
Generator Born from Classifier
-Supplementary Material-

Table of Contents
A Variable Definitions 1

B Further Discussions of the Proposed Method 1
B.1 Pseudocode of Proposed Methods . 1
B.2 Special Case for Binary Classification . 1
B.3 Further Comparison with Other Methods . 5
B.4 Further Discussion about Limitations . 5
B.5 Further Discussion about Social Impact . 6

C Additional Experimental Results and Implementation Details 6
C.1 Further Experimental Results . 6
C.2 Implementation Details . 6

A Variable Definitions

In Tab. 1, we provide descriptions and corresponding notations for the variables employed throughout
the manuscript. Some commonly used variables and their notations have been omitted.

B Further Discussions of the Proposed Method

B.1 Pseudocode of Proposed Methods

In the main text, we detailed the process of deriving a generator from a pre-trained classifier, as well
as its extension in scenarios involving multiple classifiers. Herein, we summarize these two methods
in Algs. 1 and 2, respectively.

B.2 Special Case for Binary Classification

In the main text, we discuss the transformation of a multi-class classifier trained with cross-entropy
into a generator. The theoretical foundation of our discussion is the theory of Maximum-Margin Bias
of a quasi-homogeneous model. However, we observe that the theory of Maximum-Margin Bias
has a specific version for binary classifiers trained with exponential loss. In this section, we provide
a description of this specific version and design our method specifically for binary classification
problems. Following the structure of the main text, we first present the description of the Maximum-
Margin Bias theory, then provide its corresponding KKT conditions, and finally introduce the loss
function for transforming a binary classifier into a generator.

It is worth noting that our discussion on transforming a binary classifier into a generator is not
due to the inability of our proposed method to handle binary classification problems. Classifiers
trained with cross-entropy can indeed support binary classification tasks, and our method can also
transform the corresponding binary classifier into a generator. However, due to the simplicity of
binary classification problems, often a neural network with a scalar output is sufficient for prediction,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Category Variable Description

Generator Network

θ Parameter of the generator network

gp¨, ¨; θq and
gp¨, ¨, ¨; θq

Generator parameterized by θ

Classifier Network

ζ Parameter of the classifier network

Φp¨; ζq Classifier parameterized by ζ

ζ̄
The normalized version of ζ , such that, }ζ̄}2Λ “

1.

ζ̃
The convergence point of ζ̄ under the gradient
flow

ζ 1 The optimization variable used in optimization
problem in Theorem 1

Z1
The set of parameters whose corresponding el-
ement in Λ̃ are non-zero

Z2
The set of parameters whose corresponding el-
ement in Λ̃ are zero

In the setting of training a gener-
ator using multiple classifiers

T The number of classifiers

Φptq The t-th classifier

Ty
A set of classifier indices, each index pointing
to a classifier whose training data contains im-
ages labeled as y

Quasi-Homogeneous Model

Λ

The coefficient of a quasi-homogeneous model,
which is a (non-zero) positive semi-definite
diagonal matrix and offers different rates of
change for different parameters.

Λjj
The element at the j-th row and j-th column of
the matrix Λ

λmax
The maximum value among the elements in the
matrix Λ

Λ̃
A modification of the matrix Λ, retaining its
original shape, obtained by setting all elements
not equal to λmax to zero.

α
The scalar used in the definition of quasi-
homogeneous model, describing the scaling of
the network output and the parameters

||ζ||2Λ
The seminorm of ζ corresponding to Λ,
||ζ||2Λ :“ ζTΛζ

Λ̄
A transformation of Λ applied to simplify the
notation.

Λ1

The coefficient of a quasi-homogeneous model,
which is derived by taking the derivative of a
quasi-homogeneous corresponding to one of
the model parameters

Others
Si

For the sample xi, Si Ă Y is the subset contain-
ing labels for which the classifier’s prediction
probabilities are second highest.

qmin The minimum classification margin

Table 1: Table of Variables.

2

Algorithm 1 Training Procedure of the Generative Model with One Classifiers

Input: Pre-trained network: Φp¨; ζq, number of training samples: N , batch size M , total epochs: E,
and other hyper-parameter: δ and β.

