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Supplementary Materials

A Proofs

A.1 Preliminaries

In this section, we state a handful of standard definitions and concentration results before proving the
main theorems.
Definition A.1. A random variable Z is sub-Gaussian with parameter ν2 if for any λ > 0, the
following inequality holds:

E
[
eλ(Z−E[Z])

]
≤ eν

2λ2/2

We write Z ∈ subG(ν2)

Definition A.2. A random vector Z ∈ Rd is sub-Gaussian with parameter ν2 if for any constant
a ∈ Rd, we have ⟨Z, a⟩ ∈ subG(∥a∥22 ν2). When this holds, we write Z ∈ subGd(ν

2).

Definition A.3. A random variable W is sub-exponential with parameters ν2 and α if the following
inequality holds for all |λ| < 1

α

E
[
eλ(W−E[W ])

]
≤ eν

2λ2/2

We write W ∈ subE(ν2, α)

Definition A.4. A random vector W ∈ Rd is sub-exponential with parameters ν2 and α if for
any constant a ∈ Rd, we have ⟨W,a⟩ ∈ subE(∥a∥22 ν2, ∥a∥∞ α). When this holds, we write
Z ∈ subEd(ν

2, α).
Lemma A.1 (Bernstein’s inequality). Let Z ∈ subE(ν2, α). Then

P {|Z − E [Z] | ≥ t} ≤ 2 exp

{
−min

(
t2

2ν2
,
t

2α

)}
Lemma A.2. Let Z ∈ subEd(ν

2, α) with E [Z] = 0. Then there exist constants C1 and C2 such that

P {∥Z∥2 ≥ t} ≤ C1 exp
[
C2(d−min(t2/ν2, t/α))

]
Lemma A.3. Suppose A ∈ Rm×d is a random matrix whose rows are independent subEd(ν

2, α)
random variables with zero mean. Then there exist constants C1 and C2 such that the operator norm
of A satisfies

P
{
∥A∥op ≥ t

}
≤ C1 exp

[
C2(m+ d−min(t2/ν2, t/α))

]
The proofs of Lemmas A.2 and A.3 follow from covering arguments and Bernstein’s inequality; refer
to [3] Chapter 4 for details.
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A.2 Proofs of Results in Section 3

The proofs of the upper bounds follow the general structure outlined in [2]. Throughout the proofs, let

Lq(B) = 1
2

∥∥∥Σ̃(q)1/2Beq

∥∥∥2
2
− ⟨Ŝ(q),Beq⟩ and L(B) =

∑
q∈[Q] Lq(B). The matrix ∇L(B∗) will

play a central role in our analysis; the following lemma gives a characterization of its distribution.
Lemma A.4. There exist constants C > 0 and c > 0, depending only on σ2 and the eigenvalues of
the matrices Σ(q)

1 and Σ
(q)
2 , such that the (i, q)th entry of ∇L(B∗) has distribution subE(ν2q , αq),

where

ν2q =
C

nq

(
1 +

∥∥∥β(q)
∥∥∥2
2
(
n1

ñq
+ 1− 2ρ̃q)

)
αq =

(
c

nq ∧ ñq

)∥∥∥β(q)
∥∥∥
∞

Proof. Direct calculation reveals that the qth column of ∇L(B∗) is equal to Ŝ(q)−Σ̃(q)β(q). Observe

Ŝ(q) − Σ̃(q)β(q) =
1

nq
X(q)T ε(q) +

1

nq
X(q)TX(q)β(q) − 1

ñq
X̃(q)T X̃(q)β(q)

=
1

nq
X(q)T ε(q) +

(
1

nq
X(q)TX(q) − 1

ñq
X̃(q)T X̃(q)

)
β(q)

We clearly have that 1
nq

X(q)T ε(q) ∈ subEp(C/nq, c/nq) for some C, c > 0 that depend on σ2 and

Σ(q). To analyze the second term, notice

1

nq
X(q)TX(q) − 1

ñq
X̃(q)T X̃(q) =

1

|Iq|
∑
i∈Iq

XiX
T
i − 1

|Ĩq|

∑
i∈Ĩq

XiX
T
i

=
∑

i∈Iq∩Iq

(
1

|Iq|
− 1

|Ĩq|

)
XiX

T
i

+
∑

i∈Iq−Ĩq

1

|Iq|
XiX

T
i

−
∑

i∈Ĩq−Iq

1

|Ĩq|
XiX

T
i

= I + II − III

Right-multiplying by β(q) and applying standard properties of sub-exponential random variables, we
get

