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A Useful Mathematical Results

Theorem A.1. Let A be m x m random matrix whose entries A;; are independent identically
distributed standard Gaussian random variables. Then, there exists absolute constant ¢, C' > 0 such

that

| Allop < C/m,  with probability at least 1 — 2e~ .

(16)

Theorem A.2 (Strong Bai-Yin theorem). Let A be m x m random matrix whose entries A;; are

independent identically distributed standard Gaussian random variables. Then

lim | Allop/v/m = V2,  almost surely.

7)

Theorem A.3 (Kolmogorov’s SLLN for i.i.d.). Let {X,} be sequence of i.i.d. random variables and

S, =" | X;. Then 5= “3 EX, ifand only if E | X;| < co.

n

Lemma A.1 (Almost surely convergence). Some important properties of almost surely convergence.

a.s.

1 If X, "3 X, then g(X,,) “3 g(X) for all continuous function g.

2. If X, 3 Xand Y, “3Y, then X,.Y,, 3 XY.

3.0 X, S Xand Y, “3Y, then aX,, +bY, “3 aX +bY.

Lemma A.2 (Gaussian smoothing). Let f, g be a real-valued function. Define function F(c) :=

E. N (o) f(2) and G(pn) = E.nr(u,02)9(2) for o > 0. Suppose f(x),g(v) € 0(6’12), then

F'(0) = %EZNN(OJ) [fp+0o2)(z> —1)]

1
G'(p) = ;EZNN(OJ) [9(p + 02)2]

Proof. Note that F'(0) = E_._ar(0,1)f (1t + 02), then

d > 1 2
e 1 2
:/ f/(u-i-az)z\/Te_z 12dz
— 00 ™

% - 1 uy?
:/ f/(u) (U M) ei( 202) du, u = M+UZ
—00

o oV 2T

=§ / i) {(“ ;2“)2 - 1] L -t

ovV2T
1

V21
:éEZNN(O,l) [f(p+ 0z)(2* — 1)]

2
—Z2
e 2dz

:% /:)O fp+o2) [22 — 1]

13
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Similarly, we have

oo 2

Tl >
1 7005 22

== /_OO (L+o02)z \/7 T dz
1

:;Ezw\f(m ylg(p +02)2]
O

Lemma A.3 (Gaussian conditioning). Given G € R™*™ and H € R"*™, let W € R™*" to follow
matrix Gaussian distribution, i.e., W ~ MN(0,01,,01,) for some o > 0, suppose G = W H has
feasible solutions. Then the conditional distribution of W given on G = W H is

Wla—wn ~ MN(GH', I,,, a*1III7T).

where T1 = I,, — HH' is the orthogonal projection onto the null(HT).

Proof. First, we consider the optimization problem
.1
min §||W||§;, st. G=WH.
The Lagrange function is given by
1
LW,V) = S[WlF + (V.G — WH).

The KKT condition implies Vi L(W,V) = W — VHT = 0 and further W = VH?T. Since
G=WH,wehave V =G(HTH)" andso W* = G(HTH)'HT = GH'.

Then let IT = I,, — HH' be the orthogonal projection onto the null( 7). Thus, the conditional
distribution of W given G = W H is

Wla—wn = GH' + WIIT = MN(GH', I,,, 0?1117,
O

Lemma A.4 (Conditional distribution). Let X ~ MN (M,U, V). Partition X, M, and V such that

|1 X _ | M _ U1 Ui
X = |:X2:| M= [Mz} o |:U21 Uzz}

where X1 € R™*P, Then

X| ~ MN (M, U1, V)
Xo|X1 ~ MN (Ms + Un U (X1 — Ma),Usy — Us1 Uy ' Ui, V).

Note, if Uyy = 0, then Xo| X1 ~ MN Mz, Usz, V) indicates X5 and X, are independent.

Lemma A.5. Let o be a L-Lipschitz continuous function. Then o is also a controllable function. In
addition, ¢(x,y) := o(x)o(y) is also a controllable function.

14
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Proof. WOLG, we can assume L = 1. As o is Lipschitz continuous on its region, there must exists
some xg such that o(xg) = ¢. Then we have

l0(z)] < |o(x) — o(@o)| + |¢| < |2 — o] + |¢] < el e=wol < glel ™ wolglel ™Ml — ¢ (Calel,
Similarly, we have

lo(z, )| = |o(z)] |o(y)] < CreC2U=l+uh),

Lemma A.6. Let f be a controllable function. Then for all i € R and o > 0, we have

E.on (o) | F(2)] < 20201+ CE0°/2,

Proof. Note that
Eon(uo2) [f(2)] =Eonno) [f (02 + )
S]EZNN(O 1)01602(U|Z|+WD

:01602‘MEZNN(O,I)ECZU‘Z‘

> 1 >
:Clem/ (Caolzl L =222,
—oc Ver

0 oo
1 2 1 ,
=C 6‘“‘ |:/ e*Czo'ziefz /2d2+/ 6C2‘7276*Z /de]
' —oo m 0 \/%

0 2,2 o0 2 2

1 1 2, C3o 1 1 5, C3o
=Cqelvl [/ e L e e PR o3 (z=C20)?+=2 1
e V2T =

§2C’1602‘”‘+C§"2/2
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B Proof of Theorem 4.1

In this Appendix, we show the preactivation gi acts like Gaussian random variable. As a consequence,
the finite-depth neural network f1- tends to a Gaussian process as width n — oco.