Initialize: Generative model: gp¨, ¨; θq, µ predictor: hp¨, ¨; ηq, and α.
1: Y Ð Random sample of M labels
2: Λ Ð Solution of Eq. (10)
3: λmax Ð maxj Λjj

4: Λ̃ Ð zero_likepΛq

5: for j in 1, ¨ ¨ ¨ , |ζ| do
6: if Λjj ““ λmax then
7: Λ̃jj “ λmax

8: end if
9: end for

10: for e in 1, ¨ ¨ ¨ , E do
11: Λ̄ Ð Λ̃eαp2Λ´Iq

12: ϵ Ð Random sample of M Gaussian noise
13: X Ð gpϵ,Y ; θq

14: µ Ð hpX,Y ; ηq

15: Compute Lpθ, η, αq

16: Update θ, η, and α using gradient descent
17: end for

Algorithm 2 Training Procedure of the Generative Model with Multiple Classifiers

Input: Pre-trained networks: tΦptqp¨; ζptqqutPrT s, number of training samples for each classifier:
tN ptqutPrT s, batch size M , total epochs: E, and other hyper-parameter: δ and β.

Initialize: Generative model: gp¨, ¨, ¨; θq, µ predictor: hp¨, ¨, ¨; ηq, and tαptqutPrT s.
1: for t in 1, ¨ ¨ ¨ , T do
2: Y ptq Ð Random sample of M labels
3: Λptq Ð Solution of Eq. (10)
4: λ

ptq
max Ð maxj Λ

ptq
jj

5: Λ̃ptq Ð zero_likepΛptqq

6: for j in 1, ¨ ¨ ¨ , |ζptq| do
7: if Λptq

jj ““ λ
ptq
max then

8: Λ̃
ptq
jj “ λ

ptq
max

9: end if
10: end for
11: end for
12: for e in 1, ¨ ¨ ¨ , E do
13: for t in 1, ¨ ¨ ¨ , T do
14: Λ̄ptq Ð Λ̃ptqeα

ptq
p2Λptq

´Iq

15: ϵptq Ð Random sample of M Gaussian noise
16: t Ð vectorize t
17: Xptq Ð gpϵptq,Y ptq, t; θq

18: µptq Ð hpXptq,Y ptq, t; ηq

19: Compute Lptqpθ, η, αptqq

20: end for
21: Compute

ř

tPrT s L
ptqpθ, η, αptqq

22: Update θ, η, and tαptqutPrT s using gradient descent
23: end for

3

rendering cross-entropy loss inapplicable. Therefore, to ensure the generality of our method, we
provide a special design specifically for binary classification problems. This represents a particular
extension of our method.

Let Φp¨; ζq : Rd Ñ Y denote the classifier parameterized by ζ and trained on binary classification
dataset D “ tpxi, yiquNi“1 with each pxi, yiq P Rd ˆ Y . Here, Y “ t´1, 1u is a binary label space.
let Lpζq :“

řN
i“1 lpΦpxi; ζq, yiq denote the exponential loss of Φ on D, where lpΦpxi; ζq, yiq “

e´yiΦpxi; ζq. Again, we require the classifier network to be a Λ-quasi-homogeneous model with
similar definitions of seminorm || ¨ ||2Λ, maximal element λmax, normalized parameters ζ̄ and Λ̃.

The Quasi-Homogeneous Maximum-Margin Theorem states as follows.

Theorem 2 (Quasi-Homogeneous Maximum-Margin Theorem from Binary Classifier [Kunin et al.,
2023]). Let Φp¨; ζq denote a Λ-quasi-homogeneous binary classifier trained on D with exponential
loss L. Assume that: (1) for any fixed x, Φpx; ζq is locally Lipschitz and admits a chain rule [Davis
et al., 2020, Lyu and Li, 2020]; (2) the learning dynamic is described by a gradient flow [Lyu and
Li, 2020]; (3) limtÑ8 ζ̄ptq exists; (4) Dκ ą 0 such that only ζ with ||ζ||Λmax ě κ separates the
training data; and (5) Dt0 such that Lpζpt0qq ă N´1. Dα P R such that ζ̃ :“ ψαplimtÑ8 ζ̄ptqq is a
first-order stationary point of the following maximum-margin problem

min
ζ1

1

2
||ζ 1||2

Λ̃
(1a)

s. t. yiΦpxi; ζ
1q ě 1 @i P rN s. (1b)

Again, Theorem 2 implies that the neural network parameters converge to the first-order stationary
point (or the Karush–Kuhn–Tucker point (KKT) point) of the optimization problem in Eq. (1). Let
tµiuiPrNs denote the set of KKT multipliers, the KKT condition can be written as follows.

