|dπ0 ≤ KL(π0 | π1) + 2/e.

Proof. First, note that∫
Rd | log(f)(x)|1f<1dπ0(x) ≤

∫
Rd | log(f)(x)f(x)|1f<1dπ1(x) ≤ 1/e , (21)

where we have used that for any u ∈ [0, 1], |u log(u)| ≤ 1/e. We have that (b) implies (c). Using
the previous result we have that (c) implies (b). Hence (c) and (b) are equivalent. In addition, it
is clear that (b) implies (a). Finally (this is more of a convention), we have that KL(π0 | π1) =∫
Rd log(f)(x)1f(x)>1dπ0(x) +

∫
Rd log(f)(x)1f(x)<1dπ0(x) < +∞. Using (21) this implies (c).

Finally, we have∫
Rd |log(f)(x)|dπ0(x) =

∫
Rd log(f)(x)dπ0(x)− 2

∫
Rd log(f)(x)1f(x)<1dπ0(x)

≤ KL(π0 | π1) + 2/e,

which concludes the proof.
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We begin with the following lemma which controls the integral of the potentials uniformly w.r.t.
n ∈ N. It can be seen as the multi-marginal counterpart of (Ruschendorf, 1995, Lemma 4.1).
Lemma 18. Assume A4. There exist {ci}i∈S ∈ (0,+∞)K such that for any function f : (Rd)ℓ+1 →
R of the form f =

⊕
i∈S fi, we have

ci∥f∥L1(π⋆) ≥ ∥fi∥L1(µi), ∀i ∈ S . (22)

For any n ∈ N⋆, we have

(a)
∑
i∈S

∫
Rd ψ

n
i dµi ≤ KL(π⋆ | π̄) <∞,

(b)
∫
(Rd)ℓ+1(

⊕
i∈S ψ

⋆
i −

⊕
i∈S ψ

n
i )dπ

⋆ ≤ KL(π⋆ | π̄) <∞,

(c) supn∈N
∫
Rd |ψni |dµi <∞, ∀i ∈ S.

Proof. First, we have that (22) is a direct consequence of (Kober, 1940, Theorem 1) and A4. Let us
now prove (a). Using (20), we have∑Kn

m=0 KL(πm | πm−1) =
∑n−1
ℓ=0

∑K−1
k=0 KL(πℓK+k+1 | πℓK+k) + KL(π0 | π−1)

=
∑n−1
ℓ=0

∑
i∈S

∫
Rd(ψ

ℓ+1
i − ψℓi )dµi +

∫
Rd(ψ

0
iK−1

− ψ−1
iK−1

)dµiK−1

=
∑
i∈S

∑n−1
ℓ=0

∫
Rd(ψ

ℓ+1
i − ψℓi )dµi +

∫
Rd(ψ

0
iK−1

− ψ−1
iK−1

)dµiK−1

=
∑
i∈S

∫
Rd(ψ

n
i − ψ0

i )dµi +
∫
Rd(ψ

0
iK−1

− ψ−1
iK−1

)dµiK−1

=
∑
i∈S

∫
Rd ψ

n
i dµi ≤ KL(π⋆ | π̄). ,

where the last inequality follows the proof of Proposition 5.

Since the first term in the inequality of (b) is equal to KL(π⋆ | πnK), we obtain (b) using that
KL(π⋆ | πnK) ≤ KL(π⋆ | π̄) following the proof of Proposition 5.

Let us now prove (c). Since KL(π⋆ | π̄) < ∞, using Proposition 17, we have that
⊕

i∈S ψ
⋆
i ∈

L1(π⋆). From (b) and Proposition 17, we also get that
⊕

i∈S(ψ
⋆
i − ψni ) ∈ L1(π⋆), and thus∫

(Rd)ℓ+1

∣∣⊕
i∈S(ψ

⋆
i − ψni )

∣∣ dπ⋆ ≤ C0 with C0 > 0. Therefore, we have∫
(Rd)ℓ+1

∣∣⊕
i∈S ψ

n
i

∣∣ dπ⋆ ≤ ∫
(Rd)ℓ+1

∣∣⊕
i∈S ψ

⋆
i

∣∣dπ⋆ + ∫
(Rd)ℓ+1

∣∣⊕
i∈S(ψ

⋆
i − ψni )

∣∣dπ⋆ ≤ 2C0 .

Using (22), we conclude with A4 that for any i ∈ S, we have∫
Rd |ψni |dµi ≤ 2ciC0 ,

which concludes the proof of (c).

The next lemma gives an explicit expression for KL(πn | π̄). It can be seen as the multi-marginal
counterpart of (Ruschendorf, 1995, Lemma 4.2).
Lemma 19. For any n ∈ N, with kn = (n− 1) mod(K), we have

KL(πn | π̄) =
∫
Rd ψ

qn+1
ikn

dµikn
+
∑kn−1
ℓ=0

∫
Rd ψ

qn+1
iℓ

exp[ψqn+1
iℓ

− ψqn+2
iℓ

]dµiℓ

+
∑K−1
m=kn+1

∫
Rd ψ

qn
im

exp[ψqnim − ψ
qn+1
im

]dµim .

Proof. Let n ∈ N, with kn = (n− 1) mod(K). Using (18), we have

KL(πn | π̄) =
∫
Rd ψ

qn+1
ikn

dµikn
+
∑kn−1
ℓ=0

∫
Rd ψ

qn+1
iℓ

dπniℓ +
∑K−1
m=kn+1

∫
Rd ψ

qn
im
dπnim . (23)

Consider m ∈ {kn + 1, . . . ,K − 1}. Let mn be the closest integer to n such that mn > n and
m = (mn − 1) mod(K). By (19), we have

dπn = exp[
⊕m

j=kn+1 ψ
qn
ij
− ψqn+1

ij
]dπmn .

Using (19) recursively, we obtain

dπnim = exp[ψqnim − ψ
qn+1
im

]dπmn
im
, (24)
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where we recall that πmn
im

= µim .

Consider now ℓ ∈ {0, . . . , kn − 1}. Let ℓn be the closest integer to n such that ℓn > n and
ℓ = (ℓn − 1) mod(K). By (19), we have

dπn = exp[
⊕K−1

j=kn+1{ψ
qn
ij
− ψqn+1

ij
}
⊕ℓ

j′=0{ψ
qn+1
ij′

− ψqn+2
ij′
}]dπℓn ,

and using (19) recursively, we obtain

dπniℓ = exp[ψqn+1
iℓ

− ψqn+2
iℓ

]dπℓniℓ , (25)

where we recall that πℓniℓ = µiℓ . We conclude the proof upon combining (23), (24) and (25).

We are now ready to prove a uniform integrability result which is the multi-marginal counterpart of
(Ruschendorf, 1995, Lemma 4.4). Before stating Lemma 21, we prove the following well-known
lemma. We recall that a sequence (Ψn)n∈N such that for any n ∈ N, Ψn ∈ L1(µ), is uniformly
integrable w.r.t. µ if (i) supn∈N

∫
Rd |Ψn|dµ < +∞ and (ii) for any ε > 0, there exists K > 0 such

that for any n ∈ N,
∫
B(0,K)c

|Ψn|dµ ≤ ε.

Lemma 20. Let f : R → R, convex and non-decreasing on [A,+∞) with A > 0 and
limx→+∞ f(x)/x = +∞. Assume that supn∈N

∫
Rd f(|Ψn|)dµ < +∞. Then, (Ψn)n∈N is uni-

formly integrable w.r.t. µ.

Proof. Since f is convex, using Jensen’s inequality, we get that supn∈N f(
∫
Rd |Ψn|dµ) < +∞ and

since limx→+∞ f(x)/x = +∞ we have supn∈N
∫
Rd |Ψn|dµ < +∞. Let ε > 0, there exists K > 0

such that for any x > K, x ≤ εf(x)/B with B = supn∈N
∫
Rd f(|Ψn|)dµ < +∞. Therefore, we

have for any n ∈ N ∫
B(0,K)c

|Ψn|dµ ≤ (ε/B)
∫
B(0,K)c

f(|Ψn|)dµ ≤ ε,

which concludes the proof.

