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1 Implementation Details9

Architecture of the Score Network The detailed architecture of the score network Φθ is illustrated10

in Figure 1. We utilize PointNet++ [1] to extract the global geometry feature FO of the partially11

observed point cloud O∗. And the sampled pose p and timestep t features are embedded as Fp and12

Ft, respectively, using a Multi-Layer Perceptron (MLP). Then FO, Fp and Ft are concatenated to13

obtain the global feature F , and three parallel branches are employed to predict the scores of Rx,14

Ry, and T individually, where [Rx|Ry] ∈ R6 and T ∈ R3 denote rotation and translation vectors,15

respectively. And [Rx|Ry] is an continuous rotation representation proposed by [2] to address the16

discontinuity of quaternions and Euler angles in Euclidean space. As introduced in [2], the mapping17

from SO(3) to the 6D representation of rotation is:18

gGS ([a1 a2 a3]) = [a1 a2] (1)
The mapping form the 6D representation to SO(3) is:19

fGS ([a1 a2]) = [b1 b2 b3] (2)
20

bi =


N(a1) if i = 1

N(a2 − (b1 · a2)b1) if i = 2

b1 × b2 if i = 3

 (3)

Here N(·) denotes a normalization function.21

Architecture of the Energy Network The energy network Ψϕ shares exactly the same architec-22

ture with the score network Φθ. The inputs are first fed into Φϕ to obtain a score-shaped vector23

Φϕ(p, t|O) ∈ R|P|. Then, the output energy is calculated by the dot product between the input pose24

and the score-shaped vector Ψϕ(p, t|O) = ⟨p,Φϕ(p, t|O)⟩ ∈ R1.25

PointNet++ …

MLP …

Partial Point 
Cloud 𝑂∗

𝑡 MLP …

1×256

1×128

1×1024

1×1408
⨁

FC
25

6
FC

3
FC

25
6

FC
3

FC
25

6
FC

3

𝜕 log 𝑝"#$#(𝒑, 𝑡|𝑂)
𝜕𝑅%

𝒑

𝜕 log 𝑝"#$#(𝒑, 𝑡|𝑂)
𝜕𝑅&

𝜕 log 𝑝"#$#(𝒑, 𝑡|𝑂)
𝜕𝑇

ℱ𝒑

ℱ𝒕

ℱ𝑶

ℱ

Figure 1: Architecture of the score network Φθ. p denotes sampled 6D object poses. O∗ denotes
partially observed 3D point cloud condition. t denotes timestep. ⊕ denotes the concatenation operator.

2 Qualitative Comparison on REAL27526

Figure 2 illustrates the qualitative comparison results between our method and RBP-Pose [3] on27

the REAL275 dataset. The images are accompanied by red boxes highlighting objects that exhibit28

noticeable differences in the predicted results. Additionally, the bottom-right corner of each image29

provides an enlarged view of the highlighted object, showing the ground truth pose as well as the30

poses estimated by RBP-Pose and our approach. Our method demonstrates a significant performance31

improvement compared to RBP-Pose, particularly in the case of objects such as mugs. Notably, in32

the fourth row of the figure, it can be observed that our method achieves highly accurate poses even33

when only a small portion of the mug handle is visible. This success can be attributed to the fact that,34

during the training process, a unique pose exists when the mug handle is visible. However, when the35

mug handle becomes occluded, a multi-hypothesis problem arises, which our generative formulation36

effectively handles.37

3 More Results and Analysis38

3.1 Per-category Results39

Figure 3 demonstrates a quantitative comparison between our method and the state-of-the-art depth-40

based approach, RBP-Pose [3], for various object categories at different thresholds. The results41
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Figure 2: Qualitative comparison with RBP-Pose [3] on REAL275. The left column represents the
ground truth pose, the middle column represents the results of RBP-Pose, the right column represents
the results of our approach.

clearly indicate that our method outperforms RBP-Pose in all metrics, despite the fact that we do not42

incorporate augmentation specifically designed for symmetric objects during the training phase, unlike43