Iβ(q) ∈ subEp

C1|Iq ∩ Ĩq|

[
1

|Iq|
− 1

|Ĩq|

]2 ∥∥∥β(q)
∥∥∥2
2
, c1

[
1

|Iq|
− 1

|Ĩq|

]∥∥∥β(q)
∥∥∥
∞


IIβ(q) ∈ subEp

(
C2

|Iq − Ĩq|
|Iq|2

∥∥∥β(q)
∥∥∥2
2
,
c2
|Iq|

∥∥∥β(q)
∥∥∥
∞

)

IIIβ(q) ∈ subEp

(
C3

|Ĩq − Iq|
|Ĩq|2

∥∥∥β(q)
∥∥∥2
2
,
c3

|Ĩq|

∥∥∥β(q)
∥∥∥
∞

)
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To find the distribution of (I + II - III)β(q), we take the sum of the first parameters and the max of the
second parameters, and choose constants C4 = max(C1, C2, C3) and c4 = max(c1, c2, c3). After
some arithmetic this yields

(I + II - III)β(q) ∈ subEp

(
C4

(
1

ñq
− 2

|Iq ∩ Ĩq|
nqñq

+
1

nq

)∥∥∥β(q)
∥∥∥2
2
,

c4
nq ∧ ñq

∥∥∥β(q)
∥∥∥
∞

)

where we use |Iq| = nq and |Ĩq| = ñq for clarity, as well as 1/x − 1/y ≤ max(1/x, 1/y) for
x, y > 0 to simplify the second parameter. Combining this with 1

nq
X(q)T ε(q) ∈ subEp(C/nq, c/nq),

we have that

Ŝ(q) − Σ̃(q)β(q) ∈ subEp

(
C

[
1

nq
+

(
1

ñq
− 2

|Iq ∩ Ĩq|
nqñq

+
1

nq

)∥∥∥β(q)
∥∥∥2
2

]
,

c

nq ∧ ñq

∥∥∥β(q)
∥∥∥
∞

)

for C, c sufficiently large. This completes the proof.

A.2.1 Proof of Theorem 3.1

Proof. Let ∆̂ = B̂(sp) −B∗, and define the events

A1 =

{
λ

2
≥ ∥∇L(B∗)∥2,∞

}

A2 =

{
Q∑

q=1

∥∥∥Σ̃(q)1/2∆et

∥∥∥2
2
≥ 1

κ
∥∆∥2F ∀∆ ∈ C3(S∗)

}

The following analysis is conditional on A1 ∩ A2.

We first need that ∆̂ ∈ C3(S∗). This is a standard result for high-dimensional M-estimators and we
omit the proof for brevity. See Proposition 9.13 in [4].

By the optimality of B̂(sp), we know that

Q∑
q=1

∥∥∥Σ̃(q)1/2∆̂
∥∥∥2
2
≲

T∑
q=Q

⟨Ŝ(q) − Σ̃(q)B∗eq, ∆̂eq⟩︸ ︷︷ ︸
I

−λ(
∥∥∥B̂(sp)

∥∥∥
2,1

− ∥B∗∥2,1)︸ ︷︷ ︸
II

Recall that ∇L(B∗) has its qth column equal to Ŝ(q) − Σ̃(q)B∗eq . So we can rewrite I as

I = ⟨∇L(B∗), ∆̂⟩ ≤ ∥∇L(B∗)∥2,∞
∥∥∥∆̂∥∥∥

2,1
≲ λ

√
s
∥∥∥∆̂∥∥∥

F

where the first inequality is Holder’s, and the second uses the fact that we are conditioned on A1 and
∥∆∥2,1 ≲

√
s ∥∆∥F for ∆ ∈ Cα(S). To control II, we apply Lemma 9.14 in [4] and conclude

II ≲ λ
√
s
∥∥∥∆̂∥∥∥

F

which gives
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Q∑
q=1

∥∥∥Σ̃(q)1/2∆̂eq

∥∥∥2
2
≲ λ

√
s
∥∥∥∆̂∥∥∥

F

Since we are conditioned on A2 as well, the left hand side of the above inequality is bounded below

by 1
κ

∥∥∥∆̂∥∥∥2
F

. This yields ∥∥∥B̂(sp) −B∗
∥∥∥
F
≲ λ

√
s

For our choice of λ = O(γ(Q+ log p)/nmin + ∥Ξ∥2,∞), we have

∥∥∥B̂(sp) −B∗
∥∥∥
F
≲

√
sγ(Q+ log p)

nmin
+

√
s ∥Ξ∥2,∞

It remains to show that A1 ∩ A2 occurs with high probability. We know by Assumption 3.3 that A2

occurs with probability at least 1− aN . To analyze A1, recall that Lemma A.4 tells us us that the
(i, q)th entry of ∇L(B∗) has a subE(v2q , αq) distribution. Letting ℓi denote the ith row of ∇L(B∗),
it follows that ℓi ∈ subEQ(v