Lemma 21. Assume A4 and A5. Then, {exp[
⊕

i∈S ψ
n
i ]}n∈N is uniformly integrable w.r.t. π̄.

Proof. It is enough to show that the sequence {f(exp[
⊕

i∈S ψ
n
i )]}n∈N is bounded in L1(π̄), where

f : u 7→ u log(u) is continuous, convex and such that limu→∞ f(u)/u = +∞, see Lemma 20. Let
n ∈ N. We have∫

(Rd)ℓ+1 f(exp[
⊕

i∈S ψ
n
i )]dπ̄ = KL(πnK | π̄)

=
∫
Rd ψ

n
iK−1

dµiK−1
+
∑K−2
k=0

∫
Rd ψ

n
ik
exp[ψnik − ψ

n+1
ik

]dµik (Lemma 19)

=
∑K−1
k=0

∫
Rd ψ

n
ik
dµik +

∑K−2
k=0

∫
Rd ψ

n
ik
{exp[ψnik − ψ

n+1
ik

]− 1}dµik
≤ KL(π⋆ | π̄) + (c̄+ 1)

∑K−2
k=0

∫
Rd ψ

n
ik
dµik (Lemma 18-(a), A5)

≤ KL(π⋆ | π̄) + (c̄+ 1)
∑K−2
k=0 supn∈N

∫
Rd

∣∣ψnik ∣∣dµik <∞ . (Lemma 18-(c))

With the preliminary results stated above, we are now ready to prove Proposition 6.

Proof of Proposition 6. Using A4 and A5, we have, by Lemma 21, uniform integrability of
{exp[

⊕
i∈S ψ

n
i ]}n∈N in L1(π̄). Therefore, the sequence {πnK}n∈N is relatively compact with

respect to the weak topology of σ(L1(π̄),L∞(π̄)), denoted as the τ -topology. We recall that
limn→∞ KL(πnK+1 | πnK) = 0. This implies that {πnK+1}n∈N is also relatively τ -compact.
By trivial recursion, we obtain that the sequences {πnK+k}n∈N, where k ∈ {2, . . . ,K − 1} are also
relatively τ -compact. Therefore, {πn}n∈N is relatively τ -compact and τ -sequentially compact.

We consider an increasing function Φ : N→ N such that {πm}m∈Φ(N) is a τ -convergent subsequence,
and we denote by π̃ its limit for this topology. In particular, π̃ ∈PS by Proposition 5. We assume
without loss of generality that Φ(N) ⊂ KN.
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Using the lower semi-continuity of the Kullback-Leibler divergence (Dupuis & Ellis, 2011, Lemma
1.4.3), we get

KL(π̃ | π̄) ≤ lim inf KL(πm | π̄) ≤ lim supKL(πm | π̄) .

Consider k ∈ {0, . . . ,K − 2}. By (19), we have

dµik

dπnK+k
ik

=
dπnK+k+1

ik

dπnK+k
ik

= dπnK+k+1

dπnK+k = exp[ψn+1
ik
− ψnik ] ,

and thus,

∥µik − π
nK+k
ik

∥TV = (1/2)
∫
Rd

∣∣dπnK+k
ik

/dµik − 1
∣∣dµik = (1/2)

∫
Rd

∣∣exp[ψnik − ψn+1
ik

]− 1
∣∣dµik .

With Proposition 5, we obtain that {exp[ψnik − ψ
n+1
ik

]}n∈N converges to 1 in L1(µik). In addition
using the uniform integrability of {ψnik}n∈N and A5, we get

lim supn→+∞
∫
Rd ψ

n
ik
exp[ψnik − ψ

n+1
ik

]dµik = lim supn→+∞
∫
Rd ψ

n
ik
dµik .

We denotem = Kℓ. Since KL(πm | π̄) =
∫
Rd ψ

ℓ
iK−1

dµiK−1
+
∑K−2
k=0

∫
Rd ψ

ℓ
ik
exp[ψℓik−ψ

ℓ+1
ik

]dµik
by Lemma 19, we finally have

KL(π̃ | π̄) ≤ lim sup{
∑K−1
k=0

∫
Rd ψ

ℓ
ik
dµik} ≤ KL(π⋆ | π̄)

where the last inequality comes from Lemma 18.

Since π̃i = µi for any i ∈ S, using Proposition 5, we have π̃ = π⋆ by uniqueness of π⋆. Hence, π⋆ is
the only limit point of {πn}n∈N in the τ -topology. In particular, KL(πn | π̄)→ KL(π⋆ | π̄). Since
PS is convex, this last result implies ∥π⋆ − πn∥TV → 0, see the proof of Theorem 2.1 in Csiszár
(1975).

We finish this section by highlighting that A5 is stronger than (Ruschendorf, 1995, B1). A natural
extension of the latter assumption would consist of having a guarantee on the (K − 1) first potentials
given by (17), as presented below.
A6. There exist 0 < c < c̄ such that for any k ∈ {0, . . . ,K − 2}, we have c ≤ exp(−ψ1

ik
) ≤ c̄.

Under A6, (Ruschendorf, 1995, Lemma 4.3) can be adapted as written below.
Lemma 22. Assume A6. Then, for any n ∈ N∗

(a) for any k ∈ {0, . . . ,K − 2}, there exists αn,k ∈ N such that

c · (c/c̄)αn,k(K−2) ≤ exp[ψn−1
ik
− ψnik ] ≤ c̄ · (c̄/c)

αn,k(K−2)

(b) there exists αn,K−1 ∈ N such that

1/c̄K−1 · (c/c̄)αn,K−1(K−2) ≤ exp[ψn−1
iK−1

− ψniK−1
] ≤ 1/cK−1 · (c̄/c)αn,K−1(K−2)

where {αn,k}n∈N∗,k∈{0,...,K−1} is a strictly increasing sequence that can be explicitly defined.

Proof. We prove the result by recursion on n ∈ N∗.

Take n = 1. Let k ∈ {0, . . . ,K − 2}. We define α1,k = 0 and directly obtain (a) by A5 since
ψ0
ik

= 0. Let us prove (b). We have by (17)

exp[ψ0
iK−1

− ψ1
iK−1

] =

∫
(Rd)ℓ

exp[
⊕K−2

k=0 ψ1
ik

]hdν−iK−1∫
(Rd)ℓ

exp[
⊕K−2

k=0 ψ0
ik

]hdν−iK−1

=

∫
(Rd)ℓ

exp[
⊕K−2

k=0 {ψ1
ik

−ψ0
ik

}+
⊕K−2

k=0 ψ0
ik

]hdν−iK−1∫
(Rd)ℓ

exp[
⊕K−2

k=0 ψ0
ik

]hdν−iK−1

.

Using (a) at rank n = 1, we have

1/c̄K−1 ≤ exp[
⊕K−2

k=0 {ψ1
ik
− ψ0

ik
}] ≤ 1/cK−1 ,
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and therefore, we obtain (b) by taking α1,K−1 = 0. Let us assume that the result is verified for some
n ∈ N∗. We have

exp[ψni0 − ψ
n+1
i0

] =
∫
exp[

⊕K−1
k=1 ψn

ik
]hdν−i0∫

exp[
⊕K−1

k=1 ψn−1
ik

]hdν−i0

=

∫
exp[

⊕K−2
k=1 {ψn

ik
−ψn−1

ik
}⊕{ψn

iK−1
−ψn−1

iK−1
}+

⊕K−1
k=1 ψn−1

ik
]hdν−i0∫

exp[
⊕K−1

k=1 ψn−1
ik

]hdν−i0

Using (a) and (b) at rank n, we have

1/c̄K−2 · (c/c̄)(K−2)
∑K−2

k=1 αn,k ≤ exp[
⊕K−2

k=1 {ψnik − ψ
n−1
ik
}]

≤ 1/cK−2 · (c̄/c)(K−2)
∑K−2

k=1 αn,k ,

cK−1 · (c/c̄)αn,K−1(K−2) ≤ exp[ψniK−1
− ψn−1

iK−1
] ≤ c̄K−1 · (c̄/c)αn,K−1(K−2) .

