487

488

489

490
491

492

494

495
496

497
498
499
500
501

502

A Appendix

A.1 Additional definition and proofs

hKR.

Let us first recall the optimal transport problem associated with the minimization of £}/

inf EhKR —
felerél(Q))\(f)m

3)

inf
wellf (p,v)

/ |z — z|dm + 72 (Q) + 12(Q) — 1
QxQ

Where II% (11, v) is the set consisting of positive measures m € M (€ x §) which are absolutely
continuous with respect to the joint measure dy x dv and ‘f;;l €lpp(m+N)], L& el—p, (1-
p)(m + A)]. We name 7* the optimal transport plan according to Eq.3 and and f* the associated

potential function.

Proof of proposition 1: According to [53], we have

Ve f"(@)]] = 1

almost surely and

Playynr (117 (@) = W) = llz —yll) =
Following the proof of proposition 1 in [26] and [3] we have :
Givenz, =a*xz+ (1 —a)y,0<a <1

lzo — yll
T —Yy

_>:1
x — |

[P(m,y)N‘rr* (VTf*(w) = H

[P(:z:,y)Nrr* (vxf*(wa) =

So for for &« = 1 whe have

and then
Py (y = = Vo f(2).||x — yl|) =
This prove the proposition 1 by choosing ¢ = ||z — y||.H

Proof of proposition 2: Let 1 and v two distributions with disjoint support with minimal distance e
and f* an optimal solution minimizing the E’}\Ian with m < 2e. According to [53], f* is 100%
accurate. Since the classification is based on the sign of f we have : Vo € p, f*(x) > 0 and
Yy € v, f*(y) <0.Givenx € pandy = tr.(x) = x —tV, f*(x) and y € v. According to the
previous proposition we have :

[f* () = f* ()| = |l -yl
[f* (@) = ()] = lJe — (& =tV f*())]]
[f (@) = f* W)l = [[tVaf" ()|
[f* (@) = f* ()| =][Va " ()] (t>0)
[f* () = ()| =1t (Vo f*(x) =1)
@)= fy) =t (f (=) 20, f*(y) <0)
)= fx) -t
since f*(y) < 0 we obtain :
@) <t

Since f* is continuous, 3¢’ > 0 such that &5 = ¢ — t'V,. f*(x) and f*(xs) = 0. We have :

|/ (@) — " (@s]) < [|z — 5]
fr@) <llz— (@ = 'V f*(2))]]
fr@) <t

14

503

504

505

and

|f*(x5) = £ ()] < lzs — 9|
=) <@ =tV f*(x) — (— tV.f(2))l]
—fy) <t =+t
) <llz -yl -t

Then, if f*(x) < ¢’ we have
[r(®) = fy) <t' + |z —yl| =t
[() = f(y) <[z -yl

which is a contradiction so f*(x) = ¢’ and

w5 = — [(@) Ve f*(2)
|

15

506

507

508
509

510
511
512
513
514

515

516

517

518

519
520
521
522

523

524
525
526
527

528

529
530

A.2 Parameters and architectures
A.2.1 Datasets

FashionMNIST has 50,000 images for training and 10,000 for test of size 28 x 28 x 1, with 10
classes.

CelebA contains 162,770 training samples, 19,962 samples for test of size 218 x 178 x 3. We
have used a subset of 22 labels: Attractive, Bald, Big_Nose, Black_Hair, Blond_Hair, Blurry,
Brown_Hair, Eyeglasses, Gray_Hair, Heavy_Makeup, Male, Mouth_Slightly_Open, Mustache,
Receding_Hairline, Rosy_Cheeks, Sideburns, Smiling, Wearing_Earrings, Wearing_Hat, Wear-
ing_Lipstick, Wearing_Necktie, Young.

Note that labels in CelebA are very unbalanced (see Table 2, with less than 5% samples for Mustache
or Wearing_Hat for instance). Thus we will use Sensibility and Specificity as metrics.