2, α) for v2 = maxq v
2
q and α = maxq αq . Using this, an application of

Lemma A.2 and the union bound gives us

P
{
∥∇L(B∗)− E [∇L(B∗)]∥2,∞ ≥ t

}
= P

{
max
i∈[p]

∥ℓi − E [ℓi]∥2 ≥ t

}
≤

p∑
i=1

P {∥ℓi − E [ℓi]∥2 ≥ t}

≤
p∑

i=1

C1 exp[C2(Q−min(t2/ν2, t/α))]

= exp[C(log p+Q−min(t2/ν2, t/α))]

A direct calculation reveals that E [∇L(B∗)] = Ξ. So, using our choice t = λ =

C(
√
γ(Q+ log p)/nmin + ∥Ξ∥2,∞) yields the desired result, as long as nmin ∧ ñmin ≥

c ∥B∗∥∞,∞ (Q+ log p).

A.2.2 Proof of Theorem 3.2

Proof. Define the events

B1 =

{
λ

2
≥ ∥∇L(B∗)∥op

}

B2 =

{
Q∑
t=q

∥∥∥Σ̃(q)1/2∆eq

∥∥∥2
2
≥ 1

κ
∥∆∥2F ∀∆ ∈ C3(M∗)

}

Conditional on B1 ∩ B2, an analysis identical to that given in the proof of Theorem 3.1 grants us∥∥∥B̂(lr) −B∗
∥∥∥
F
≲ λ

√
r

which admits

4



∥∥∥B̂(lr) −B∗
∥∥∥
F
≲

√
rξ(T + p)

nmin
+

√
r ∥Ξ∥op

due to our choice of λ. By assumption 3.5, we know that B2 occurs with probability at least 1− bN .
The fact that B1 holds with high probability follows directly from Lemmas A.4 and A.3.

A.3 Proofs of Results in Section 4

A.3.1 Proof of Proposition 4.1

Proof. Since P is convex, the estimator B̂ satisfies the following first-order condition:

∇L(B̂) + λẐ = 0

where Ẑ lies in the sub-gradient of P at B̂. Subtracting ∇L(B∗) from both sides and rearranging
terms grants us

∇L(B̂)−∇L(B∗) = −λẐ−∇L(B∗)

Applying P∗ to both sides, we get

P∗(∇L(B̂)−∇L(B∗)) = P∗(−λẐ−∇L(B∗))

≤ λP∗(Ẑ) + P∗(∇L(B∗))

≤ λ+
λ

2

where the first inequality uses the triangle inequality, and the second uses the properties of sub-
gradients and the event A(λ).

A.3.2 Proof of Theorem 4.1

This basically follows the proof of Theorem 1 in [1]. We repeat the proof for completeness.

Proof. Condition on A(λ∗
δ).

We first prove that λ̂ ≤ λ∗
δ . We proceed by contradiction: suppose that λ̂ > λ∗

δ . Then by the definition
of λ̂, there exist λ′, λ′′ ≥ λ∗

δ such that

P∗(∇L(B̂λ′)−∇L(B̂λ′′)) > C(λ′ + λ′′)

Since A(λ′) and A(λ′′) are subsets of A(λ∗
δ), Proposition 4.1 tells us that the following inequalities

hold:

P∗(∇L(B̂λ′)−∇L(B∗)) ≤ Cλ′

P∗(∇L(B̂λ′′)−∇L(B∗)) ≤ Cλ′′

So we have

P∗(∇L(B̂λ′)−∇L(B̂λ′′)) ≤ P∗(∇L(B̂λ′)−∇L(B∗)) + P∗(∇L(B̂λ′′)−∇L(B∗))

≤ C(λ′ + λ′′)
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But C̄ ≥ C, so this is a contradiction. Hence λ̂ ≤ λ∗
δ .

Now we prove the second claim. Since we are still conditioned on A(λ∗
δ), we know that λ̂ ≤ λ∗

δ . So
applying the definition of λ̂, we have

P∗(∇L(B̂λ̂)−∇L(B̂λ∗
δ
)) ≤ C̄(λ̂+ λ∗

δ) ≤ 2C̄λ∗
δ

Using this result, we apply the triangle inequality to yield

P∗(∇L(B̂λ̂)−∇L(B∗)) ≤ P∗(∇L(B̂λ̂)−∇L(B̂λ∗
δ
)) + P∗(∇L(B̂λ∗

δ
)−∇L(B∗))

≤ 2C̄λ∗
δ + Cλ∗

δ

≤ C∗λ∗
δ

where C∗ ≥ C̄.

Since A(λ∗
δ) occurs with probability at least 1− δ, this completes the proof.