Λ̃ζ̃ “
ÿ

iPrNs

yiµi∇ζ̃Φpxi; ζ̃q; (2a)

for all i P rN s :

yiΦpxi; ζ̃q ě 1, (2b)
µi ě 0, (2c)

µirΦpxi; ζ̃q ´ 1s “ 0. (2d)

To avoid scaling of the neural network parameters during the evaluation of ∇ζ̃Φp¨; ζ̃q and Φp¨; ζ̃q,
similar to the approach in the main text, we rewrite Eq. (2) based on the definition as follows:

Λ̄ζ “
ÿ

iPrNs

yiµi∇ζΦpxi; ζq; (3a)

for all i P rN s :

Φpxi; ζq ě e´α, (3b)
µi ě 0, (3c)

µirΦpxi; ζq ´ e´αs “ 0, (3d)

where the new scaling parameter Λ̄ :“ Λ̃eαp2Λ´Iq.

Let g denote the conditional generator parameterized by θ to generate input x “ gpϵ, y; θq given the
corresponding label y and random noise ϵ. To ensure that the generated samples satisfy the stationary
condition in Eq. (3a), the Lstationarity is designed to be

Lstationaritypθ, ηq :“ ||
1

N
Λ̄ζ ´

1

M

ÿ

iPrMs

yiµi∇ζΦpxi; ζq||. (4)

4

To approximate primal feasibility and complementary slackness in Eqs. (3b) and (3d), Lduality is
designed to be

Ldualitypθ, αq :“
1

M

ÿ

iPrMs

rmax
`

Φpxi; ζq ´ e´α ´ δ, 0
˘

´ min
`

Φpxi; ζq ´ e´α, 0
˘

s, (5)

where δ ą 0 is a hyper-parameter.

For the KKT multipliers, again, the proxy variables µ1
i can be used by defining µi :“ ReLUpµ1

iq.
For each generated sample xi, µ1

i P R is learned as µ1
i “ hpxi, yi; ηq by network h parameterized by

η. For α, we still treat it as a learnable parameter. For Λ, the estimation method discussed in the main
text is still feasible for the binary classification case.

By combining Lstationarity and Lduality the final loss has the same structure as the loss proposed in
the main text:

L “ Lstationaritypθ, ηq ` βLdualitypθ, αq, (6)
where β is the balancing hyper-parameter.

For the scenario in which a generator is trained using multiple classifiers, the extension discussed in
the main text can be directly applied to a set of binary classifiers or a set of binary classifiers and
multi-class classifiers as well.

B.3 Further Comparison with Other Methods

Comparison with DeepDream [Mordvintsev et al., 2015]. DeepDream’s objective is to visualize
patterns learned by neural networks, while our method aims to train a generator for the conditional
sampling of images. Technically, to generate each image, DeepDream requires an independent
gradient optimization process aimed at maximizing a certain activation or network output. By
contrast, once our generator is trained, images can be produced by randomly sampling noise. This
leads to two outcomes: firstly, DeepDream has larger computational complexity than our method does
and takes longer to generate each image compared to our method; secondly, DeepDream has a larger
parameter space, resulting in superior performance. These comparative conclusions are summarized
in Tab. 3, and a comparison of the generated images is shown in Fig. 1. Admittedly, it is challenging
to determine superiority based solely on visual effects.

Comparison with [Haim et al., 2022, Buzaglo et al., 2023] (1) Our method is to train a generator
network from sketch, which is capable of transforming random noise into generated data of good
perceptual quality. By contrast, the task of [Haim et al., 2022, Buzaglo et al., 2023] is to recover
training data. Our task is more challenging in two respects. Firstly, we aim to generate samples
that are not present in the original dataset but still maintain good perceptual quality. Secondly, our
generation process is controllable and supports conditional sampling. (2) [Haim et al., 2022] only
supports binary classifiers, while our work and [Buzaglo et al., 2023] support multi-class classifiers.
(3) [Haim et al., 2022, Buzaglo et al., 2023] only support homogeneous networks. By contrast,
our method supports quasi-homogeneous networks, which encompass a broader range of networks.
(4) [Haim et al., 2022, Buzaglo et al., 2023] optimize directly on the pixel space. Specifically,
for each run, the number of optimizable parameters equals the batch size multiplied by the image
size. However, our optimizable parameters only include the parameters of the generator. In our
implementation, it is significantly lower than those in [Haim et al., 2022, Buzaglo et al., 2023].

