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Abstract

Pose estimation is remarkably successful under supervised learning, but obtaining
annotations, especially for new deployments, is costly and time-consuming. This
work tackles adapting models trained on synthetic data to real-world target do-
mains with only unlabelled data. A common approach is model fine-tuning with
pseudo-labels from the target domain; yet many pseudo-labelling strategies cannot
provide sufficient high-quality pose labels. This work proposes a reconstruction-
based strategy as a complement to pseudo-labelling for synthetic-to-real domain
adaptation. We generate the driving image by geometrically transforming a base
image according to the predicted keypoints and enforce a reconstruction loss to
refine the predictions. It provides a novel solution to effectively correct confident
yet inaccurate keypoint locations through image reconstruction in domain adap-
tation. Our approach outperforms the previous state-of-the-arts by 8% for PCK
on four large-scale hand and human real-world datasets. In particular, we excel
on endpoints such as fingertips and head, with 7.2% and 29.9% improvements in
PCK.

1 Introduction

Training deep models for human pose estimation, be it of the full body [30, 29, 2] or hands [37, 42],
requires large-scale labelled datasets. Synthetic data [43, 31] has become more favoured due to the
ease of generation and the challenges of accurately annotating real-world data. Despite advance-
ments in realistic rendering [23, 5], models trained on synthetic data do not generalize well to real-
world settings. The gap arises due to variations in pose, appearance, lighting, and other low-level
differences between the two data domains. This paper aims to close this gap and targets learning
from labelled synthetic and unlabelled real-world data for application to real-world settings.

Domain adaptation studies the transfer of models from synthetic to real data. Recent works on
domain adaptive pose estimation [17, 36, 15] learn from target pseudo-labels. However, the gains
from pseudo-labelling can be limited. There is an inherent contradiction – only labels which are suffi-
ciently accurate benefit the learning, and it is important to ensure label quality through selection [15]
and or correction schemes [36, 18]. Yet the ability to obtain high-quality pseudo-labels implies that
the model is sufficiently capable of estimating the poses of said samples. The cross-domain setting
makes it difficult to obtain high-quality labels. The challenge is compounded by additional gaps like
different subjects’ anatomical sizings, different annotation standards across datasets, etc.

Instead of estimating labels for the given target data, what if we try to reconstruct the data itself?
This latter strategy is often used in self-supervised pose estimation, where learning is guided by
reconstruction losses [33, 11, 34]. The challenge lies in linking the reconstruction scheme back to
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the underlying pose1. While it is feasible to use a differentiable renderer, there are several drawbacks,
such as the complexity of the renderer [23] and the difficulty of model fitting [16].

With this motivation, we design a simple yet effective reconstruction scheme that connects keypoint
prediction via bone maps. Specifically, given a base and driving image pair with different poses,
we estimate the keypoints and region-wise geometric transformations between the two poses, where
each region corresponds to a bone linking two joints. The transformation is then applied with the
predicted mask to obtain fine-grained warping (as shown in Fig. 1). The complete reconstruction
is conducted in the generation module, which translates the base image into the driving image,
specifically performing feature warping and inpainting in downsampling and upsampling structures.
Intuitively, the more accurate the estimated keypoints and geometric transformation in the image
pair, the better the reconstruction. Differences between the reconstruction and the original driving
image can serve as a supervisory signal to improve keypoint localization.

A key benefit of the reconstruction scheme is that it can leverage almost all the samples in the
unlabelled target dataset and give refinement according to the reconstruction loss. Pseudo-labeled
samples are often selected based on some confidence measure like heatmap response, but given that
most neural networks are poorly calibrated [22, 19], the confidence is often unsatisfactorily aligned
with pose accuracy. Many samples can be highly confident yet inaccurate and the predictions remain
inaccurate in this way. This is a key reason why pseudo-labelling methods easily saturate (see
Table 3 (b)). In contrast, our reconstruction scheme requires only the two images containing the
same object (hand/human) and a rigid background. As such, we are able to improve those confident
but wrong keypoints based on 2D evidence in the target domain that arises from the reconstruction
loss (see Table 3 (c)). Also, for keypoints that are both confident and accurate, the reconstruction
will not degrade the result since it has perfectly provided useful information for reconstruction.