B Simulations

All simulations, including those in the main text, were run in R version 4.0.2 on a Linux machine
with an Intel i5 processor. We implemented all of the estimators using a straightforward proximal
gradient descent algorithm with step size fixed at 1e-3.

For our first additional simulation, we compare the multi-task learning estimators to analogous
single-task estimators. Specifically, we compare the sparse multi-task estimator defined in the
main text to the LASSO computed using only proxy data, and we compare the low-rank estimator
to Ridge regression also computed with proxy data. We generate synthetic Gaussian data with
nmin = 100, ñmin = 150, p = 100 and ρ̃ = 0 so that there is no overlap between summary statistics.
For the sparse estimators, we generate the B∗ matrix with 10 nonzero rows, and for the low-rank
estimators, we generate B∗ with a rank of 2. For both comparisons, we generate the columns
of B∗ distinctly to model heterogeneity between tasks. Finally, we consider two versions of the
LASSO/Ridge estimators. The first variation pools all of the data across tasks into one dataset, and
computes an estimate β̂. This approach completely ignores heterogeneity between tasks. The second
variation models each task separately without consider structural similarities between tasks. We
choose these two variations to demonstrate the effectiveness of multi-task learning in situations when
tasks should be modeled separately, but there is some shared structure between them.

The results of this simulation are shown in Figure 1. Clearly the multi-task estimators outperform
the single-task analogs, which is expected given the data generating process. This suggests that
multi-task learning should be preferred for integrating data from similar but distinct sources.

Next, we consider the effect of a misspecified proxy data set on the MSE per task. This simulation
is intended to study the effect of distributional shifts between the X(q) and X̃(q) matrices for each
task on the downstream performance of our estimators. This simulation setup is the same as the last
one, except we draw X(q) from a normal distribution with covariance Σ1 and X̃(q) from a normal
distribution with covariance Σ2, where we vary ∥Σ1 − Σ2∥F ∈ {10; 20; 50; 100}.

The results of this simulation are found in Figure 2. We can clearly see that the proxy data should be
well-specified to decrease the MSE per task, as expected.

Finally, we compare our adaptive tuning procedure to a hold-out validation procedure that uses a
small amount of individual-level data each task. The hold-out validation scheme assumes that we
have access to a dataset (X(q)

tune, Y
(q)

tune) for each task q ∈ [Q], and chooses λ ∈ Λ such that it minimizes∑Q
q=1

∥∥∥Y (q)
tune −X

(q)
tuneB̂λeq

∥∥∥2
2
, where B̂λ is computed using the proxy data set which is independent

from (X
(q)
tune, Y

(q)
tune)q∈[Q]. This hold-out tuning procedure is often used in practice, especially in

statistical genetics, whenever such a dataset is available. However, when it comes to multi-task
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Figure 1: Average MSE per task after 100 repetitions plotted against the number of tasks. The plot
on the left-hand side corresponds to the sparse estimator, and the figure on the right is the low-rank
estimator. In both plots, the ‘ProxyMTL’ line corresponds to our multi-task learning method. The
’Pooled Lasso’ and ’Pooled Ridge’ correspond to the estimators fit by pooling all the data across the
tasks, and the ‘Split Lasso’ and ‘Split Ridge’ correspond to estimators fit on each task separately.
The MSE per task is computed by summing up the MSE accumulated across all of the tasks, then
dividing by the number of tasks.

Figure 2: Average MSE per task after 100 repetitions plotted against ∥Σ1 − Σ2∥F . The left plot
corresponds to the sparse estimator and right plot corresponds to the low-rank estimator.

learning, obtaining validation data for all Q tasks can pose a significant challenge. Fortunately, our
adaptive tuning procedure provides a compelling alternative that overcomes this obstacle.

We present the results of our simulations in Figure 3. In these simulations, we vary the sample size of
the hold-out dataset from 10 to 100. The y-axis is the average MSE per task of the estimator computed
using the tuning parameter chosen by each of the two methods. Furthermore, we have pooled the
hold-out data with the proxy data in computing the estimator with the adaptive validation method, to
emphasize that adaptive validation is able to take full advantage of the data at hand without needing
an additional set of tuning data. This adaptive method offers comparable performance to hold-out
tuning, since pooling the data increases sample size as well as overlap between Ŝ(q) and Σ̃(q) for
each q. The performance of adaptive tuning improves as the amount of hold-out data increases, as
expected.

7



Figure 3: Average MSE per task after 100 repetitions plotted against the choice of tuning method.
’AV’ standards for adaptive validation, which refers to our method outlined in the main manuscript
with C̄ = 1. The label ’holdout’ refers to the hold-out validation method outlined above. The figure
on the left-hand side gives the results for the sparse estimator, and the low-rank estimator is on the
right.
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