Table 2: CelebA label distribution: proportion of positive samples in training set (testing set) [bold:
very unbalanced labels]

Attractive Bald Big_Nose Black_Hair Blond_Hair
0.51 (0.50) 0.02 (0.02) 0.24 (0.21) 0.24 (0.27) 0.15 (0.13)
Blurry Brown_Hair Eyeglasses Gray_Hair Heavy_Makeup
0.05 (0.05) 0.20 (0.18) 0.06 (0.06) 0.04 (0.03) 0.38 (0.40)
Male Mouth_Slightly_Open Mustache Receding_Hairline Rosy_Cheeks
0.42 (0.39) 0.48 (0.50) 0.04 (0.04) 0.08 (0.08) 0.06 (0.07)
Sideburns Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
0.06 (0.05) 0.48 (0.50) 0.19 (0.21) 0.05 (0.04) 0.47 (0.52)
Wearing_Necktie Young
0.12 (0.14) 0.78 (0.76)

Cat vs Dog contains 17400 training samples, 5800 test samples of various size.
Imagenet contains 1M training samples, 100 000 samples for test of various size.

preprocessing: For FashionMNIST Images are normalized between [0, 1] with no augmentation.
For CelebA dataset, data augmentation is used with random crop, horizontal flip, random brightness,
and random contrast. For imagenet and cat vs dog we use the standart preprocessing of resnet (with
no normalization in [0, 1])

A.2.2 Architectures

As indicated in the paper, linear layers for OTNN and unconstrained networks are equivalent (same
number of layers and neurons), but unconstrained networks use batchnorm and ReL.U layer for
activation, whereas OTNN only use GroupSort2 [5, 53] activation. OTNN are built using DEEL.LIP?
library.

1-Lipschitz networks parametrization. Several soltutions have been proposed to set the Lipschitz
constant of affine layers: Weight clipping [6] (WGAN), Frobenius normalization [5S1] and spectral
normalization [43]. In order to avoid vanishing gradients, orthogonalization can be done using
Bjorck algorithm [9]. DEEL.LIP implements most of these solutions, but we focus on layers called
SpectralDense and SpectralConv2D, with spectral normalization [43] and Bjorck algorithm [9]. Most
activation functions are Lipschitz, including ReLU, sigmoid, but we use GroupSort2 proposed by [5],
and defined by the following equation:

GTOUpSOI‘tZ([L‘)Qi’Qi_Fl = [min (4821'7 :I:2i+1), max (in; :L'QH-I)]

Network architectures used for CelebA dataset are described in Table 3.

Network architectures used for FashionMNIST dataset are described in Table 4. The same OTNN ar-
chitecture is used for MNIST expermentation presented in Fig. 1.

*https://github.com/deel-ai/deel-1ip distributed under MIT License (MIT)

16

531
532
533

534

Table 3: CelebA Neural network architectures: Sconv2D is SpectralConv2D, GS2 is GroupSort2,
L2Pool is L2NormPooling, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling

Dataset OTNN Unconstrained NN
Layer Layer Output size
CelebA Input Input 218 x 178 x 3

SConv2D, GS2
SConv2D, GS2
L2Pool
SConv2D, GS2
SConv2D, GS2
L2Pool
SConv2D, GS2
SConv2D, GS2
SConv2D, GS2
L2Pool
SConv2D, GS2
SConv2D, GS2
SConv2D, GS2
L2Pool
SConv2D, GS2
SConv2D, GS2
SConv2D, GS2
L2Pool
Flatten, SDense, GS2
SDense, GS2
SDense

Conv2D, BN, ReLLU
Conv2D, BN, ReLU
AvgPool

Conv2D, BN, ReLU
Conv2D, BN, ReLLU
AvgPool

Conv2D, BN, ReLU
Conv2D, BN, ReLU
Conv2D, BN, ReLU
AvgPool

Conv2D, BN, ReLLU
Conv2D, BN, ReLU
Conv2D, BN, ReLU
AvgPool

Conv2D, BN, ReLLU
Conv2D, BN, ReLU
Conv2D, BN, ReLU
AvgPool

Flatten, Dense, BN, ReLU
Dense,BN, ReLU
Dense

218 x 178 x 16
218 x 178 x 16
109 x 89 x 16
109 x 89 x 32
109 x 89 x 32
54 x 44 x 32
54 x 44 x 64
54 x 44 x 64
54 x 44 x 64
27 x 22 x 64
27 x 22 x 128
27 x 22 x 128
27 x 22 x 128
13 x 11 x 128
13 x 11 x 128
13 x 11 x 128
13 x 11 x 128
6 x5 x 128
256