Lemma B.1. Suppose the activation function ¢ is nonlinear Lipschitz continuous function. For
input z, let g*, - - -, g* be the resulting pre-activations for { € [L]. Then for any { € [L] and for any
controllable function ® : RY = R, we have as m — oo

IR
EZ@(‘C]%,,gﬁ)—>E|:(I)(Zl,,Z€)], (18)
k=1

where (2%, 27) ~ N(0, %) and the covariance matrix ¥ € R?>*? are computed recursively as follows

Y(zt, 2Y) = 81402 |22 /nin, Vi>1, (19)

N(2' 29) = o2 Ep(u'Hp(u/ 1), Vi > 2. (20)
where u! = 21 and u® = 2* + 2! with covariance

S(ut,ut) = o2||2)|* /1, Vi > 1, 21

Y(u',ul) = (24 27) + (2, 21, Vi > 2. (22)

If, in addition, Wt and W9 are independent, then
Y(2429) =0, Vi#j] (23)

Lemma B.2. [37, Theorem 5.4] For any NETSOR program whose weight matrices are random
initiated as (5) and all activation functions are controllable. If g*,--- , ¢° are any G-vars (i.e.,
pre-activation in our case), then for any controllable function ® : R — R, we have

n

1

=2 0k 00) T B ®(2), (24)
k=1

where z := (21, --- , 2*) and p and > can computed by [37, Definition 5.2].

Intuitively, these two Lemmas indicate that (g;,- - ,gr) acts like a multidimensional Gaussian
vector whose covariance can be computed recursively. Lemma B.1 is a special case of Lemma B.2
as Lemma B.1 requires each pre-activation g* encoded same input z, while Lemma B.2 does not
make such assumption. In fact, the proof techniques are identical, i.e., uses Gaussian conditions and
smoothing inductively on previous results. To make the paper self-contained, here we provide a proof
for Lemma B.1 where we simplify the proof of [37, Theorem 5.4] in the following subsections by
removing so-called core set.

B.1 Proof of Theorem 4.1 by Using Master Theorem B.1 or B.2

Based on Lemma B.1 or B.2, we can immediately obtain the desired result.

For simplicity, we assume oy = 1. We prove the desired result by induction. For L = 1, we have
fE(@) = ¢'(x) = We and

3 4(@) = gh() = (wp, ) "= N(O, [[2]| /).
Then we have
S, a') = cov(f&k(x),f&k(x’)) = (z,2) := B (x,2).

For L = 2, we have f}(x) = ¢?(x) = W2h!(z). By condition on g*, we have

71(@) = gi(@) = (w}, ' (@) = N0, |n ()] /n).

16



514 Then

<h1(:c >/
=(o(g" (2)), ¢(g" () /n

%Z¢ es)
A0 )

515  where

st6  Now, we assume the results holds for L. Then we show the result for f, L+1(z). In this case, we have
517 fo ! (z) = g"*'(z). By condition on the values g“, we have the output fL'*'1

518 Gaussian random variables, i.e.,

2N @) = g (@) = (wf T RE @) N, [RE ()12 /).

are i.i.d.centered

st9 Then we have
EL-H( ) COV( L+1(m>7 HI:Zrl(wl))
=<hL hE (")) /n
:,Z¢ 9t (@) + g} (@)e(g7 (") + g7 (1))

‘L?IM(Z () + 2 (2))d (2" (') + 2 (2))

=2z o).
s20 where
2H(z) Yz, ) 0 Sz, ) 0
2E(x) ~Nlo 0 »h(z, ) 0 >z, ")
2 () T B 2) 0 Y2, 2) 0
2B (') 0 sh(a', z) 0 (', 2")

s21 Here the covariance is deterministic and independent of g”. Consequently, the conditioned and
522 unconditioned distributions of fGL,jl are equal in the limit: they are i.i.d.centered Gaussian random

523 variables with covariance 71,
524 B.2 Proof of Lemma B.1: the basic case / = 1
525 WLOG, we can assume o, = 1. We prove by induction. When £ = 1, we have
g1 = Wix
526 SO that
gk "N, 2] /nin).

s27 Given a controllable function @, the random variables X, = ®(g}) are still i.i.d.. It follows from
528 Lemma A.6 that

2 2
E |X1| = Exono, o) [2(2)] < Cre% 1l < co.

529 Then the desired result is obtained by following Theorem A.3 the classical Kolmogorov’s SLLN for
53 14.1.d. random variables.
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B.3 Proof of Lemma B.1: general case for independent matrices W £ W*
Suppose the desired result hold for ¢, then we show the result also hold for £ + 1. In addition, we
assume the weight matrices 1W* are independent to each other. Thus, the weight matrix W*+! are
not used in previous layers. For brevity, we denote W := W**+! and so we have expression
gt = Wit

Here the randomness of g‘*! comes from both T and h¢. As W is not used before, W and h’ are
independent. Let I3 be the o-algebra spanned by all previous g', g2, - - - , g°. Then the conditional
distribution of g**! on B is given by

9B ~ N (O, [11°]1? /ndy),
or equivalently

g B N (0, |12 /). (25)

By using the inductive hypothesis, we have
2 £)2 1 ¢ ¢ 112 @-8. £ 112 41 41 2
o= WP/ == > Jo(gi + i) FE[o(" +2)] =B M) =0% 26)
k=1

where we use the fact ®(z,y) := ¢(x + y) is controllable, i.e.,

|@(z,y)| = [p(x +y)| < |z +y| < eloHl

By using triangle inequality, we have

1 n
ﬁ Z@(gi, e ag£+1) —-E [(I)(Zl7 e 7ZZ+1)] < |A7L| + |Bn| + |CTL| )
k=1

where
A, = %Zn: O(gh, g — %zn:EZNN(o,ag@(gi, Gk ?) @7
=1 k=1
B, — %iEsz(om@(gi, e ghs) - %iEmN(W@(Q,ﬁ, gl @8)
k=1 k=1
Cnylzilq’(géw-' gk 2) —E[0( 2] 29

A, converges to 0 almost surely

Define random variables Z, := ®(g},--- , gf,gi ") — E. n(0,02)®(gt: -+ g5 2). By equation

(25), we have g£+1 |B N (0,02), we can easily show X}, are centered and uncorrelated. Observe

that

EZ), =E5E o157k

:EBEQI{‘*'HB [(I)(gli7 T 7g£a g£+1) - EzNN(O,U%)@(gia c ag£7 Z)]
:EB [Egz+1\8q)(gli7 e 79[5;7 g]l;+1) - Ez~/\/(0,0%)¢<gi) T 7g£7 Z)]

=Egp I:EZNN(O,G'EL)Q(Q]}H o agll;a Z) - EZNN(O,U,%)@(QI})? t 7g£7 Z)]
—Es[0] = 0.