B.4 Further Discussion about Limitations

Our method has two primary limitations. (1) Estimating Λ introduces additional computational
overhead. Given that our approach requires the classifier to be a quasi-homogeneous model, we need
to determine the classifier’s Lambda before training the generator. The method we provide in our paper
for calculating Lambda can be computationally intensive, especially when the classifier has many
parameters. (2) Our method exhibits class bias, with significant variations in the generation quality
for different categories. We hypothesize that there might be two reasons leading to this phenomenon.
First, different categories may have varying complexities in their data distributions, making it more
challenging for the generator to produce certain categories. Second, the generator might inherit the
classifier’s bias. If the classifier does not fit well for certain categories, the information about that

5

Figure 1: Generator-produced samples. The generator is trained using a single classifier trained on
the MNIST dataset.

Condition Parameter Region

Generator

learning rate 10Uniformṕ 3.5,́ 2.5q

batch size t128, 256, 512u

weight decay 10Uniformṕ 5,́ 3.5q

β 10Uniformṕ 3,2q

βTotalV ariation 10Uniformṕ 3,́ 2q

Table 2: Hyper-Parameters’ Searching Regions.

category in the classifier might be limited or inaccurate. This, in turn, would affect the generator’s
performance in that particular category.

B.5 Further Discussion about Social Impact

Our method, which trains a generator from deep learning models, may have risks related to privacy
leakage and data misuse. If classifiers are trained on data containing personal information, such
as medical records, personal photos, or social media posts, the generation of this data can directly
compromise individual privacy. Beyond privacy concerns, the generated data can be maliciously
exploited for purposes like creating fake news, fraud, or identity theft. In summary, generating
training data for deep learning models not only threatens privacy but also opens the door to various
forms of data misuse, underscoring the ethical and security considerations when working with the
proposed method.

C Additional Experimental Results and Implementation Details

C.1 Further Experimental Results

In this section, we show more experimental results on various datasets. First, in Fig. 1 and Fig. 2, we
show more generated images of the MNIST and CelebA datasets, respectively. Then, in Fig. 3, we
provide the generated images of the Fashion MNIST dataset.

C.2 Implementation Details

The description of the training set constructed from the MNIST and CelebA datasets is discussed in
the main text. Here, we discuss the training set for our experiments on the Fashion MNINT [Xiao

6

Figure 2: Generator-produced samples. The generator is trained using a single classifier trained on
the CelebA dataset.

Figure 3: Generator-produced samples. The generator is trained using a single classifier trained on
the Fashion MNIST dataset.

et al., 2017].For the Fashion MNINT dataset, we set up a classification task with 10 classes and 500
training data (50 images per class) randomly sampled from the original training set.

For all the classifiers, network parameters were initialized using Kaiming initialization [He et al.,
2015] and trained until the classification loss converges using full batch gradient descent with a
learning rate of 0.01. The weight decay of the learning is set to be 0.0001. For the generators, network
parameters were initialized using Kaiming initialization [He et al., 2015] and trained for 50, 000
epochs using Adam optimizer [Kingma and Ba, 2015]. The values or the search regions of other
important hyperparameters are shown in Tab. 2. The architecture of the classifiers and generators are
the same for all our experiments and has been discussed in the main text.

All of our experiments are deployed on NVIDIA RTX A5000.

7

References
Gon Buzaglo, Niv Haim, Gilad Yehudai, Gal Vardi, and Michal Irani. Reconstructing training data from

multiclass neural networks, 2023. 5

Damek Davis, Dmitriy Drusvyatskiy, Sham M. Kakade, and Jason D. Lee. Stochastic subgradient method
converges on tame functions. Found. Comput. Math., 20(1):119–154, 2020. 4

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data from trained
neural networks. In Conference on Neural Information Processing Systems (NeurlPS), 2022. 5

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. 2015. 7

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015. 7

Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum margin bias of
quasi-homogeneous neural networks. International Conference on Learning Representations (ICLR), 2023. 4

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations (ICLR), 2020. 4

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper
into neural networks, 2015. URL https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html. 5

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017. 6

8

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

	Appendix
	
	Variable Definitions
	Further Discussions of the Proposed Method
	Pseudocode of Proposed Methods
	Special Case for Binary Classification
	Further Comparison with Other Methods
	Further Discussion about Limitations
	Further Discussion about Social Impact

	Additional Experimental Results and Implementation Details
	Further Experimental Results
	Implementation Details