256

22

The 1-Lipschitz version of resnet50 is described in Table 5. As the unconstrained version, It has
around 25M parameters. For the large version, we simply multiply the number channels in hidden
layers by 1.5. The unconstrained version is the standart resnet50 architecture. In the case of imagenet
we use the pretrained version provided by tensorflow.

Table 4: FashionMNIST Neural network architectures: Sconv2D is SpectralConv2D, GS2 is Group-
Sort2, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling, SGAvgPool is
ScaledGlobal AveragePooling (DEEL.LIP), GAvgPool is Global AveragePooling

Dataset OTNN Unconstrained NN
Layer Layer Output size

FashionMNIST Input Input 28 x 28 x 1
SConv2D, GS2 Conv2D, BN, ReLU 28 x 28 x 96
SConv2D, GS2 Conv2D, BN, ReL.U 28 x 28 x 96
SConv2D, GS2 Conv2D, BN, ReLU 28 x 28 x 96
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 14 x 14 x 96
SConv2D, GS2 Conv2D, BN, ReLU 14 x 14 x 192
SConv2D, GS2 Conv2D, BN, ReLU 14 x 14 x 192
SConv2D, GS2 Conv2D, BN, ReLU 14 x 14 x 192
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 7 x 7 x 192
SConv2D, GS2 Conv2D, BN, ReLU 7 X7 x 384
SConv2D, GS2 Conv2D, BN, ReLU 7 X7 x 384
SConv2D, GS2 Conv2D, BN, ReLU 7 X7 x 384
SGAvgPool GAvgPool 384
SDense Dense 10

17

535

536
537
538

539
540
541
542
543

544
545

546

Table 5: 1-lip resnet architecture for Imagenet and cat vs dog: Sconv2D is SpectralConv2D, GS2
is GroupSort2, SDense is SpectralDense, BC is Batchcentering (centeing without normalization),
SL2npool is ScaledL2NormPooling2D, SGAvgl2Pool is ScaledGlobalL2NormPooling2D, GAvgPool
is GlobalAveragePooling

Layer output

Input 224 x 224 x 3
SConv2D 7-64 (stride=2), BC, GS2 112 x 112 x 64
InvertibleDownSampling 56 X 56 x 256

[SConv2D 1 x 1 64 BC, GS2]
SConv2D 3 x 3 64 BC,GS2
SConv2D 1 x 1 256 BC
add-lip BC, GS2|
SL2npool 28 x 28 x 256
[SConv2D 1 x 1 128 BC, GS2]
SConv2D 3 x 3 128 BC, GS2
SConv2D 1 x 1 512 BC
i add-lip BC, GS2|
SL2npool 14 x 14 x 512
[SConv2D 1 x 1 256 BC, GS2]
SConv2D 3 x 3 256 BC, GS2
SConv2D 1 x 1 1024 BC
L add-lip BC, GS2]
SL2npool 7T X 7x1024
[SConv2D 1 x 1 256 BC, GS2]
SConv2D 3 x 3 256 BC, GS2
SConv2D 1 x 1 1024 BC

x3 56 x 56 x 256

x4 28 x 28 x 512

x6 14 x 14 x 1024

x3 T X7 x2048

| add-lip BC, GS2|
SGAvgl2Pool 2048
SDense 1 cat vs dog

1000 imagenet

A.2.3 Losses and optimizer

An extension of L" % to the multiclass case with ¢ classes. has also been proposed in [53] The
idea is to learn g 1-Lipschitz functions f1, ..., f;, each component f; being a one-versus-all binary
classifier. The loss proposed was the following

EhKR 1) ZL E [fx(x)] — k[fk(x)]:| + XyNUqP((fi(z),..., fqo(z),y,m)
4

with :

H(fi(@),. ., fo(@),y:m) = (m = fy(@)+ + Y _(m+ fiu(@))+

k#y

This formulation has three main drawbacks: (i) for large number of classes several outputs may
have few or no positive sample within a batch leading to slow convergence, (ii) weight of f, (z) (the
function of the true class) with respect to the other decreases when the number of classes increases,
(iii) the expectancy has to be evaluated through the batch, making the loss dependant of the size of
the batch.