18
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Similarly, we obtain EZ). Zy, = i E | Zy \2. Moreover, we can upper bound E [Z}, |l”>’]2 as follows

E [Zk|B]2 :Eg£+1|l3 ‘(I)(gliv e 7gll;ag]l;+1) - EZNN(O,(T%)é(g]]C-’ e ag]t;v Z)

2
§8]Ez~./\/(0,<7%) |(I)(gli7 T agll;v Z)| ) (CL)

| 2

1 0 2
ZS]EZNN(O,I) |cp(gk7 9k UTLZ)’
14 i .
§8EZNN(0,1)016202(21'=1 l9il+onl2l) " is controllable
£ i
=8, 202 2im |gk|]Ez~N(071)62020n‘Z‘
<80, 20 Sins ol 20502

where (a) is due to maximal and Jensen’s inequality.

Since ¢2C2 Xi-1 19kl is controllable and on “3 0, it follows from the inductive hypothesis that
1 < 2 1 < 20, S i 20202 a.s. 90, S ) 20242
7ZE[Z/€|B} SSCl 726 22 =1 |9kl Let2%n X SClEe 221':1‘21‘.6 202
"= "=

As the RHS is a deterministic constant, we have

1 n
- > E[Z|B” € o(n”), Vp>0.

k=1

or equivalently, 1 31" | E[Z;|B]* < n” for large enough n.

Now, we will first show A,,> “3 0. For any € > 0, we have for large enough n
P(|A,2| > €) <e ?nE|A,:|*

’ﬂ2
= 2n* Z E[Zi Z/]
kk/'=1

TL2
=Y E|Z)?
k=1

2
1 n
_ -2 -2 Z 2

= 2n"%Ep [nQ"}

<e 2p T2,
Furthermore, we obtain
o0 oo
ZP(|An2| >e) < 2672n72+2p < 00,
n=1 n=1
provided we choose 0 < p < 1/2. Thus, it follows from Borel-Cantelli lemma that A,,> “3 0.

Now for each n, we define k,, := sup{k € N : k2 < n}, then we have k2 < n < (k, + 1)2. Note
that

n k2 n
1 Z 1 Z" 1 Z
n i=1 n =1 n

i=k2+1

We will show the two terms goes 0 a.s.. As we just proved, the first term goes to 0 a.s., since

ka k2
%ZZZ- < kizZZi 2.
=1 n =1

19
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For the second term, let T, := £ > |, | Z;, then for n large enough

P(|T,| > €) <e¢ 2n Z]EZ2

i=k2+1

<e’k,* Y EZ}

i=k2+1

<e 2kt (n—k2) b > EZ

_ 12 i
n=kn i=k2+1
<e 2kt (n—k2)'T
<Ce 2kt 2k, + 1)1
§C€72]€;3+p
where C is some fixed constant. Then we have
S B(Ti| 2 o) Z Ok ¥t
n=1
< Z Ce?(Vvn—1)73+
<ZC€ — 1) 1 20 ZZTF(?’F/
n=4

provided we choose 0 < p < 1. Therefore, by choosing 0 < p < 1/2, it follows from Borel-Cantelli
lemma that 7}, “3 0 and further A4,, “3 0.

B,, converges to 0 almost surely

a.s.

First of all, we will show ¢ > 0 by which we can use Gaussian smoothing to show B,, = 0.

Lemma B.3. For ¢ > 1, if (2%, 2) > 0, then X(2T1, 2/+1) > 0.

Proof. We prove by contradiction. Assume Y(2°*1, 2¢*1) = 0. Then we have
0= ("1 2 = Eg(2* + 2')* = Eo(u')?,

where u’ ~ N(0,2(2%, 2%) + ||| /nm) It implies ¢(2) = 0 almost surely, but it contradicts ¢ is

non-constant function since ¥(z¢, 2) + ||z||2/nin > 0. O

It follows from Lemma B.3 that ¢ > 0. Then o, % &, we have on > 0/2 > 0 eventually, almost
surely. To use Gaussian smoothing, we define following functions

fk)(x) = (I)(glia T ag£7x)a F]f(U) = EZNN(O,JQ)fk(Z)'
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By using Gaussian smoothing, we have for large enough n

n

|B,| S%Z|Fk(an) — Fi(0)]
k=1

1 n On
SEZ/ |Fy.(t)| dt, assume o < o,
k=177
I~ [T
<> [ B [ - D]ty (@)
k=177
Sl Z/ h tilEzN/\/(oJ)OleCz i |£7;‘;|+C2t|z|+tdt7 (b)
nk:l g
1 i On £ i 2
<= =10, €2 Xzt lgr]+Cat™ /24t gy

=G (i > e X "”’v') (aon) — (o))
k=1

where (a) is by Lemma A.2 and Jensen’s inequality, (b) is because f}, is controllable since @ is, (¢) is
by Lemma A.6, and a(t) is the anti-derivative of the function ¢ (t) = t~1Cye%2!" /2t Here, é(t) is

continuous, so that a(¢) is well-defined and continuous. Since e“2 i lgkl i controllable, it follows
from result for the basic case that

Zi

1 & ¢ i ¢
Co S0 1gt| a8, Co S
- E eC2 Li=119x| —>EZ~N(072‘Q1)6 221
k=1

a.s.

Since o, “3' o and « is continuous, it follows from Lemma A.1 that a(o,,) “3 a(o) and further
‘B | <Cl lzn:ec2 5:1 ‘gi‘ (O((O' )_(X(O')) go
t "= !