Therefore, we obtain

c · (c/c̄)(K−2)
∑K−1

k=1 αn,k ≤ exp[
⊕K−2

k=1 {ψnik − ψ
n−1
ik
} ⊕ {ψniK−1

− ψn−1
iK−1
}]

≤ c̄ · (c̄/c)(K−2)
∑K−1

k=1 αn,k ,

c · (c/c̄)(K−2)
∑K−1

k=1 αn,k ≤ exp[ψni0 − ψ
n+1
i0

] ≤ c̄ · (c̄/c)(K−2)
∑K−1

k=1 αn,k .

Now, we define αn+1,0 =
∑K−1
k=1 αn,k to obtain (a) for k = 0. Consider now k ∈ {1, . . . ,K − 2}.

Following the same steps as above, we recursively define

αn+1,k =
∑k−1
j=0 αn+1,j +

∑K−1
j′=k+1 αn,j′ ,

which gives (a) at rank n+ 1. Let us now prove (b) at rank n+ 1. We have

exp[ψniK−1
− ψn+1

iK−1
] =

∫
exp[

⊕K−2
k=0 ψn+1

ik
]hdν−iK−1∫

exp[
⊕K−2

k=0 ψn
ik

]hdν−iK−1

=

∫
exp[

⊕K−2
k=0 {ψn+1

ik
−ψn

ik
}+

⊕K−2
k=0 ψn

ik
]hdν−ik∫

exp[
⊕K−2

k=0 ψn
ik

]hdν−iK−1

.

Using (a) at rank n+ 1, we obtain

1/c̄K−1 · (c/c̄)(K−2)
∑K−2

k=0 αn+1,k ≤ exp[
⊕K−2

k=0 {ψ
n+1
ik
− ψnik}]

≤ 1/cK−1 · (c̄/c)(K−2)
∑K−2

k=0 αn+1,k .

Therefore, by taking αn+1,K−1 =
∑K−2
k=0 αn+1,k, we obtain (b), which concludes the proof.

Unfortunately, Lemma 22 only yields non-vacuous bounds in the case K = 2. Indeed, when
K > 2, the sequence {αn,k}n∈N∗,k∈{0,...,K−1} leads to increase the bounds on the quantities
exp[ψn−1

ik
− ψnik ], which motivates the use of A5.

D.3 Proof of Section 5

For the rest of this section, we consider the multi-marginal Schrödinger bridge problem given
by (TreeSB) and establish in Proposition 24 the correspondence with the regularized Wasserstein
propagation problem presented in Solomon et al. (2014, 2015). We first state a technical result.

Lemma 23. Let ε > 0. Assume that π0 is given by (2), where r ∈ V is chosen arbitrarily. Then, for
any π ∈PTr

, we have

εKL(π | π0) =
∑

(v,v′)∈Er
{wv,v′Eπv,v′ [∥Xv −Xv′∥2]− εH(πv,v′)}

+ε
∑
v∈V card(Cv)H(πv) + εKL(πr | π0

r) ,

where we recall that Cv = {v′ ∈ V : (v, v′) ∈ Er}.
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Proof. Since π, π0 ∈PTr , we obtain the following decomposition

KL(π | π0)

= KL(πr
∏

(v,v′)∈Er
πv′|v | π0

r

∏
(v,v′)∈Er

π0
v′|v)

= KL(πr | π0
r) +

∑
(v,v′)∈Er

∫
Rd KL(πv′|v(·|xv) | π0

v′|v(·|xv))dπv(xv)

= KL(πr | π0
r)−

∑
(v,v′)∈Er

∫
Rd×Rd log π

0
v′|vdπv,v′ −

∑
(v,v′)∈Er

∫
Rd H(πv′|v(·|xv))dπv(xv) .

We finally obtain the result by using the definition of π0 and noticing that∫
Rd H(πv′|v(·|xv))dπv(xv) = H(πv,v′)−H(πv) for any (v, v′) ∈ Er.

Proposition 24. Let ε > 0 and µ0 ∈P such that µ0 ≪ Leb. Assume that π0 is given by (2), where
r ∈ V is chosen arbitrarily, and that φr = dµ0/dLeb. Also assume A2. Then, the set of marginals of
the solution to (TreeSB) is exactly the solution to the entropic-regularized Wasserstein Propagation
problem (Solomon et al., 2014, 2015) defined by

argmin{
∑

(v,v′)∈Er
wv,v′W

2
2,ε/wv,v′

(νv, νv′) + ε
∑
v∈V card(Cv)H(νv) + εKL(νr | µ0) : (WP)

{νv}v∈V ∈Pℓ+1, νi = µi,∀i ∈ S} ,

where we recall that Cv = {v′ ∈ V : (v, v′) ∈ Er}.

Proof. Assume that π0 is given by (2), where r ∈ V is chosen arbitrarily, and that φr = dµ0/dLeb.
In particular, we have π0

r = µ0. Moreover, it is clear that π0 verifies A1, and A3 by Proposition 16.

Let {νv}v∈V ∈Pℓ+1 and {ν(v,v′)}(v,v′)∈Er
∈ (P(2))|Er|. We define

F ({νv}) =
∑

(v,v′)∈Er
wv,v′W

2
2,ε/wv,v′

(νv, νv′) + ε
∑
v∈V card(Cv)H(νv) + εKL(νr | µ0) ,

G(νr, {ν(v,v
′)}) =

∑
(v,v′)∈Er

{wv,v′Eν(v,v′) [∥Xv −Xv′∥2]− εH(ν(v,v
′))}

+ ε
∑

(v,v′)∈Er
H(ν

(v,v′)
v ) + εKL(νr | µ0) .

By definition of the regularized Wasserstein distance given in (3), we have for any {νv}v∈V ∈Pℓ+1

F ({νv}) = min{G(νr, {ν(v,v
′)}) : ν(v,v

′) ∈P(2), ν(v,v
′)

v = νv, ν
(v,v′)
v′ = νv′ ,∀(v, v′) ∈ Er} .

(26)

In particular, we have F ({πv}) ≤ G(πr, {πv,v′}) for any π ∈P(ℓ+1). We now prove the result of
Proposition 24 in two steps denoted by Step 1 and Step 2.

Step 1. Let us not assume A2 for now. In this case, we prove in Step 1.a and Step 1.b that solving
(WP) is equivalent to solving a modified version of (TreeSB) given by

π⋆ = argmin{KL(π|π0) : π ∈PTr , πi = µi ,∀i ∈ S} . (Tr-TreeSB)

Remark that any solution to (Tr-TreeSB) is a solution to (TreeSB), but the converse result may not
be true.

Step 1.a: (WP) =⇒ (Tr-TreeSB). Consider a solution {ν⋆v}v∈V to (WP). For any (v, v′) ∈ Er,
W 2

2,ε/wv,v′
(ν⋆v , ν

⋆
v′) is well defined and thus, there exists ν(v,v

′) ∈ Π(ν⋆v , ν
⋆
v′) such that

ν(v,v
′) ∈ argmin{Eπ[∥Xv −Xv′∥2]− (ε/wv,v′)H(π) : π ∈ Π(ν⋆v , ν

⋆
v′)} . (27)

Using the gluying lemma, we build the probability measure π⋆ = ν⋆r
∏

(v,v′)∈Er
ν
(v,v′)
v′|v such that (i)

π⋆ ∈ PTr , and (ii) π⋆v,v′ and ν(v,v
′) have the same distribution for any (v, v′) ∈ Er. In particular,

we have π⋆i = µi for any i ∈ S.
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Let us show now that π⋆ is a solution to (Tr-TreeSB). Let π ∈PTr such that πi = µi for any i ∈ S.
We have

ϵKL(π | π0) = G(πr, {πv,v′}) (Lemma 23)
≥ F ({πv})
≥ F ({ν⋆v}) (definition of ν⋆)

= G(ν⋆r , {ν(v,v
′)}) (see (27))

= G(π⋆r , {π⋆(v,v′)}) (definition of π⋆)

= ϵKL(π⋆ | π0) . (Lemma 23)

Therefore, π⋆ is a solution to (Tr-TreeSB).