To overcome these drawbacks, we propose first to replace the Hinge term H with a softmax weighted
version. The softmax on all but true class is defined by:

ea*fk(w)

o(fi(@),y,0) = =57 @
Z];éy ea*fj(w>

We can define a weighted version of H function:

18

547
548
549
550
551
552
553

554
555

556
557
558

559
560
561

562
563
564
565
566
567
568
569

H(T (fl(w)7 s 7fq(m)ayam7a) = (m - fy(m))-‘r + Za(fk(w)7y7a) * (Tn+ fk(‘r))-F
k#y

In this function, the value of f,(x) for the true class maintains consistent weight relative to the values
of other functions, regardless of the number of classes. « is a temperature parameter. Initially, the
softmax behaves like an average as all the values of fj, are close. However, during the learning
process, as the values of | fj,| increase, the softmax transitions to function like a maximum. Similarly,
if a low value is chosen for «, the softmax behaves as an average, resulting in a one vs all hKR loss.
By choosing a higher value for «, the softmax unbalances the weights. Thus the loss persists as a one
vs all hKR but incorporates a re-weighting of the opposing classes for each targeted class.

We also propose a sample-wise and weighted version of the KR part (left term in Eq 4). to get the
proposed loss:

LR (i y) = | D [fr(@) x o (fu(@), v,)] — fy (%)

k#y
+)\ * Ho’ (fl(m)/ LERY fq(w),y,ﬁb, Oé)
It’s important to note that this definition only applys to the balanced multiclass case (as in FashionM-

nist and ImageNet). In the unbalanced scenario, the weight must be rescaled according to the a priori
distribution of the classes.

®)

For CelebA, with hyperparameters A is set to 20, and m = 1. For FashionMNIST, we use Eq. 5, A is
set to 5, & = 10 and m = 0.5. For cat vs dog A is set to 10 and m = 18. For imagenet X is set to
500, oo = 200 and m = 0.05.

We train all networks with ADAM optimizer [36]. We use a batch size of 128, 200 epochs , and a
fixed learning rate 1e—2 for CelebA. For FashionMNIST we perform 200 epochs with a batch size of
128. We fix the learing rate to 5e—4 for the 50 first epochs, 5e—>5 for the epochs 50-75, 1e—6 for the
last epochs. For cat vs dog we perform 200 epochs with a batch size of 256. We fix the learing rate
to 1le—2 for the 100 first epochs, 1le—3 for the epochs 100-150, 1e—4 for the epochs 150-180 and
1le—9 for the last epochs. For imagenet we perform 40 epochs with a batch size of 512. We fix the
learing rate to 5e—4 for the 30 first epochs, be—>5 for the epochs 30-35, 1e—5 for the epochs 35-38
and le—9 for the last epochs.

19

570

571

572
573
574
575
576

577

578
579

A.3 Complementary results
A.3.1 FashionMNIST performances and ablation study

Table 6 presents different performance resuts on FashionMNIST. First line is the reference uncon-
strained network. Second line shows the performances of the new version of LY% %, Table 6 also

shows that the new version of the L4 in the multiclass case (Eq. 5) outperforms the LK R defined

in [53] (Eq. 4). Obviously, the accuracy enhancement is obtained at the expense of the robustness.
The main interest of this new loss is to provide a wider range in the accuracy/robustness trade-off.

Table 6: FashionMNIST accuracy comparison with the different version of multiclass E’;ffnR. For the
fixed margin, we use the one that performs best by parameter tuning (i.e. m = 0.5)

Model Accuracy
Unconstrained 88.5
OTNN 4K Emulticlass version [53] (A = 10, m = 0.5) 72.2
(Ours) OTNN L/ER (X =10, m = 0.5,a = 10)(Eq. 5) 88.6

A, m,o

A.3.2 CelebA performances

Table 7 presents the Sensibility and Specificity for each label reached by Unconstrained network and
OTNN.