C,, converges to 0 almost surely
Define function ®(z!, - - , 2¢) := E.n01)®(zh, -+, 2%, 02). Since @ is controllable, d is also a
controllable function. Then it follows from the inductive hypothesis that

1 n n
EZEZNN(O,Uﬂq)(gI}:a'” 79%;2) = Z]Ezw./\/'(o,l)q)(glif" 79270-2:)
k=1 k=1

Il
S
[

>
—~
)
i
o
TS
~—

a.s

Thus, C,, = 0.

B.4 Proof of Lemma B.1: general case for shared matrices

Now in this section, we prove the desired result when the weight matrices are shared, i.e., wt=w.
Assume the result holds for ¢, then we will show the desired result still holds for ¢ 4+ 1. Note that

gt =wht.
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As W is used before, we have
g =Wh"t Viell.
Then define
G=1[¢g" ¢* - ¢ 1eRY, H:=[" n ... K er™ (30)

Then we have G = W H. Let B be the o-algebra spanned by all previous g*, g2, - - - , g*. To obtain
the conditional distribution of ge+1 on 3, we first compute the conditional distribution of W on B. It
follows from Lemma A.3 that

W|B =G (H"H) HT + Wi}
~MN (GHTH)'HT, I,,, 1z} /n)
where IT = I,, — H H' is the orthogonal projection onto null(H ), respectively. Therefore, we obtain
g B~ N (G (HTH) TR IR )
or equivalently
gir|p et (Gk (HTH)" HTht |7 )2 /n) ,
where G, € R is the k-th row of G.

Since the activation function ¢ is controllable by Lemma A.5, it follows from the inductive hypothesis
that

i i 1 = i j a.S; i j i i ..
(BT (W) /= - D 6(gh + g0)(gh + gb) T B + 2N )2 + 2') = BT 2T Vi
k=1
Then we have as n — oo
HTH/n % %2, 7Y
HTh Jn 225 23( 25, 240

where Z¢ = [2! .- 2%]T € R¥*L. Since (pseudo-)inverse is continuous function, we further obtain
v = (HTH) BTt = (HTH/n) BT Rt fn &5 5(2¢, 24528, 21 = 0. (1)
By using the equality HH' = H(HTH)"HT, we have
1
[T 12 == (h*)T (I, — HH')? b

(W) (I, — HH') h*

=3 =3

=—(HTh" — (n)TH/n) (HTH/n)" (HTh*/n)

LES(E ) — (2 29828, 29T (28, 2.

3

By using triangular inequality, we have

1 n
= gk kg ~E R 2 ]| < Aul 4 [Bal + [Cal + D
k=1
where
1 n 1 n
An = ﬁ Z (I)(g},i7 . ’g£7gi+1) _ E ZEz~N(uk,n,o§)¢’(9é, c. 7g£’ Z) (32)
k=1 k=1
1 <& 1 <&
By = n ZEZNN(MWJ%)@(QJ};’ e 79£>Z) T ZEmN(M,n,gz)@(gi, e 7gi,z) (33)
k=1 k=1
1 — 1 &
Cn = ﬁ ZEZNN(Ilk,mo'z)(I)(gliv T 7g£a Z) - ﬁ ZEzNN(/thg?)@(gi, v ,gé, Z) (34)
k=1 k=1
1 n
D, = - ZEzNN(;Lk,ﬂ)@(gi, e ,gﬁ,z) _E [cp(zl7 o ,z”l)] (35)
k=1
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where

pen = Go(HTH)Y H hy = Gio,, (36)

r=GEX(Z5, 2525, ) = G, (37)
o = [T A2 (38)
o2 — E(ZZJrl’ZZJrl) _ E(z”l,ZZ)E(ZZ, ZZ)TE(ZZ,Z£+1). (39)

B.4.1 A, converges to 0 almost surely

Define random variables Z, = ®(gt, -, 95, 91" ") — (gm0 (95 + 195, 2). As Xi|B

are independent, we can easily show X}, are centered and uncorrelated. By using Jensen’s inequality,
Z%|B can be upper bounded as follows

E [Z2|B] < 8E.nueo2) |O(ghs 5 g 2)|* < 8C1202 Dizilohl 2Calminl 20300 (40)

As v, “3 v by equation (31), we have ||v,|| < 1+ ||v||, eventually, almost surely. Thus, for large
enough n, we have

14

Z Un, zgk

i=1

|kl = |GL(HT H)Y(HTh)| =

4
< (ol +1)> gk (41)
=1

where we also use the Cauchy-Schwartz inequality and square root inequality. It follows from
equation (40) that

4

[ZMB] < 8Cie (2C2+|v||4+1) 35 02 _ q)<gi’ . ’gﬁ) . 6203‘7%,

where &(z1, -+, 2%) := 8Ce(2C2FIVlI+1) i 2l is clearly a controllable function. Tt follows from
inductive hypothesis and some basic properties of almost surely convergence in Lemma A.1 that

n

1 R
7ZE Zk‘B Z(I) gka 9 C2 2 2) E |:(I)(Zlv ’ZZ):| ' 620502'
nk:l

As RHS is a deterministic constant, we have 2 > | E [X?|B] € o(n”) for all p > 0. Then by
using the same argument provided in Section B.3, we have 4,, “3" 0.

B,, converges to 0 almost surely
Ifo >0

In this subsection, we assume ¢ > 0. In addition, since o,, % &, we have on > 0/2 > 0 almost
surely for large enough n.