The supervision through reconstruction is indirect and is a weaker source of information than pose
pseudo-labels. However, given that the two approaches are complementary, they can also be used
in conjunction, i.e., a limited but strong supervision from pseudo-labelling in combination with a
larger and diverse source of weak supervision from the reconstruction. To that end, we additionally
propose a new selection criteria for pseudo-labels that integrates 2D evidence and 3D kinematic
constraints. In combination, we are able to outperform state-of-the-art domain adaptation methods
by 8%, with significant improvements on difficult keypoints, like fingertips for the hand, and head
for humans by 29.9%. Our contributions can be summarized as

• A novel reconstruction-based approach for domain adaptive pose estimation. We introduce
a reconstruction method to make up for the limitations of the pseudo-labelling, and realize
the connection between image reconstruction and keypoint prediction by building bone
maps, which enables the correction of keypoints through optimizing reconstruction loss.

• An improved pseudo-labelling selection criteria that integrates both 2D evidence and 3D
kinematic constraints. The new criteria improves the quality of the pseudo-labels by enlarg-
ing the set of usable pseudo-labels by 13%.

• Domain adaptation results from synthetic to real-world data for both hand and human body
show that we outperform state-of-the-art by a large margin, with as much as 29.9% im-
provement on difficult keypoints like fingertips and head and an overall 8% improvement.

2 Related Work

2.1 Cross-domain Pose Estimation

Cross-domain challenges in pose estimation, especially in the context of synthetic-to-real, are best
known for animal pose estimation [1, 20, 17], where it is challenging to collect and label sizable train-
ing data. Similar challenges, however, also exist for the human body [40] and hand [36, 18, 13], as
deep learning algorithms become more data-hungry. The standard strategy is to apply consistency
constraints [20, 36] or pseudo-labelling [17, 15] to learn effective features for the target domain.
Consistency constraints can be applied in equivariant augmentations [20], and cross-modality [36].

1We make a distinction between data synthesis and reconstruction. The former generates image observations
based on given poses; the latter recreates image observations without knowledge of the underlying pose.
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To generate less-noisy pseudo-labels and guide the network fine-tuning, [15] utilized the normal-
ized output from a teacher network and [1] proposed a progressive self-paced pseudo-label updating
strategy to make the guidance more stable. Both works denoise pseudo-labels based on the heatmap
activations while [36, 18] reduced noise with a pose correction procedure. Either strategy alone can
lead to the neglect of additional correlation of depth or the accumulation of prediction errors. We
therefore leverage both strategies simultaneously and embrace their union of pseudo-labels indica-
tors when their consensus is high to enrich guidance on the target domain.

2.2 Conditional Image Reconstruction

Reconstructing images conditioned on paired images is an effective technique to concentrate on spe-
cific attributes (e.g., keypoints) while ignoring irrelevant ones in pose estimation, where the focus
can be summarized on conditions design [10, 11, 25]. Jakab et al. [10] proposed to disentangle key-
point heatmaps from appearance. The heatmaps, as conditions to generate images, can be optimized
by the reconstruction loss. A follow-up work [11] utilized a skeleton image to facilitate the gener-
ation process. Furthermore, recent work [25] regressed affine parameters to deform a pre-defined
shape template as conditions. However, they all extract appearance and keypoints from different im-
ages separately and overlook the geometric relationship across images, which can provide explicit
guidance on image reconstruction.

Using geometric relationships across images to perform reconstruction has been seen in image ani-
mation [27, 26, 28]. They predict motion-specific keypoints [27, 26] or semantic regions [28], and
obtain transformation parameters to deform one image to resemble another image. Those motion-
specific keypoints or region-based methods are generalizable in predicting transformation parame-
ters and modeling complex movements. But they target achieving the mean and deviation of each
region, which is unrelated to our purpose of joint locations.

To emphasize the geometric relationship (i.e., the transformations between the two images) to per-
form reconstruction for refining joint locations, we connect semantic regions and joint locations via
bone maps, which enables the correction of poses through optimizing the reconstruction loss. Natu-
rally, the reconstruction becomes a complement to pseudo-labelling, and both of them contribute to
domain adaptive pose estimation.