As a reminder, given True Positive (TP), True Negative (TN), False Positive (FP), False Negative
(FN) samples, Sensitivity (true positive rate or Recall) is defined by:

g B TP
T TPYFN
Specificity (true negative rate) is defined by:
Spec — TN
PEC= TN+ FP

Table 7: CelebA performance results for unconstrained and OTNN networks

Model Metrics: Sensibility/Specificity
Attractive Bald Big_Nose Black_Hair
Unconstrained 0.83/0.81 0.64 /1.00 0.65/0.87 0.74/0.95
OTNN 0.80/0.75 0.87/0.83 0.73/0.70 0.78 /0.84
Blond_Hair Blurry Brown_Hair Eyeglasses
Unconstrained 0.86/0.97 0.49/0.99 0.80/0.88 0.96 /1.00
OTNN 0.86/0.89 0.66/0.72 0.81/0.73 0.80/0.89
Gray_Hair Heavy_Makeup Male Mouth_Slightly_Open
Unconstrained 0.62/0.99 0.84/0.95 0.98/0.98 0.93/0.94
OTNN 0.84/0.83 0.89/0.83 0.92/70.89 0.80/0.89
Mustache Receding_Hairline Rosy_Cheeks Sideburns
Unconstrained 0.4770.99 0.47/0.98 0.46/0.99 0.79/0.98
OTNN 0.86/0.76 0.81/0.79 0.82/0.80 0.79/0.82
Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
Unconstrained 0.90/0.95 0.84/0.90 0.89/0.99 0.90/0.96
OTNN 0.84/0.88 0.78 /0.72 0.86/0.90 0.90/0.89
Wearing_Necktie Young
Unconstrained 0.75/70.98 0.95/0.65
OTNN 0.87/0.86 0.79/70.69

20

580

581

582
583

584
585

586

587

588
589
590

591

592

593
594
595

596
597
598

599
600

601
602
603
604

605
606
607

608

A.4 Complementary explanations metrics
A.4.1 Explanation attribution methods

An attribution method provides an importance score for each input variables x; in the output f(z).
The library used to generate the attribution maps is Xplique [21].

For a full description of attribution methods, we advise to read [18], Appendix B. We will only
remind here the equations of

* Saliency: g(x) = |V f(x)|

* SmoothGrad: g(z) = 5 NHEO . >(Vf(m +9))

SmoothGrad is evaluated on N = 50 samples on a normal distribution of standard deviation o = 0.2
around z. Integrated Gradient [59], noted IG, is also evaluated on N = 50 samples at regular intervals.
Grad-CAM [52], noted GC, is classically applied on the last convolutional layer.

A.4.2 XAI metrics

For the experiments we use four fidelity metrics, evaluated on 1000 samples of test datasets:

* Deletion [47]: it consists in measuring the drop of the score when the important variables are
set to a baseline state. Formally, at step &, with u the k£ most important variables according
to an attribution method, the Deletion®) score is given by:

Deletion®) = f(w[wu:wo])

The AUC of the Deletion scores is then measured to compare the attribution methods ({ is
better). The baseline xq can either be a zero value (Deletion-zero), or a uniform random
value (Deletion-uniform).

* Insertion [47]: this metric is the inverse of Deletion, starting with an image in a baseline
state and then progressively adding the most important variables. Formally, at step k, with u
the most important variables according to an attribution method, the Insertion(*) score is
given by:

Insertion®) = [(@ (zr=a])

The AUC is also measured to compare attribution methods (1 is better). The baseline is the
same as for Deletion.

» pFidelity [8]: this metric measures the correlation between the fall of the score when
variables are put at a baseline state and the importance of these variables. Formally:

pFidelityf Corr (Zg)ir () — f(= :cu—fco]))

€U

For all experiments, k is equal to 20% of the total number of variables, and cutting the image
in a grid of 20 x 20 (9 x 9 for cat vs dog and imagenet). The baseline is the same as the one
used by Deletion. Being a correlation score, we can either compare attribution methods, or
different neural networks on the same attribution method (1 is better).