Step 1.b: (Tr-TreeSB) =⇒ (WP). Consider now a solution π⋆ to (Tr-TreeSB). Since π⋆ ∈PTr
,

we have π⋆ = π⋆r
∏

(v,v′)∈Er
π⋆v′|v and π⋆i = µi for any i ∈ S.

Let us show that {π⋆v}v∈V is a solution to (WP). Let {νv}v∈V ∈ Pℓ+1 such that νi = µi for any
i ∈ S.

Let {ν(v,v′)}(v,v′)∈Er
be a family of probability measures such that ν(v,v

′) ∈ P(2), ν
(v,v′)
v =

νv, ν
(v,v′)
v′ = νv′ for any (v, v′) ∈ Er.

Using the gluying lemma, we build the probability measure π = νr
∏

(v,v′)∈Er
ν
(v,v′)
v′|v , such that (i)

π ∈PTr
and (ii) πv,v′ and ν(v,v

′) have the same distribution for any (v, v′) ∈ Er. We have

εKL(π | π0) = G(πr, {π(v,v′)}) (Lemma 23)

= G(νr, {ν(v,v
′)}) (definition of π)

≥ εKL(π⋆ | π0) (definition of π⋆)
= G(π⋆r , {π⋆(v,v′)}) . (Lemma 23)

By taking the infimum in the previous inequality over the families {ν(v,v′)}(v,v′)∈Er
, we obtain by

(26) that

F ({νv}) ≥ G(π⋆r , {π⋆(v,v′)}) ≥ F ({π
⋆
v}),

and therefore, {π⋆v}v∈V is a solution to (WP).

Step 2. We now assume A2. By Proposition 3, there exists a unique solution π⋆ ∈ P(ℓ+1) to
(TreeSB) such that we π0-a.s. have (dπ⋆/dπ0) = exp[

⊕
i∈S ψ

⋆
i ], where {ψ⋆i }i∈S are measurable

potentials with ψ⋆ : Rd → R. Since π0 ∈PTr , we also have π⋆ ∈PTr , i.e., the potentials {ψ⋆i }i∈S

do not modify the Markovian nature of π0. Therefore, π⋆ is also the unique solution to (Tr-TreeSB).
Using the equivalence between (Tr-TreeSB) and (WP) established in Step 1, we finally obtain the
result of Proposition 24.

In particular, Proposition 7 directly derives from Proposition 24 by taking r = iK−1 and µ0 = µiK−1
.

D.4 Comparison with Haasler et al. (2021)

In their work, Haasler et al. (2021) study the static and discrete-state counterpart of our approach.
Given a state space X such that |X| = n+ 1 with n ∈ N, they establish a correspondence between
multi-marginal EOT with a general tree-based cost and discrete-time multi-marginal static Schrödinger
bridge, and provide an efficient method to solve these problems. In this section, we provide details on
their framework and give a precise comparison between our theory and their results.

To be coherent with the setting of Haasler et al. (2021), we adapt here some of our notation. Let us
define Z(q) = R(n+1)q

+ . For any q ∈ N∗, the set of probability measures on Xq is defined as P(q) =

{M ∈ Z(q) : ⟨M,1⟩ = 1}. We denote P = P(1). For any tensors M,P ∈ Z(q), the Kullback-
Leibler divergence betweenM and P is defined as KL(M | P ) = ⟨M log(M/P )−M+P,1⟩ and the
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entropy of M is defined as H(M) = −KL(M | 1), where the operations are meant componentwise.
In the rest of the section, we consider an undirected tree T = (V,E) with |V| = ℓ + 1 such that V
may be identified with {0, . . . , ℓ}.

Details on the results of Haasler et al. (2021). In their paper, the authors consider a cost tensor
C ∈ Z(ℓ+1) that factorizes along T, i.e., for any {j0, . . . , jℓ} with for any i ∈ {0, . . . , ℓ}, ji ∈
{0, . . . , n}, we have

Cj0,...,jℓ =
∑

(v,v′)∈E C
{v,v′}
jv,jv′ ,

where C{v,v′} ∈ Z(2) is a cost matrix for transportation between the marginals at vertices v and v′,
see (Haasler et al., 2021, Eq. (3.1)). In particular, this cost can be seen as the discrete counterpart of
the tree-based cost introduced in (1) in the quadratic setting.

Given a subset S ⊂ V with |S| = K and a set of marginals {µi}i∈S ∈ PK , Haasler et al. (2021)
study the EOT problem associated to T, see (Haasler et al., 2021, Eq. (2.4)), which is given by

argmin{⟨C,M⟩ − εH(M) :M ∈P(ℓ+1),proji(M) = µi,∀i ∈ S} . (discrete-EmOT)

This problem may be solved with Sinkhorn algorithm (Cuturi, 2013; Knight, 2008; Sinkhorn &
Knopp, 1967), for which the authors provide an efficient implementation adapted to the tree-based
setting, see (Haasler et al., 2021, Algorithm 3.1). Moreover, they state the convergence of their
method in (Haasler et al., 2021, Theorem 3.5), as a direct consequence of the results presented in Luo
& Tseng (1992).

In (Haasler et al., 2021, Section 4.2), it is assumed that S corresponds to the set of the leaves of T,
as we do, and it is shown an equivalence between (discrete-EmOT) and the discrete-state static SB
problem stated in (Haasler et al., 2021, Eq 4.2), which is given by

argmin{
∑

(v,v′)∈Er
KL(M (v,v′) | diag(νv)A(v,v′)) : (discrete-TreeSB)

M (v,v′) ∈P(2), {νv}v∈V ∈Pℓ+1,M (v,v′)1 = νv,M
(v,v′)⊤1 = νv′ , νi = µi,∀i ∈ S} ,

where Tr = (V,Er) is the directed version of T rooted in an arbitrary vertex r ∈ S, and A(v,v′) =

exp(−C(v,v′)/ε) ∈ Z(2) for any (v, v′) ∈ Er. Remark thatA(v,v′) may not necessarily be a transition
probability matrix.

Finally, Haasler et al. (2021) provide two main numerical experiments. In (Haasler et al., 2021,
Section 5.2), they consider a tree with 15 vertices, 14 edges and 8 leaves, combined to the state-space
X = {0, 1}50×50, and solve the corresponding (discrete-EmOT) problem for the quadratic cost. In
(Haasler et al., 2021, Section 6), they apply their methodology to estimate ensemble flows on a hidden
Markov chain. Given τ ∈ N∗, they consider a tree T with τ internal vertices (modeling the distribution
of N agents at time t ∈ {1, . . . , τ}), that are linearly linked, and such that each of these vertices is
independently linked to S leaves of T (modeling observations at time t ∈ {1, . . . , τ}). In this setting,
the state space is given by X = {1, . . . , 100}N . They solve the formulation (discrete-TreeSB) where
the reference measure is chosen as a random walk.

Comparison with our results. We now establish remarks on the main differences between our
methodology and the work of Haasler et al. (2021).