We can obtain the desired result B,, “3" 0 by applying the same argument in Section B.3 to functions
fir and F}, redefined as follows

fk(ﬂj) = q)(gliv T vg£7$)a Fk(g) = EZNN(Nk,n,U2)fk(Z>'
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630

By using Gaussian smoothing, for large enough n, we have

1
|Bn| SE Z |Fk(0'n) - Fk(”)'
k=1

<

S
NE

/ ’ |Fi.(t)]|dt, assumeo < o,

B
Il
_

On

T B w00 | fr (e +t2)(82 = 1)] dt,  (a)

b
Il
—

IN
S
(]
T

On

7 B, pr(0.1)CrelCHIVIFD L lgk+Catlzl+t gy (p)

x>
I
—

IN
Sl
(]
T

o

10, e Cot ) Ty Ik Cat? 2t gy ()

IN
Se
(]
T

>
|

[

1 — ¢ i
=C - (Ca+lvll+1) 32524 9l n) —
e (a(on) - a(o).
where (a) is by Lemma A.2, (b) is because f} is controllable since ® is, (¢) is by Lemma A.6 and
equation (41), and «(t) is the anti-derivative of the function &(t) = t‘lC'l_eCQtz/ 2+t Here, a(t) is
continuous, so that «(t) is well-defined and continuous. Since ¢ 31 194! is controllable for any
constant C, it follows from the inductive hypothesis that

n
1 3 @t S Isil 22 [e<cz+nv||+1>zf:1\ziq < oo,
n
k=1

a.s.

Since o, “3' o and « is continuous, it follows from Lemma A.1 that a(o,) “3 a(o) and further

1 n P ;
1Bn| < Cy <n ; (Catllol+1) S0, ok

) (a(on) — alo)) £ 0.

Ifo=0

In this subsection, we consider when ¢ = 0. Note that the argument in the case o > 0 also holds if
o = 0and o,, # 0 (infinitely often), because the derivatives F} (t) are well-defined if either & > 0 or
oy > 0. Thus, we only need to analyze the case where 0 = 0 and o,, = 0 eventually.

For o = 0, we have X(z/*1, 2/H1) = B, ZH%(Z%, Z29T2(Z¢, 2'T1). By Lemma A.4, we
have

A =2 20525 20 2 =0z, as.

For controllable ®, we can show the function ® : (gi,---,g%) — ®(gh, -, g%, G4vy,) is also
controllable as follows

D(gp, - ,gﬁ)’ =|®(gk, gk Ghvn)|
<0,e°? S 19k 4+C2| i vnsigi |
<Oy e@Catlvl+) L 1kl

where the second inequality follows from equation (31). By using the inductive hypothesis, we obtain

1 & 1 &
ﬁz@(géa'” 79£7G£Un) = ﬁ (I)(g]i,"‘ ’gll;)
k=1

k=1

RS- ,ZZ):|

[@(zl, oo 25 vZZ)}

(@21, -+, 2. (42)
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Moreover, as we assume o,, = 0 for all large enough n, we obtain gk+1 B =G Un almost surely.
Then for large enough n, we obtain

3

1 n
7Z]Ez~/\/ ,uk n 0’2)q) Gk7 Zq) gk:7 o 7g£7,u'kn = 72(5 gk> 7g]€j7G£/UTL) (43)
k=1 k=1

Combining A,, 30 with equations (42) and (43) yields B,, E=)
B.4.2 (), converges to 0 almost surely

As discussed in Section B.4.1, we can assume o > 0. By using Gaussian smoothing again, we can
o1 a.s. . a.s. .
easiliy show C,, = 0 since py ,, — px. Define functions

fk( ) (glm' . agll;ax)a Fk(u):EZNN(M,U2)fk(‘Z)'
It follows from Lemma A.2 that

1 n
|Cn| < - Z | Fr(pren) — Fre(p)]

\ /\

Hi,n
— Z/ |Fy.(t)|dt, assume pp < pgn
Hi,n 1
< fz / E.no) it +02)] 2] dt

el Co Sy |gi|+Cat+(Cao+1) 2]
- Z By Cre i dt

| /\

IN

gole(02”+”2” Ze“ ol Blukn) — B,

where 3(p) is the anti-derivative of the function B(t) = 2!, Here 3 is well-defined and continuous

since /3 is continuous. As b =3 g, it follows from inductive hypothesis and Lemma A.1 that
a.s.

Cc, = 0.

D,, converges to 0 almost surely

In this section, we can show D,, 20 straightforward from the induction. Define functions

é(zlf" ’ZZ) = EZNN(U,I) (I>(Zl7"' ,ZZ,Z’UZ‘ZZ‘ +0-Z)

Here & is controllable as ® is. By applying the inductive hypothesis on d, we obtain

1
D, = E ZEZNN(,U.)C,O'Q)¢(9;;? T 7g£a Z) -E [(I)(Zl, T ,Z€+1)]
k=1

1 n
= 5 ZEZNN(OJ)@(Q%? o 7g£7/~”k + CTZ) - Ezl,m 7Z£EZZ+1|ZI,H' ,ZZCD(Zlv to 7Z£+1)
k=1

1 n
- E ZEZNN(OJ)(I)(QI}:a t 7gﬁvﬂk + UZ) - ]Ezl,--- ,szsz(O,l)q)(Zlv o 702)

i) - Ezl,---,zl(i)(zl7 o ,Zﬁ)

Il
S~
x> bl
M= I

K>

a.s.

=0,

s4s  where we use the fact iy = Ghv = Zle Vi gL
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sss C  Proof of Corollary 4.2

647 Define Gaussian random variables u‘(z) that is encoded by input  as follows for all £ = [2, L — 1]

ut(z) =2 ()
ul(z) =2 (z) + 21 (z).
648 Then we can easily compute the corresponding covariance as follows for ¢ > 2
cov(ut(z),ul (z") =cov(z!(z), 2! (z))
=x!(z,2")
cov(uf(x),u’ (z")) =cov(2*(z) + 21 (z), 2° (') + 21 (2))
=cov (2 (), 24(2")) + cov(z!(x), 21 (2))

= (z,2") + X' (z,2')

26
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D Proof of Theorem 4.3

This section is deducted to prove the strict positive definiteness of 7. We will prove it by using the
notion of dual activation and Hermitian expansion.