* Robustness-Sr [31]: this metric evaluate the average adversarial distance when the attack is
done only on the most relevant features. Formally, given the « most important variables:

Robustness-Sr = {min|6 st.fl@+0)# 4,0z = 0}
5

where dz = 0 indicates that adversarial attack is authorized only on the set u. The AUC is
measured to compare attribution methods ({ is better). Note this metric cannot be used to
compare different networks, since it depends on the robustness of the network.

‘We use also several other metrics:

21

609
610

611
612

613
614
615

616

617
618

619
620
621
622
623

624
625
626
627

628
629

» Distances between explanations: to compare two explanation f(z), we use either Lo
distance, or 1 — p where p is the Spearman rank correlation [2, 20, 60] ({. is better).

» Explanation complexity: we use the JPEG compression size as a proxy of the Kolmogorov
complexity ({ is better).

* Stability: As proposed in [68], the Stability is evaluated by the average distance of explana-
tions provided for random samples drawn in a ball of radius 0.3 (0.15 for cat vs dog and
imagenet) around x. As before, the distance can be either Lo or 1 — p ({ is better).

A4.3 Supplementary metric results

In this section we present several experiments and metrics that we were not able to insert in the core
of the paper.

Deletion-zero and Insertion-zero are evaluated on CelebA and FashionMNIST dataset. It is known
that the baseline value can be a bias for these metrics, and we are convinced that it has a higher
influence with 1-Lipschitz networks. Even if results for Deletion-zero and Insertion-zero are less
obvious than for Deletion and Insertion Uniform, we can see in Table 8, that for these metrics, the
rank of Saliency is most of the time higher for OTNN.

Table 8: Insertion and Deletion metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Deletion-Zero ({. is better)
GC GI 1G Rise Saliency SmoothGrad
Deletion-Zero
CelebA OTNN 8.01 7.04 7.05 7.09 698 (Rk2) 6.96
Unconstrained | 5.77 4.56 4.38 5.07 413 (Rkl) 4.51
Fashion- OTNN 024 016 015 026 0.20 (Rk4) 0.19
MNIST Unconstrained | 0.33 028 023 0.16 0.38 (Rk5) 0.39
Insertion-zero (7 is better)
CelebA OTNN 1026 11.63 11.58 15.50 10.06 (Rk6) 10.10
Unconstrained | 14.24 11.71 1237 15.70 6.67 (Rk6) 7.65
Fashion- OTNN 0.31 046 047 036 0.36 (Rk4) 0.39
MNIST Unconstrained | 0.53 059 0.68 0.73 0.45 (Rk6) 0.46

To leverage the bias of the baseline value, as proposed in [31] we evaluated the Robustness-SR metric,
Saliency map on OTNN achieves top-ranking scores. One might argue that scores for unconstrained
networks are lower, but this is directly linked to the higher intrinsic robustness of OTNNand thus
cannot be compared.

Table 9: Robustness-SR metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Robustness-SR (| is better)
GC GI 1G Rise Saliency SmoothGrad
CelebA OTNN 28.54 14.01 13.28 30.54 11.64 (Rkl) 12.65
Unconstrained | 11.11 9.19 10.00 15.15 7.38 (Rk2) 7.20
Fashion- OTNN 1.69 331 336 327 2.29 (RKk3) 2.01
MNIST Unconstrained | 1.17 1.36 1.17 1.15 1.21 (Rk4) 1.25

The full results for the explanation complexity is given on Table 10. The complexity is still lower for
OTNN on FashionMNIST, even if the gap with Unconstrained networks is narrower than for CelebA.

22

630

631
632

633

634

635

636
637
638

639

640
641

642

643
644

Table 10: Complexity of Saliency map by JPEG compression (kB): lower is better
| CelebA FashionMNIST

OTNN 9.48 0.92
Unconstrained 16.84 0.94

A.5 Complementary qualitative results

In this section, we provide more samples of qualitative results and couterfactual exlanations for
OTNN, based on the gradient, i.e. * — ¢ x f(x)V, f(x) fort > 1.