First of all, the continuous state-space counterpart of (discrete-TreeSB) is given by

argmin{KL(π | π0) : π ∈PTr
, πi = µi,∀i ∈ S} , (28)

where π0 is a reference measure which factorizes along Tr. In this case, πv,v′ , πv and π0
v′|v in (28)

respectively correspond to the continuous version of M (v,v′), νv and A(v,v′) in (discrete-TreeSB). In
contrast, our formulation of the multi-marginal Tree Schrödinger Bridge problem given in (TreeSB)
is a minimization problem over all probability measures π ∈ P(ℓ+1), and is not restricted to the
distributions that admit a Markovian factorization along T as in (28). Hence, our framework may
be considered more general. Remark that under A1, A2 and A3, Proposition 3 states that (TreeSB)
admits a unique solution π⋆ ≪ π0 such that (dπ⋆/dπ0) can be written with potentials. Then,
π⋆ ∈PTr

since π0 ∈PTr
, and (TreeSB) is then equivalent to (28).
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Furthermore, (EmOT) is more general than the continuous version of (discrete-EmOT), which we
can recover by taking any measure ν of the form (dν/dLeb) = exp[

⊕
i∈S φi] in (EmOT), where

{φi}i∈S is a family of potentials such that
∣∣∫

Rd φidµi
∣∣ <∞ for any i ∈ S. As a consequence, our

setting allows us to choose the root r ∈ V\S for the SB problem, whereas Haasler et al. (2021) only
consider the case where r ∈ S. In the latter case, we establish in Appendix E that r can be chosen
arbitrarily, as stated by (Haasler et al., 2021, Corollary 4.3).

Finally, TreeDSB deeply differs from the framework of Haasler et al. (2021) due its dynamic nature.
Although we solve the same tree-based static SB problem (up to continuous/discrete state-space
consideration), our approach consists in computing dynamic iterates (i.e., path measures) using
diffusion-based methods instead of static iterates (i.e., distributions) using Sinkhorn algorithm. This
paradigm is at the core of the DSB (De Bortoli et al., 2021) methodology, and offers an efficient
approach to tackle high-dimensional settings, where Sinkhorn algorithm would fail.

Here, we present some advantages of the method proposed by Haasler et al. (2021) compared to ours.
First, Haasler et al. (2021) may choose any kind of tree-based cost in practice, while our methodology
only holds for the quadratic cost. This limitation is shared with all approaches based on the DSB
(De Bortoli et al., 2021) methodology. Indeed, since the cost is determined by the reference path
measure, we often choose quadratic costs associated with Brownian motions or Ornstein-Uhlenbeck
processes. Moreover, Haasler et al. (2021) may consider various inhomogeneous (discrete) state
spaces for the vertices of T, as presented in their numerical experiments. In our case, this approach is
not compatible with our diffusion-based method. Finally, unlike Haasler et al. (2021), our method is
not scalable with the number of vertices or edges in T due to computational limits. This limitation is
common to all multi-marginal approaches which rely on neural networks to parameterize the potential
and/or the distributions of the multi-marginal OT method, see Li et al. (2020); Fan et al. (2020);
Korotin et al. (2022, 2021) for instance.

E Further results on TreeSB

Choice of the root r in (TreeSB). We recall that the reference measure π0 considered in (TreeSB),
which is defined in (2), verifies π0 ∈PTr

for some fixed root r ∈ V and π0
r ≪ Leb with density φr.

Moreover, we have π0
v′|v(· | xv) = N(xv, ε/(2wv,v′)Id) for any (v, v′) ∈ Er, and thus, π0 is entirely

determined by the choice of the root r and the density on the corresponding vertex φr.

As presented in Appendix D.1, we recall that (TreeSB) is equivalent to any multi-marginal Tree-SB
problem with a reference measure π̄0 given by (15), i.e., π̄0 writes as (dπ̄0/dπ0) = exp[

⊕
i∈S ψ

0
i ],

where {ψ0
i }i∈S is a family of measurable potentials with ψ0

i : Rd → R such that
∣∣∫

Rd ψ
0
i dµi

∣∣ <∞
for any i ∈ S. In the case where r is chosen as a leaf of T, this result implies that (TreeSB) is
unchanged if

(a) φr = dν/dLeb where ν ∈P is such that KL(µr|ν) <∞,

(b) r is replaced by r′ ∈ S, as long as H(µr) <∞ and H(µr′) <∞.

Therefore, under A0, the setting chosen in Section 3 is equivalent to any other setting where r is
arbitrarily chosen in S and φr = dν/dLeb where KL(µr|ν) <∞.

Consider now the case where r ∈ Sc, i.e., r is not a leaf of T. Then, the choice of φr can not be made
arbitrarily anymore, since it determines a further regularization on the r-th marginal of the solution to
(TreeSB). In this setting, the sequence defined by (mIPF) is unchanged. Hence, TreeDSB proceeds
in the same manner as presented in Section 3, except for the first iteration, which we detail now.

Let us define P = pathTi0
(i0, r), where Ti0 = (V,Ei0) is the directed version of T rooted in i0. We

recall that first iterate of (mIPF) is defined by

π1 = argmin{KL(π | π0) : π ∈P(ℓ+1), πi0 = µi0} .

Following the proof of Lemma 12, it is clear that

π1 = µi0
⊗

(v,v′)∈P

π0
v′|v

⊗
(v,v′)∈Ei0

\P

π0
v′|v = µi0

⊗
(v,v′)∈Ei0

π0
v′|v ,
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where we emphasize that P = {(v, v′) ∈ Ei0 : (v′, v) ∈ Er}. Therefore, Proposition 2 still applies
between r and i0, by considering r instead of iK−1. In practice, this means that the first iteration of
TreeDSB consists in computing the time reversal of the path measures P0

(v′,v) for any (v, v′) ∈ P.

Extension of the regularized Wasserstein barycenter problem (regWB). Consider the regular-
ized Wasserstein-2 barycenter problem defined as follows

µ⋆ε = argmin{
∑ℓ
i=1 wiW

2
2,ε/wi

(µ, µi) + ℓεH(µ) + εKL(µ | µ0) : µ ∈P} , (µ0-regWB)

where (wi)i∈{1,...,ℓ} ∈ (0,+∞)ℓ and µ0 ∈ P is a reference measure. This formulation admits a
further regularization compared to (regWB), which tends to make µ⋆ε closer to µ0. In particular,
given a Wasserstein barycenter problem onto a star-shaped tree, the formulation (µ0-regWB) may
be more adapted than (regWB) if we have an a priori on the form of the regularized barycenter. In
the case where µ0 = N(0, σ2

0Id), letting σ0 →∞, we recover the (ℓε, (ℓ− 1)ε) doubly-regularized
Wasserstein barycenter problem (regWB). In the same spirit as Proposition 7, we can derive the
following result from Proposition 24, which proves that (µ0-regWB) can be solved with TreeDSB.
Proposition 25. Let ε > 0 and µ0 ∈P such that µ0 ≪ Leb. Assume A0. Also assume that T is a
star-shaped tree with central node indexed by 0, and that the reference measure of (TreeSB) defined
in (2) verifies r = 0 and φr = dµ0/dLeb > 0. Under A2, (µ0-regWB) has a unique solution π⋆0 ,
where π⋆ is the solution to (TreeSB).

Below, we provide practical guidelines to parameterize µ0 when it is chosen as a Gaussian distribution.

Gaussian design of µ0 in (µ0-regWB). Consider an undirected star-shaped tree T with K + 1
vertices and leaves {1, . . . ,K}. In order to incorporate the marginal constraints in the penalization
brought by µ0 when it is a Gaussian distribution, we set its mean to

∑K
i=1 E[µi]/K and its diagonal

covariance matrix as α× (
∑K
i=1 diag(Cov[µi])

−1/K)−1, where the inverse operation is component-
wise and α is a positive hyperparameter. This choice of variance helps to correctly explore the
state-space at the very first iteration of TreeDSB, which is key to ensure numerical stability. In
this setting, (TreeSB) verifies A2 and A3, by Proposition 15 and Proposition 16. In particular, we
use this approach for two of our experiments: synthetic Gaussian datasets and Bayesian fusion, see
Appendix G.