3 Method

3.1 Problem Formulation

Consider labelled data Ds = {(Isi,yi)}Ns
i=1 from a source domain s and unlabelled data Dt =

{(Iti)}Nt
i=1 from target domain t, where I denotes an RGB image, y the pose label, and Ns and

Nt are the number of samples in the source and target datasets. The objective is to learn a pose
estimation system fkp = (fenc ◦ fdec), trained on {Ds,Dt} and apply it to hold-out test data on the
target domain t for estimating 2D or 3D keypoints.

We follow other domain adaptive pose estimation methods, and pre-train on the labelled source
domain (synthetic) and then fine-tune on the unlabelled target domain (real-world). In pre-training,
(Sec. 3.2), we use the labelled synthetic data Ds to learn an initial pose estimation network. For
fine-tuning on unlabelled real-world data Dt (Sec. 3.3), we introduce a pseudo-labelling strategy to
correct 2D pseudo-labels via 3D constraints in Sec. 3.3.1. Additionally, we propose a geometric
reconstruction to correct keypoint locations from image signals in Sec.3.3.2. The overall pipeline
for fine-tuning is shown in Fig. 1.

3.2 Pre-training on the Source Domain

Keypoint Predictor The keypoint predictor fkp = (fenc ◦ fdec) is first pre-trained on the synthetic
source images Is to estimate a heatmap ĥp and a relative depth d̂. As the synthetic images have
ground truth labels, fkp can be learned in a supervised manner with ground-truths (hgt

p , dgt):

Lsup =
1

Ns

∑
Ds

(∥ĥp − hgt
p∥2 + λd∥d̂− dgt∥2), (1)
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(b) Warping Estimation Module

Figure 1: Illustration of pipeline and modules of fine-tuning. (a) Fine-tuning on target domain. Given the
base and driving images sharing the same background but different poses, we forward them into keypoint
predictor fkp = (fenc ◦ fdec) to produce keypoint heatmaps ĥp and relative depth predictions d̂. Afterward,
our integrated pseudo-labelling P (See Sec. 3.3.1) is introduced to generate pseudo-labels, while the warping
estimation module W and the generation module G (See Sec. 3.3.2) are used to reconstruct driving images from
base images. (b) Warping estimation module. Bone maps derived from keypoints are used to calculate coarse
transformation parameters via SVD and Expand. With the transformation and base images, a hourglass is used
to generate inpainting map Cdrv←b and region-wise displacement field Ddrv←b that will work on upsampled
feature maps in the generator G.

where λd is a hyper-parameter that trades off depth loss and heatmap loss. The ground-truth heatmap
hgt
p is constructed as a 2D Gaussian centered at the ground-truth coordinate (ugt, vgt) and a standard

deviation of 2. The ground-truth dgt is the depth relative to the root keypoint. We follow the same
practice in [9] to regress 2.5D and lift it to 3D pose. To elaborate, we employ soft-argmax operation
on ĥp and then perform Hadamard product with depth value maps to derive the relative depth d̂. The
expected outcome of this operation yields the 2D coordinates, denoted as (û, v̂).

Invariant Feature Learning Models trained only on synthetic data Ds are unlikely to perform well
on target data Dt (see Source only in Table 1). One reason is the domain gap between source and
target data; typically, synthetic data used for pose estimation is not fully photorealistic, so the model
does not generalize well to real-world data [4, 31]. To prevent fkp from overfitting to source-specific
representations, which is common [38, 21], we augment the source data to resemble target data and
align the original and augmented source features using contrastive learning [3]. Specifically, we train
a StyleNet from [24], which transfers the style of the target domain to the source, while preserving
the source content, i.e., the pose. The keypoint predictor fkp is then trained with the supervised
keypoint loss and an alignment on features with the following loss:

Lalign = −
B∑
i=1

log
e(⟨zi,z

+
i ⟩/τ)∑B

k=1 1[k ̸=i](e(⟨zi,zk⟩/τ) + e(⟨zi,z
+
k ⟩/τ))

, (2)

with batch size B, temperature hyperparameter τ = 0.5, and ⟨·⟩ denotes the cosine similarity. In the
above equation, the features (z, z+) are derived from the source and augmented source image.