Letz ~ N (0,1) and f : R — R. Then we can define an inner product

(f,9) = Eonno,) f(2)g(z).
Thus, we define a Hilbert space of functions H, that is, f € H if and only if

1£1? = Eprnrony | £ (@) < 0.

Next, consider the function sequence 1, z, 2, - - -. Clearly, they are independent. Then apply Gram-
Schmidt process to the function sequence w.r.t. the inner product we define before, and we obtain
{hy} the (normalized) Hermite polynomial that is an orthonormal basis to the Hilbert space .

Now, we are ready to introduce dual activation. The dual activation ¢ : [-1, 1] — R of an activation
¢ : R — Ris defined by

?(p) == Ex,y)~n, #(X)o(Y). (46)

where NV, is multidimensional Gaussian distribution with mean 0 and covariance matrix [p ﬂ .

Then the dual kernel £ is given by
ko(w,a') = d((w,a")).

If a function ¢ € H, we not only can obtain an expansion by using the orthonormal basis of Hermitian

polynomials but also an expansion to the dual activation dg by using the same Hermitian coefficients.
As a consequence, the corresponding dual kernel k£, can be shown to be strict positive definite by
using the Hermitian expansion.

Lemma D.1. [11, Lemma 12] If ¢ € H, then

$(x) = Y anhn(2), 47)
n=0
b(p) = Z aZp". (48)
n=0
where a,, := (hy,, ¢) is the Hermite coefficients, and the above is Hermitian expansion.

Theorem D.1. [2], Theorem 3][15, Theorem 1] For a function f : [-1,1] — R with f =
> o buhy, the kernel Ky : S™~1 x Smo~1 — R defined by

K(z,2") = f(2"2")

is strictly positive define for any ny > 1 if and only if the coefficients b,, > 0 for infinitely many even
and odd integer n.

Now we are ready to prove the kernel or covariance function X% is strict positive definite by using
Gaussian measure techniques on the existence of positive definiteness.

Lemma D.2. Suppose ¢ is non-polynomial Lipschitz continuous. If X¢ is strictly positive, then ¥4+
is also strictly positive definite.

Proof. Assume the contrary. Then there exists a finite distinct collection {z;}?_; and some constants
{e;}_, such that

0= Z cich“l(xi,xj) =K lz Ci¢(ui)‘| .

i,j=1 i=1
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This indicates Y., ¢;¢(u;) = 0 almost surely. Note that we have the random variables (u;, u;)
follows Gaussian distribution given by

(ui, uy) ~ N(0, A (24, 7).

WLOG, we can assume ¢; # 0. Then for some ¢(u;) # 0, we choose u; = - -+ = u,, = ug. Then
c1o(ur) + (ca + -+ cp)d(ur) =0,
indicates ¢; = —(ca2 + - - - + ¢,,). Then for any u # v, we have

c1¢(u) + (—c1)d(u') =0
This implies ¢(u) = ¢(u’), but it contradicts ¢ is non-constant.

O

Lemma D.3. Suppose ¢ is non-polynomial Lipschitz continuous. Then X2 is strictly positive definite.

Proof. For { = 2, we have

22(1'7 :L'/) = JgE(u,v)wN(O,Al(ac,x/)) [(;S(U)(ﬁ(’l))] )

where

Then we have

where p(z) := ¢(xoy,).

Clearly, p is Lipschitz continuous since ¢ is. Let the expansion of  in Hermite polynomials {h,, }5°
oo 2

to be given as = Y~ anhy. Then we can write i as fi(p) = Y.~ ;a2 p™. Then we have

Since ¢ is assumed non-polynomials, w is also non-polynomial, and so there are infinitely many

number of nonzero a,, in the expansion. Thus, b,, := a2 > 0 for infinitely many even and odd

numbers. Since o2 > 0, we have X2 is strictly positive definite. O

Then we obtain X% is strict positive definite by combining Lemma D.2 and D.3
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E Proof of Lemma 4.1

This section we show the limiting covariance function ¥* is well defined. As each X% satisfies Cauchy-
Schwartz inequality, it suffices to show ¥*(x, x) is well defined, which is given in Lemma E.1.

Lemma E.1. Choose o,, > 0 small for which § := %’Q“E‘ZP‘ZQ — 1| < 1, where z is standard
Gaussian random variable. Then we have for every x € S"» L and ¢ € [2, L]

|Ee+1(x,:c) - Ee(x,x)’ <p ‘Ee(x,m) — Eefl(:r,x)| . (49)

Therefore, ¥*(z, x) := limy_, o, (v, x) exists uniquely and
0< ¥ (z,2) < (1+1/8)%%(z,z). (50)
Proof. Fix z and we denote 02 := %(z,z) to simplify the notation. Define function ®(o) :=

Eun(0,02) (1)

2 2 2 24142 £\2
Op+1 — 0g =0y (Euf+1~N(o,o§+of)¢(U * ): = EuZNN(o,a,?_lJra%)(b(u ) )

—o? <c1>( a§+a%> — 9 (W})

E.¢(tz)%(2% — 1)dt

oitoi 1
Sa?u/ E]EZ Itz|? ’22 — 1| dt

of_1+o?

U£+Ul

=02, |z| 1|/
o 1+‘71

2K, |2|? |22 — 1| 9
= 2 ’Uz - 0471‘
U?U]Ez|z|2|z271| .
where 3 := ———="——. As we choose o, small such that 3 < 1, then the mapping

‘73+1 = EuNN(o,a;§+af) [qb(u)ﬂ

is a contraction. Thus, it has unique fixed point o, such that
02 =B, n(0,02402) (1) (5D
In addition, let 77 = 07 + 0% and 7¥ = o7, then we have
T _Tz2| = |Jz2+1 _Ue| < 5|0z —op_ 1] —5|Tz .

Then we repeat this inequality for ¢ times and obtain

|7t — 72| < gt |73 — 77|
As LHS is al?_H — O'g and RHS is (f%, we obtain

|0ty —0f| < B 3.