F Algorithmic techniques

Time discretization in TreeDSB. Denote kn = (n− 1) mod(K) for any n ∈ N. Let T = (V,E)
be a weighted undirected tree and consider the multi-marginal Schrödinger bridge problem (TreeSB)
associated to this tree. We recall that for any {v, v′} ∈ E, we define Tv,v′ = ε/(2wv,v′).

Consider the path measures {Pn(v,v′)}n∈N,(v,v′)∈Ekn
recursively defined by (a) and (b). By combining

Proposition 1, Proposition 2 and results on time reversal theory (Haussmann & Pardoux, 1986), we
obtain by recursion that for any n ∈ N, any (v, v′) ∈ Ekn , Pn(v,v′) is associated with a Stochastic
Differential Equation on [0, Tv,v′ ] given by

dXt = fnt,v,v′(Xt)dt+ dBt, X0 ∼ πnv . (29)

Let N ∈ N∗. In order to sample from the dynamics (29) at iteration n ∈ N, we consider its
Euler-Maruyama discretization on (N + 1) time steps,

Xm+1 = Xm + γm+1f
n
tm,v,v′(Xm) +

√
γm+1Zm+1, X0 ∼ πnv , (30)

where Zm ∼ N(0, Id) for any m ∈ {1, . . . , N}, tm =
∑m
i=1 γi, and {γm}Nm=1 ∈ (0,∞)N is a time

schedule such that
∑N
m=1 γm = Tv,v′ . This results in approximating the path measure Pn(v,v′) by the

joint distribution πn,N(v,v′) ∈P(N+1) defined by

πn,N(v,v′) = πnv
⊗N−1

m=0 π
n,N
(v,v′),m+1|m ,

where πn,N(v,v′),m+1|m(·|xm) = N(xm + γm+1f
n
tm,v,v′

(xm), γm+1Id) for any m ∈ {0, . . . , N − 1}.
If N is chosen large enough, then πn,N(v,v′),m and Pn(v,v′),tm have approximately the same distribution

34



for any m ∈ {0, . . . , N}. Consequently, (Pn(v,v′))
R is naturally approximated by the joint distribution

π̃n,N(v,v′) ∈P(N+1) defined by

π̃n,N(v,v′) = πnv′
⊗N−1

m=0 π
n,N
(v,v′),N−m−1|N−m .

If N is chosen large enough, we obtain that

πn,N(v,v′),N−m−1|N−m(·|xN−m)

= N(xN−m − γN−mf
n
tN−m,v,v′(xN−m) + γN−m∇ log pv,v′,tN−m

(xN−m), γN−mId) ,

where pv,v′,t is the density of Pn(v,v′),t w.r.t. the Lebesgue measure.

Following the construction of our dynamic iterates, we now explain how the sequence
{πn(v,v′)}n∈N∗,(v,v′)∈Ekn

is recursively defined. Let n ∈ N, kn = (n − 1) mod(K). Define the
path Pn = pathTikn

(ikn , ikn+1). Then, for any (v, v′) ∈ Ekn+1,

(a) if (v, v′) ∈ Ekn\Pn, then πn+1,N
(v,v′) = πn+1

v

⊗N−1
m=0 π

n,N
(v,v′),m+1|m,

(b) if (v′, v) ∈ Pn, then πn+1,N
(v,v′) = πn+1

v

⊗N−1
m=0 π

n,N
(v′,v),N−m−1|N−m.

These computations may be obtained by considering the sequence given by (mIPF) to solve the
multi-marginal Tree-SB problem associated to T(N) = (V(N),E(N)), the N -discretized version of T
(see Appendix B) with weights w(N)

em = 2γm/ε, which is given by

π⋆ = argmin{KL(π|π0,N ) : π ∈P(V(N)), πi = µi ,∀i ∈ S} ,

with π0,N = π0
r

⊗
(v,v′)∈Er

π0,N
(v,v′),1:N |0.

To approximate the IPF recursion given by (a) and (b), we use on each edge of T the score-matching
approach of De Bortoli et al. (2021), which avoids heavy computations of score approximations. The
next proposition is direct adaptation of (De Bortoli et al., 2021, Proposition 3).
Proposition 26. Assume that for any n ∈ N, any (v, v′) ∈ Ekn with kn = (n− 1) mod(K), we have

πn,N(v,v′),m+1|m(·|xm) = N(Fnm,v,v′(xm), γmId) .

Let n ∈ N. Consider the path Pn = pathTikn
(ikn , ikn+1). Let (v, v′) ∈ Ekn+1. Define pn = πn,N(v,v′)

and mN = N −m− 1. Then, if (v′, v) ∈ Pn, we have

Fn+1
m,v,v′ = argminF∈L2(Rd,Rd) (31)

EpnmN,mN+1
[∥F(XmN+1)− (XmN+1 + FnmN ,v′,v(XmN

)− FnmN ,v′,v(XmN+1))∥2],

otherwise, we have Fn+1
m,v,v′ = Fnm,v,v′ .

In practice, we use two neural networks per edge {v, v′} ∈ E, one for each possible direction of
the edge, such that Fv,v′(θnv,v′ ,m, x) ≈ Fnm,v,v′(x) and Fv′,v(θnv′,v,m, x) ≈ Fnm,v′,v(x). For any
{v, v′} ∈ E, the parameter θnv,v′ is updated at iteration n via the score matching loss defined by (31)
in Proposition 26 if (v, v′) ∈ pathTikn

(ikn , ikn+1), see Algorithm 1.

G Additional experimental results and details

The numerical experiments presented in Section 7 are obtained by our own Pytorch implementation,
which is inspired from the code6 provided by De Bortoli et al. (2021). We first provide information
on the general setting of our experiments in Appendix G.1, and then give details on each of them in
Appendix G.2 along with additional results. We recall that a mIPF cycle is defined as a subset of K
consecutive iterations of (mIPF) and that the order of the leaves given by {i0, . . . , iK−1} is randomly
shuffled at each new mIPF cycle.

6https://github.com/JTT94/diffusion_schrodinger_bridge
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G.1 General experimental setup

Implementation of Algorithm 1 in practice. Let n ∈ N, with kn = (n− 1) mod(K), kn + 1 =
n mod(K). Consider the path Pn = pathTikn

(ikn , ikn+1). Assume that we are provided with a
dataset Dikn

, which contains M samples from πnikn
. Following Lines 7-9 in Algorithm 1, we apply

processes (a) and (b) recursively on the edges (v, v′) ∈ Pn.

(a) Sampling step (Line 7). For any x0 ∈ Dv , we sample from the diffusion trajectory (30) given by
the Euler Maruyama discretization of Pnv,v′ starting from x0. This gives us M ×N trajectory samples.
We then store the last iterate of each trajectory in a new dataset Dv′ , which thus approximates πnv′ .
(b) Training step (Lines 8-9). In order to avoid heavy computation, we approximate the mean-
matching loss (31) by an unbiased estimator obtained by subsampling b elements from the full
trajectories computed in the sampling process, see (De Bortoli et al., 2021, Eq. (97)-(98)). Here,
b refers to the batch-size parameter of the neural networks. Then, we perform gradient descent to
optimize the parameter θv′,v , which parameterizes the backward drift on the edge (v, v′).

To avoid any bias issue, the whole trajectories obtained at process (a) are refreshed at a certain
frequency over the training iterations of the neural networks by once again simulating the diffusion
(30). In our experiments, this refresh occurs each 500 iterations.

Setting of the time discretization. The number of time-steps N in the time discretization of the
diffusions is chosen to be even and identical for each of the edges of the tree. Let {v, v′} ∈ E.
We now give details on the design of the time schedule {γk}Nk=1 related to the edge {v, v′}, see
Appendix F. Following De Bortoli et al. (2021), we choose this sequence to be invariant by time
reversal and consider γk = γ0+(2k/N)(γ̄−γ0) for any k ∈ {0, . . . , N/2} (the rest of the sequence
being obtained by symmetry) where γ0 is a free parameter and γ̄ is determined by

∑N
k=1 γk = Tv,v′ .