A.5.1 FashionMNIST

Fig. 6 gives more results on FashionMNIST.

<l Jes DIDEIE

Ankle boot Shirt Pullover Sneaker Ankle boot
o T—
-]
- Shirt ‘Shirt

I [2]] -

Trouser Coat Sandal Sneaker

Dress

Figure 6: FashionMNIST samples

A.5.2 CelebA

We presents results for other labels of CelebA. For ethic concerns we have hidden labels that can be
subject to misinterpretation, such as Artractive, Male, Big_Nose. Fig. 7 to 25 present more results on
the labels presented in the core of the paper, Mouth_Slightly_Open, Mustache,Wearing_Hat.

A.5.3 CatvsDog

We present some supplementary comparison of Saliency Maps and counterfactual examples for cat
vs dog(Fig. 26 and 27).

A.5.4 Imagenet

We present some supplementary comparison of Saliency Maps Imagenet (Fig. 28). As pointed out
previously, our model doesn’t produce significant counterfacutal explanations on Imagenet.

23

Figure 7: Samples from label Mouth_slightly_open: left source image (closed) , center difference
image, right counterfactual (open) of form & — 10 * f(x)V, f(x)

Figure 8: Samples from label Mouth_slightly_open: left source image (open) , center difference
image, right counterfactual (close) of form @ — 10 x f(z)V . f(x)

25

Figure 9: Samples from label Mustache: left source image (no mustache) , center difference image,
right counterfactual (mustache) of form @ — ¢ x f(x)V, f(x) with ¢ € {5, 10,20}

L

Figure 10: Samples from label Mustache: left source image (Mustache) , center difference image,
right counterfactual (Non Mustache) of form « — ¢ * f(x)V, f(x), t € 5,10

26

Figure 11: Samples from label Wearing Hat: left source image (No Hat) , center difference image,
right counterfactual (Hat) of form « — ¢ x f(x)V, f(x),t € 5,10
27

Figure 12: Samples from label Wearing Hat: left source image (Hat) , center difference image, right
counterfactual (No Hat) of form x — ¢ x f(x)V,.f(x), ¢ € 5,10

Bald — "not" Bald

Figure 13: Samples from label Bald

28

Black_Hair — "not" Black_Hair

L/

"not" Black_Hair — Black_Hair

Figure 14: Samples from label Black_Hair

Blond_Hair — "not" Blond_Hair

"not" Blond_Hair — Blond_Hair
|

Figure 15: Samples from label Blond_Hair

Blurry — "not" Blurry

4
.
S
2]

s

L

Figure 16: Samples from label Blurry

29

Brown_Hair — "not" Brown_Hair

Figure 17: Samples from label Brown_Hair

'not" Eyeglasses

Eyeglasses — '

e

Figure 18: Samples from label Eyeglasses

30

Gray_Hair — "not" Gray_Hair

Figure 19: Samples from label Gray_Hair

Hairline — "not" Hairline

"not" Hairline — Hairline

-
o
o B
ﬂ
| o i}

Figure 20: Samples from label Hairline

31

Heavy_Makeup — "not" Heavy_Makeup

"not" Heavy_Makeup — Heavy_Makeup

Figure 21: Samples from label Heavy_Makeup

Figure 22: Samples from label Rosy_Cheeks

Rosy_Cheeks — "not" Rosy_Cheeks

> |
i |
| f
) D
] -]
i3

eeks

Smiling — "not" Smiling

Figure 23: Samples from label Smiling

32

Wearing_Lipstick — "not" Wearing_Lipstick

Hnotn

Wearing_Lipstick — Wearing_Lipstick

Figure 24: Samples from label Wearing_Lipstick

Young — "not" Young

"not" Young — Young

Figure 25: Samples from label Young

33

(a) OTNN (b) Unconstrained

Figure 26: Cat vs Dog Saliency Map samples

Figure 27: Cat vs Dog Saliency counterfactual samples. Left dog to cat, right cat to dog

35

(a) OTNN (b) Unconstrained

Figure 28: Imagenet Saliency Map samples

36