Thus, we have

03+1_02’<Z|‘7s+1 ‘7’<Zﬁql _502
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Therefore, we obtain

1
J?§(1+ﬁ>0§<oo, Ve > 2.

Now, suppose o, = 0, then we have equation
0 =02
=Eo N (0,024+02)0(1)?
=Eon(0,02)0(1)?
=Eyn0,1)¢(u)?

where we use the fact 0 = 1. The equation above implies ¢(u) = 0 almost surely, which is
impossible since u follows standard Gaussian and ¢ is nonconstant. O

El X*(z,z)=3*(2,2')
In this subsection, we will first show %¢(x, 2) = X¢(2’, 2) for all 2, 2’. The desired result is obtained

by letting ¢ — oo.

Given z; and x;, let Afj = Ez(xi, xj). We prove by induction. For the basic case, we have
2 2 2
AL =E |O’(:L'ZTZ)’ =E |0’(’LL})| =E |J(u})| = A;j,
where we use the fact u; & A(0, 1) due to [|z;]|2 = 1.

Assume the result holds for £ — 1. Then we will show the result for £. Note that

Var(u; ') = A7+ Af = AT+ Afy = Var(uj™h),

where the last equality holds follow from the inductive hypothesis. As each uffl is a centered
Gaussian random variable, equal variance implies equal distribution. Then we obtain

2

¢ _ =142 _ INERY
Aii = Euf’le(O,Af;1+A}i) |J(ul )! = Euﬁ’lmN(O,A§;1+A}j) |J(u])’ = Aj]-.

Then let £ — oo and we obtain the desired result.
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F Proof of Lemma 4.2

In Theorem 4.1 and Appendix B, we have shown that for any controllable function ®, %tl)(g,i, e, gﬁ)
converges almost surely. Here we conduct a stronger result by providing the convergence rates.

Lemma F.1. Let ® be a controllable function. Then for any ¢ > 1, quantities

% ZZ:1 @(gifxf?igi(x’)gﬁ(x), gﬁ(x’)) converges to E [@(Zl(x), 21(2'), 2 (), zl(x/))} a.s. with a

rate at least n , Le.,
1 — _
=" Dlgh(a). gk @)k (a), (@) — B [B(:" (@), 2 (@), (), 2 @N)] | < n 7, s,
k=1

(52)

Intuitively, Lemma F.1 provides a convergence rate of width. Th following Lemma provides a
convergence rate for depth.

Lemma F.2. Choose o, > 0 small for which y := 27/20,, < 1. Then for every x € S™» ' and for
4
any k and ¢, we have ||h*(z) — h¥(x)| < ﬁj”hl || a.s. Consequently, the equilibrium point h*(x)

is uniquely determined a.s. Additionally, we have ||h*(z)|| < % Iht]| a.s.

Now, combines these two convergence rates, we can show the two limits can be switched. As a result,
the DEQ fy defined in (1) tends to a Gaussian Process.

F.1 Proof of Lemma 4.2

Let h? () to denote the post-activation at the ¢-th layer with width m and input = encoded. Let x
and 2’ in S?~!. Then for any n < m and ¢ < k, we have that

() B} — o (B o), )
1

<

1 1 1

= (hpy(x), iy (2)) (i (), by (') )] + ‘ (P (), by (') = — (R, (), By, (2')) |-
n n m

In the following, we will bound each term. For the first term, by using Lemma F.2, we have

(M) ML) ~ % (kb ) )|

n

m

S ) I ) = Wb ()] + [ ) — A1 I )

11 ~¢ 1 1 wk
7.7]11 .7111 / 7'7h1 .7]11 /
T IR @l I @l + 5 T @] IR
Combining Theorem A.2 with assumption ||z|| = 1, we have ||Uz|| < 20,v/n/\/Min a.s. WLOG,
we assume o, = +/Nin, then we have || (z)|| < 24/n and so

<

Lt mw) - - o), hﬁ@:'»‘ < ot (53)
For the second term, we have
1 (@) REG) = (B 0 )| < 1t D 54)
where
In = ’1 (hn (), by (@) = 2 (2, 27) (55)
By using Lemma F.1, we have
I, <n /4 (56)
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Similarly, I,,, < m~1/%

. Then we can combine these and get
1 1
‘n (Pna(@), b)) = — (B (@), h’:n(a:’>>‘ < Ay + B, (57)
where A = 4(1 — )2 and B = 2. Then letting m, £ — oo sequentially yields

1
- <hfl(x), hfl(x’)> —X*(x,2')| < Ay’ + Bn~YV4,
n

F.2 Proof of Lemma F.1

As we discussed before, Lemma B.1 can be easily extended to Lemma B.2 by using same argument
on different inputs = and z’. Similarly, here it suffices to show the desired result for single input z,
ie.,

<n Y% as. (58)

=3 B(gh0), g (0) ~ B [B(=!(2), 2(2), )]
k=1

F.2.1 Consider the basic case / = 1
For ¢ = 1, we have g! = Ux and so
gk "™ N(O, 2] /rin).
Let Xj, := ®(g;) — E®(g}). Then EX};, = 0 and
E|Xi* = E[®(g}) — E(gh)|” < 8E|@(z1)|* < 8CEe™] < oo,
where we use the fact 2! and g} are identically distributed.

It follows from Markov’s inequality, we have for any ¢ > 0
P [ 1 En X
" k
k=1
1

Therefore, we have |1 37" | ®(g}) — E®(z')| — 0 in probability as n — oo. It follows from
Levy’s Theorem that this convergence is almost surely because X, are independent. Additionally, for

any €, > 0, lett = R(n)e and let RHS be less than §. Then we obtain
R(n) > 6 12 'E | X)) n 1/,

n 2

o

k=1

=207 |X,)% .

13" a(g)) - Ba()
k=1

>t]:p

> t] <t ’E

which indicates the convergence rate is at least n~1/2.