In our experiments, we set N = 50 and γ0 = 10¯5.

Sampling improvement. In our code, we implemented the corrector scheme of Song et al. (2021)
and the probability flow-based sampling approach detailed in (De Bortoli et al., 2021, Section H.3),
but did not observe any significant improvement in our experiments using one of these techniques.

Choice of the architectures of the neural networks. In the case of the experiments related to
synthetic datasets (two-dimensional toy datasets, Gaussian distributions) and to the subset posterior ag-
gregation task, we implement the same architecture as presented in (De Bortoli et al., 2021, Figure 3).
We refer to this model as “Basic Model” and detail it in Figure 6. In the “Basic Model”, the Positiona-
lEncoding block applies the sine transform described in Vaswani et al. (2017), with output dimension
equal to 32, and each MLP Block represents a Multilayer Perceptron Network. In particular, MLP-
Block (1a) has shape (d, 128,max(256, 2d)), MLPBlock (1b) has shape (32, 128,max(256, 2d)),
and MLPBlock (2) has shape (2×max(256, 2d),max(256, 2d),max(128, d), d), where d denotes
the dimension of input data. We optimize the networks with ADAM (Kingma & Ba, 2014) with
learning rate 10−4 and momentum 0.9. For each of the networks, we set the batch size to 4,096
and the number of iterations to 10,000 for the synthetic datasets and 15,000 for the subset posterior
aggregation task. Our experiments ran on 1 Intel Xeon CPU Gold 6230 20 cores @ 2.1 Ghz CPU.

Figure 6: Architecture of the “Basic Model”.

In the case of the experiments related to MNIST dataset, we use a reduced UNET architecture based
on Nichol & Dhariwal (2021), where we set the number of channels to 64 rather than 128. We
implement an exponential moving average of network parameters across training iterations, with rate
0.999. We optimize the networks with ADAM (Kingma & Ba, 2014) with learning rate 10−4 and
momentum 0.9. Finally, we set the batch size to 256 and the number of training iterations to 30,000.
Our experiments ran using 1 Nvidia A100.
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Details on regularized state-of the art methods. We run the fsWB algorithm (Cuturi & Doucet,
2014) with the implementation provided by Flamary et al. (2021). For each experiment, we run 100
Sinkhorn iterations with 1500 samples for each dataset (i.e., the maximum number of samples that it
can generate) and set the regularization parameter ε to its lowest value such that the algorithm is stable.
Finally, for sake of fairness with our method, we initialise the barycenter measure with π0

r when
solving the problem (µ0-regWB) for synthetic Gaussian datasets and Bayesian fusion. To run the
crWB algorithm (Li et al., 2020), we use the code provided by the authors. We consider the quadratic
regularization, which is shown to be empirically more stable than entropic regularization. Following
Fan et al. (2020), we choose the potential networks to be fully connected neural networks with 3
hidden layers of shape (max(128, 2d),max(128, 2d),max(128, 2d)). The activation functions are
ReLu. We optimize the networks with ADAM (Kingma & Ba, 2014) with learning rate 10−4 for the
subset posterior aggregation task and 10−3 for the Gaussian experiment. Finally, we set the batch
size to 4,096 and the number of training iterations to 50,000. We highlight that fsWB and crWB solve
a regularized Wasserstein barycenter problem, which does not contain an additional penalization
term on the entropy of the barycenter, contrary to TreeDSB.

G.2 Details on the experiments

Synthetic Gaussian datasets. For each dimension that we consider, we generate three different
triplets of random non-diagonal covariance matrices whose condition number is less than 10. We
then run the algorithms on each triplet and aggregate the obtained results. The Gaussian datasets
contain 1,500 samples for fsWB, and 10,000 samples for crWB and TreeDSB. We run fsWB with the
following settings (d, ε) ∈ {(2, 0.1), (16, 0.2), (64, 0.5), (128, 1.0), (256, 2.0)}. We run TreeDSB
for 10 mIPF cycles with regularization parameter ε = 0.1, starting from the central node initialized
to a Gaussian distribution µ0 chosen as detailed in Appendix F with α = 1. Thus, we solve the
regularized Wasserstein barycenter problem (µ0-regWB), which contains an additional regularization
with respect to µ0. This choice is justified, since the non-regularized barycenter is known to be a
Gaussian distribution, and µ0 can be seen as an a priori for the regularized barycenter. For each of
the three settings, we keep the best result among the 30 mIPF iterations. In this setting, TreeDSB and
crWB have roughly the same training time.

Subset posterior aggregation. When considering a dataset splitted into several subdatasets, a
common paradigm in bayesian inference consists in running Monte Carlo Markov Chain methods
separately on these subdatasets, and then merge the obtained posteriors to recover the full posterior.
The barycenter of these subdataset posteriors is proved to be close to the full data posterior under mild
assumptions (Srivastava et al., 2018). In our setting, we consider the posterior aggregation problem
for the logistic regression model associated to the wine dataset7 (d = 42) with 3 subdatasets. We
consider here two splitting methods: (i) either, data is uniformly splitted between 3 subdatasets with
respect to the label distribution, denoted by wine-homogeneous, or (ii) data is splitted with some
heterogeneity according to a Dirichlet distribution whose parameter is randomly chosen, denoted by
wine-heterogeneous. Following Korotin et al. (2021), we use the stochastic approximation trick
so that the subset posterior samples do not vary consistently from the full posterior in covariance
(Minsker et al., 2014). We implement the Unadjusted Langevin Algorithm (ULA) to sample from
each subdataset posterior and from the full posterior. In each case, we run ULA for 5.5 ·106 iterations
with a well chosen step-size, and obtain 9,900 samples after applying a burn-in of order 10% and then
a thinning of size 500. We provide in Figure 7 some metrics which assess the quality of this sampling
process. We recall that the the full posterior samples serve as ground truth in this experiment.

The results presented in Table 2 were computed as follows. For fsWB, we first subsample 1,500
samples out of the 9,900 samples from each posterior, and then run the algorithm with ε = 0.5. We
repeat three times this procedure and then aggregate the results. In the case of crWB and TreeDSB,
we run the algorithms three times with various seeds. Similarly to the Gaussian setting, we run
TreeDSB for 10 mIPF cycles with regularization parameter ε = 0.1. We start from the central node
with a Gaussian distribution µ0 chosen as detailed in Appendix F with α = 1, and thus solve the
barycenter formulation (µ0-regWB). For each of the three settings, we keep the best result among
the 30 IPF iterations. In this setting, TreeDSB and crWB have roughly the same training time.

7https://archive.ics.uci.edu/ml/datasets/wine
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Figure 7: Evaluation of the sampling process for wine-homogeneous (left) and
wine-heterogeneous (right). We display the Autocorrelation function on 500 lags (above) and the
evolution over the iterations of ULA of the negative log-likelihood (NLL) evaluated on each training
dataset (below). In particular, the samples are decorrelated and the NLL has a satisfying profile.

Synthetic two-dimensional datasets. In this setting, we consider three different datasets (Swiss-roll,
Circle and Moons) that each contain 10,000 samples. Since we do not have an a priori on the shape
of the barycenter between these datasets, we consider the regularized Wasserstein barycenter problem
(regWB), i.e., r is chosen as a leaf and corresponds to one of the input datasets. We emphasize that
this experiment is not intended to demonstrate the superiority of TreeDSB to compute 2D Wasserstein
barycenters, but is rather meant to illustrate that (a) the marginals of the leaves are well recovered by
the algorithm, see Figure 3, and that (b) the obtained barycenter is consistent when diffusing from
the different leaves, see Figure 4. In all our experiments on 2D datasets, we observed that (a) was
persistently verified without difficulty. In this section, we rather aim at illustrating (b) by providing
additional results which assess the quality of the barycenter obtained by TreeDSB with respect to the
choice of the starting leaf r and to the choice of the regularization parameter ε.