RBP-Pose. Our approach exhibits significant improvements, particularly in regions with stringent44

threshold requirements. This emphasizes the superior performance of our generative category-level45

object 6D pose estimation approach in effectively addressing the multi-hypothesis challenges posed46

by symmetric objects and partial observations, thereby enabling its successful application in robot47

manipulation tasks demanding precise object pose prediction.(e.g., pouring liquids.)48

3.2 Results on CAMERA49

Table 1 illustrates a quantitative comparison between our method and the baselines on the CAM-50

ERA [4] dataset. The results clearly demonstrate the remarkable performance enhancement achieved51

by our method. When compared to approaches that rely solely on depth data as network input, as well52

as those that utilize RGB-D and shape priors as network input, our method consistently outperforms53

them, surpassing the current state-of-the-art performance. Notably, our method exhibits a particularly54

pronounced advantage when stricter accuracy requirements are imposed, such as the 5◦2cm metric.55

In this case, our method outperforms the current SOTA method, RBP-Pose, by an impressive margin56

of 6.4%. This significant improvement highlights the efficacy of our approach.57
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Figure 3: Per-category quantitative comparison with RBP-Pose [3] on REAL275. The left
represents the results of RBP-Pose, while the right represents the results of our approach.

Table 1: Quantitative comparison of category-level object pose estimation on CAMERA [4]
dataset. We summarize the results reported in the original paper for the baseline method. ↑ represents
a higher value indicating better performance, while ↓ represents a lower value indicating better
performance. Data refers to the format of the input data used by the method, and Prior indicates
whether the method requires category prior information. ‘-’ indicates that the metrics are not reported
in the original paper. K represents the number of hypotheses."

Method Data Prior 5◦2cm↑ 5◦5cm↑ 10◦2cm↑ 10◦5cm↑ Parameters(M)↓
NOCS [4] RGB-D × 32.3 40.9 48.2 64.6 -

DualPoseNet [5] RGB-D × 64.7 70.7 77.2 84.7 67.9
SPD [6] RGB-D ✓ 54.3 59.0 73.3 81.5 18.3

CR-Net [7] RGB-D ✓ 72.0 76.4 81.0 87.7 -
SGPA [8] RGB-D ✓ 70.7 74.5 82.7 88.4 -

Deterministic GPV-Pose [9] D × 72.1 79.1 - 89.0 -
SAR-Net [10] D ✓ 66.7 70.9 75.3 80.3 6.3
SSP-Pose [11] D ✓ 64.7 75.5 - 87.4 -
RBP-Pose [3] D ✓ 73.5 79.6 82.1 89.5 -

Ours D × 79.9 84.4 84.6 89.6 4.4
Probabilistic Ours(K=10) D × 90.8 93.0 93.4 95.7 2.2

Ours(K=50) D × 95.5 96.4 97.2 98.2 2.2

3.3 Real World Experiments58

(a) Pouring (b) Stacking

(c) Handover

Figure 4: Pose estimation for robot ma-
nipulation tasks. We demonstrate three
types of tasks.

We have also successfully integrated our approach with59

robot manipulation capabilities, as demonstrated through60

various experiments conducted with the UFACTORY61

xArm6 equipped with RealSense D435. The demon-62

strations can be found in the supplementary video63

or on the project website. As shown in Figure 4, we64

illustrate the following three tasks:65

Pouring Task. This task involves transferring the con-66

tents (e.g., water) from one container to another. The67

demonstration highlights the potential of combining our68

approach with heuristic strategies, enabling functional69

robot operations.70

Stacking Task. In this task, we focused on piling up71

objects of the same category, like organizing scattered72

bowls on a tabletop. This demonstrates the precision73

of the estimated object pose, as accurate knowledge of74

object poses is crucial for completing this task.75

Handover Task. This task involved either receiving76

objects from human hands to perform tasks or passing ob-77

jects to person. The demonstration exemplified one form78

of human-robot interaction empowered by our method.79

4



4 Ethics Statement and Boarder Impact80

Our method has the potential to develop home-assisting robot, thus contributing to social welfare.81

We evaluate our method in synthesized or human-collected datasets, which may introduce data bias.82

However, similar studies also have such general concerns. We do not see any possible major harm in83

our study.84
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