F.2.2 The general case ¢

We can use similar argument from Appendix C to obtain the desired result. Lemma B.2 or Lemma B.1
has been shown weight-tied and weight-untied converges to the same Gaussian process. WLOG, we
can just focus on the weight-untied case. Let B3 be the o-algebra spanned by ¢g' and ¢°, then we have

iid.
9. IB = N0, [[B2 /n).

By using the inductive hypothesis, we have

07, = WP n S E[p(z" +2")] =0} (59)
with convergence rate n=1/ 4 e,
‘UZn — og’ < n_1/4, a.s. (60)

By using triangle inequality, we have

S|

> gk i) —EO(2 2| < |An| + [ Bal +Cal,
k=1
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where

n

1
A, == Z(I) (95, 957h) - Z]E(I)(gi,agmz)

k=1

B,=-=- ZE@ (9%, 00.m7) ZE(I) (95, 002)

C, =— E E@(g,i,agz) - ]Efl)(zl,zul)
n
k=1

Convergence of A,

Let Zy, := <I)(gk7 gi ™) ~E®(g}, 04, 2). With the same argument in Appendix B, we have E[Z;,|B] =
0and E |Zk|B| < 8016202‘9’1‘620302". As 0y, — 0¢, We have

1
~ > E[Z/B]* <8C;

k=1

n

1 i 1 2 2 1 2 2
= 26202|gk| 20307 % g0, [Ee202|z |} 20307
n
k=1

Additionally, it follows from Theorem 4.4 that 0y — o, as £ — oo, we obtain o, < (30, for some
absolute constant C'3. Then for large enough n, we have
1 n
=S E(ZB)? < 16C {EeQCz‘Zlq AC3C3aT 61)
[t
As RHS is a deterministic constant, we obtain for large enough n
1 & )
— > E[Z|B* <nf, Vp>0.
n
k=1

It is worth to note that we obtain the same result in Appendix B. However, RHS of (61) is independent
of £. As a consequence, the inequality (61) holds uniformly over all £. This potentially indicates the
limits of depth and width commutes. From here, with almost identical argument in Appendix B, we

obtain A,, “% 0 at rate n~'/4 by choosing p = 1/2.

Convergence of B,,

Similarly, we can use the same argument in Appendix B to get

ZBCL‘M] alopn) — alog)).

l n CZ|g}C| . . 1 a.s. . . P .
As >, g€ is a controllable function of g, and oy ,, — 0oy, the inductive hypothesis implies

B, “3 0 atarate n= /4.

Convergence of C,

Define function & (z) = E.A0,1)®(2,0¢2). Then C,, becomes

=5 2 Ploh) ~ED().

k=1

3\H

As @ is controllable since ®is, the inductive hypothesis implies directly C,, “3" 0 at a rate of n='/%.
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F.3 Proof of Lemma F.2

It follows from Theorem A.2 that ﬁ W]l < 2v/20,, a.s. Then we can choose a small 7, for which
7 := 2/20,, < 1. Then for any ¢ > 0, the Lipschitz continuity of ¢ implies
1
vn
1
<—||Wh —Wh|
n

IR =R =—=llo(Wh' + g") — o(Wh"" + g)|

1
<— W hf _ h[—l
<= IWl H

<y|nf =
Thus, we repeat this argument ¢ times and obtain

IR = REL < A(IRt = RO = 5" (In

From here, for any k > ¢ > 0, we have

k—1 k—1 —_
”hﬂ_hk” <Z||hs_hs+1” <Z,ys”h1|| < 75(1—% Z)
a s={ - s=/{ - 1= v

[R]). (62)

Thus, it follows from the completeness of R™ that the unique h* () exists. Additionally, let & — oo,
then we have

¢
* Y
[ 1= [IAH].
Y
Let ¢ = 0, then we obtain

1— k
1] < = ||,
1—v

G Proof of Theorem 4.4

By condition on the values of i*, the outputs
Jor(x) = (vk, h")
are i.i.d.centered Gaussian random variables with covariance
S(x,2') = (h*(x), h* (') /n.
It follows from Lemma 4.2 that
S(x,a’) 32 (x, 2)).

Specifically, the covariance ¥.* is deterministic and hence independent to h*. Consequently, the
conditioned and unconditioned distributions of fp ;, are equal in the limit of n — oo: they are
i.i.d.centered Gaussian random variables with covariance X*.
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H Proof of Theorem 4.5

Equipped with the notion of dual activation and Theorem D.1, we are ready to prove Theorem 4.5,
i.e., X" is strict positive definite.

By Lemma E.1, we have ¥* (2, z) = ¥*(2/,2’) := cand 0 < ¢ < oo for all z, z’. Then we have

Yz, 2") = Eya)u(a)~n(0,4%) [0(u(z))d(u(z"))]

where

A = Sz, ) + S (w,z) Xz, 2) + Bz, 2)| c+1 Yz, 2') + (z, 2
T )+ X2 ) B (x,x) + XM )| T |2 (e, 2) + (x,2) c+1

By changing variable with u(x) = v/c + 1z(x), we obtain

S (z,2') = B [u(z(2))u(2(2')] = i <E*(x,x') + <x7x’>> |

c+1
where [ : [—1,1] — R is dual activation of activation function pu(z) := ¢(v/c + 12).

Let = Y, anhy, be the Hermite expansion, then we obtain £ as
i) = 3 a2,
n=0

Therefore, >* has the expression

Y*(z,2) = iai (E*(x’w/) . <x,x'>)”

c+1

n=0

Since ¢ is non-polynomial, so is u, and hence, there is an infinite number of nonzero a,,’s. By
Theorem 2, we can conclude that >* is strictly positive definite and complete the proof.
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s9 1 Additional Experimental Results
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Figure 5: Histplot of the output distributions for five neural networks with widths 10, 50, 100, 200,
1000 (left to right); KS statistics: 0.02641,0.00677,0.00550,0.00321,0.00302, pvalue: 9,74 x

10731,0.0202, 0.0969, 0.6808, 0.7498.
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