To do so, we consider three different choices of regularization in TreeDSB: (i) ε = 0.2 (50 mIPF
cycles), see Figure 8, (ii) ε = 0.1 (50 mIPF cycles), see Figure 9 and (iii) ε = 0.05 (60 mIPF cycles),
see Figure 10. For each of these settings, we run TreeDSB with the starting leaf r chosen as Swiss-roll
(first row), Circle (second row) or Moons (third row), and display the final barycenter obtained by
diffusing from Swiss-roll (first column), Circle (second column) and Moons (third column). Note
that the vertex 0 always corresponds to the starting leaf, the vertex 1 to the barycenter node and that
Figure 4 corresponds to the first row of Figure 9.

We can make the following observations. First, the estimated barycenter is always coherent within
each row, which assesses the convergence of our method. Then, for each value of ε, the TreeDSB
barycenter is rather consistent between the rows, i.e., the choice of the starting leaf does not have a
meaningful impact on our method. Finally, as expected, we observe that the support of the barycenter
is less and less diffuse as long as ε decreases.
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Figure 8: Estimated 2D barycenter obtained by TreeDSB with ε = 0.2 (50 mIPF cycles). First row:
starting from Swiss-roll. Second row: starting from Circle. Third row: starting from Moons.

Figure 9: Estimated 2D barycenter obtained by TreeDSB with ε = 0.1 (50 mIPF cycles). First row:
starting from Swiss-roll. Second row: starting from Circle. Third row: starting from Moons.
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Figure 10: Estimated 2D barycenter obtained by TreeDSB with ε = 0.05 (60 mIPF cycles). First
row: starting from Swiss-roll. Second row: starting from Circle. Third row: starting from Moons.

For purpose of illustration, we provide in Figure 11 the barycenter obtained by state-of-the-art
two-dimensional in-sample methods that are available in POT library (Flamary et al., 2021): (i) non-
regularized free-support Wasserstein barycenter (Cuturi & Doucet, 2014), (ii) entropic-regularized
free-support Wasserstein barycenter (fsWB) with ε = 0.5 (Cuturi & Doucet, 2014) and (iii) entropic-
regularized convolutional Wasserstein barycenter with ε = 5.10−4 (Solomon et al., 2015), which is
specifically designed for images. We notably observe that TreeDSB cannot capture the full complexity
of the 2D barycenter compared to these methods. We infer that this gap comes from the dynamic
nature of TreeDSB, since increasing the number of training iterations per IPF iteration or improving
the complexity of the neural networks did not bring any significant change in our results. Finally, we
recall that the methods (i), (ii) and (iii) do not scale well with dimension, and have to be completely
run again when new data samples are available, contrary to TreeDSB.

Figure 11: Estimated 2D barycenter obtained by in-sample algorithms. From left to right: Cuturi &
Doucet (2014) (non-regularized), Cuturi & Doucet (2014) (regularized), Solomon et al. (2015).
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MNIST Wasserstein barycenter. This setting can be qualified as high-dimensional, since the data
dimension is d = 784. Here, each digit dataset contains 1,000 samples. As in the two-dimensional
setting, we do not have an a priori on the shape of the barycenter between MNIST digits, and thus
consider the formulation (regWB), where the root r is chosen as a leaf. We propose below several
experiments to assess the scalability of TreeDSB to this setting.

Digits 0 and 1. In Figure 12, we report the results obtained by running TreeDSB on MNIST digits
0 and 1, for 15 mIPF cycles with ε = 0.5, starting from the leaf MNIST-0. We display 25 samples
from the reconstructed MNIST-0 marginal (first column), from the reconstructed MNIST-1 marginal
(fourth column), from the estimated barycenter by diffusing from MNIST-0 (second column) and
diffusing from MNIST-1 (third column). We notably observe that the digits are well recovered and
that the barycenter samples are consistent. We draw the reader’s attention to the fact that TreeDSB
showed numerical unstability with a regularization value ε lower than 0.5. For purpose of illustration,
we display in Figure 13 the Wasserstein barycenter obtained by non-regularized methods from Fan
et al. (2020) and Korotin et al. (2021), and by the regularized approach from Li et al. (2020).

Figure 12: Tree DSB results for MNIST digits 0 and 1, after 15 mIPF cycles with ε = 0.5.

Figure 13: From left to right: Fan et al. (2020), Korotin et al. (2021) and Li et al. (2020).

Digits 2,4 and 6. In Figure 14, we report the results obtained by running TreeDSB on MNIST
digits 2,4 and 6, for 10 mIPF cycles with ε = 0.5. Here, we consider three settings which differ by
the starting leaf r in the algorithm: MNIST-2 (first row), MNIST-4 (second row), or MNIST-6 (third
row). For each of these settings, we display 30 samples from the estimated barycenter by diffusing
from MNIST-2 (first column), diffusing from MNIST-4 (third column) and diffusing from MNIST-6
(third column). We notably observe a global consistency of the barycenter samples across the various
settings. In Figure 15, we report the results obtained by running TreeDSB on MNIST digits 2,4
and 6, for 10 mIPF cycles with ε = 0.2, starting from MNIST-6. We display 30 samples from the
reconstructed marginals (first row), from the estimated barycenter (second row) by diffusing from
MNIST-2 (first column), diffusing from MNIST-4 (second column) and diffusing from MNIST-6
(third column). As expected, we observe less noisy barycenter samples compared to Figure 14, while
still well recovering MNIST digits.

Digits 0,1 and 4. In Figure 16, we report the results obtained by running TreeDSB on MNIST digits
0,1 and 4, for 10 mIPF cycles with ε = 0.5. We consider two settings which differ by the starting
leaf r in the algorithm: MNIST-0 (second row) and MNIST-1 (first/third rows), for which we display
samples from the reconstructed measures (first row). In Figure 17, we report the results obtained by
running TreeDSB on MNIST digits 0,1 and 4, for 10 mIPF cycles with ε = 0.2. We consider two
settings which differ by the starting leaf r in the algorithm: MNIST-0 (first/second row), for which
display samples from the reconstructed measures (first row), and MNIST-1 (third row). For all of
these settings, we display 30 samples from the estimated barycenter by diffusing from MNIST-0
(first column), diffusing from MNIST-1 (third column) and diffusing from MNIST-4 (third column).
Similarly to the digits 2-4-6, we observe consistency within the barycenter samples, unconditionally
to the starting leaf, and less noise as ε decreases. Note that the reconstructed MNIST digits are less
truthful to the original datasets when ε is low.
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Figure 14: Tree DSB results for MNIST digits 2,4 and 6, after 10 mIPF cycles with ε = 0.5. First row:
starting from MNIST-2. Second row: starting from MNIST-4. Third row: starting from MNIST-6.

Figure 15: Tree DSB results for MNIST digits 2,4 and 6, after 10 mIPF cycles with ε = 0.2, starting
from MNIST-6. First row: samples from the reconstructed marginals. Second row: samples from the
estimated barycenter.
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Figure 16: Tree DSB results for MNIST digits 0,1 and 4, after 10 mIPF cycles with ε = 0.5. First
row: samples from the reconstructed marginals, starting from MNIST-1. Second row: samples from
the estimated barycenter, starting from MNIST-0. Third row: samples from the estimated barycenter,
starting from MNIST-1.
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Figure 17: Tree DSB results for MNIST digits 0,1 and 4, after 10 mIPF cycles with ε = 0.2. First
row: samples from the reconstructed marginals, starting from MNIST-0. Second row: samples from
the estimated barycenter, starting from MNIST-0. Third row: samples from the estimated barycenter,
starting from MNIST-1.
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