[15] also applies a StyleNet to augment source samples but only supervises the network output. Our
work extends the supervision to the latent features, as it can further benefit task-specific feature
learning by building a consistent embedding space. It is feasible to also add target data into invariant
feature learning with the style of source data, but we empirically find no obvious improvement.
Therefore, we only perform alignment between source and augmented source features considering
the limited memory.
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3.3 Fine-tuning on the Target Domain

The fine-tuning on the target domain consists of integrated pseudo-labelling and geometric recon-
struction. The integrated pseudo-labelling extracts confident pesudo-labels with guidance from both
2D heatmaps and 3D constraints. Since the label can still be noisy, we also have a geometric recon-
struction strategy that generates a driving image based on the base image and pose transformation,
which provides supervision simply from 2D image signals to improve those confident yet inaccurate
keypoints.

3.3.1 Integrated Pseudo-labelling

A commonly used strategy to adapt source models to a target domain is pseudo-labelling. In ensur-
ing that pseudo-labels are valid, existing works have leveraged the heatmap activations in ĥp [15],
or kinematic feasibility of the pose ŷ [36]. Both strategies have drawbacks; the former ignores cor-
relations that may exist in d̂, while the latter uses a greedy strategy that may accumulate errors down
kinematic chains. With these considerations in mind, we propose an integrated pseudo-labelling
strategy that combines the use of the 2D heatmap and the kinematic feasibility of 3D predictions.
Specifically, given a predicted heatmap ĥp, we generate a 2D confidence mask M2D ∈ RB×K as
indicators to select keypoints with heatmap activations larger than the threshold γ2D in each batch
during training. The 2D pseudo-label h̃p is the gaussian heatmap ĥp centered on the predicted 2D
coordinate, as defined in [15]. For the 3D pseudo-labels, the prediction ŷ = (û, v̂, d̂) is lifted into
3D coordinates and rectified as pose ỹ with reasonable feasibility based on the pose correction [36].
The 3D confidence mask M3D ∈ RB×K indicates the qualified keypoints based on the comparison
of L2 norm between the 2D projected coordinates before and after correction on ŷ to the threshold
γ3D.

For the first T epochs of fine-tuning, the pseudo-labels h̃p and ỹ generated by 2D evidence and 3D
correction, respectively, are both not confident, so we require them to train independently with their
corresponding mask. Then we integrate the confidence mask M2D and M3D to complement each
other and enrich the training set as M = M2D ∪ M3D, which considers more pseudo-labels for
adaptation to both 2D and 3D. Overall, we optimize the following loss,

Lpesudo =

{
1

|M2D|
∑
M2D

∥ĥp − h̃p∥2 + λy

|M3D|
∑
M3D

∥ŷ − ỹ∥2 epoch < T
1
|M|

∑
M(∥ĥp − h̃p∥2 + λy∥ŷ − ỹ∥2) epoch ≥ T

, (3)

where |M| indicates the number of elements in M and λy = 0.1 is a coefficient that trades off
pseudo-labelling between 2D heatmap loss and 3D loss. We find out that as fine-tuning proceeds,
the overlap of confidence masks M2D and M3D will increase, at which point a single strategy can
also provide valuable indicators for the other strategy.

3.3.2 Geometric Reconstruction

Although the pseudo-labelling strategy is improved by utilizing both 2D and 3D information, the
amount of pseudo-labels is limited and some confident labels are still incorrect. This is because
these labels are generated from the model calibrated on the source domain, we therefore propose
a geometric reconstruction that solely exploits specific features in the target domain. The perfor-
mance of reconstructions is weaker compared to high-level pseudo-labeling. However, it can serve
as complementary supervision by including all target data and correcting confident yet inaccurate
keypoints by low-level evidence.

The geometric reconstruction consists of Warping Estimation Module W and Generation Module
G, as shown in Fig. 1(a). Given a pair of images from target domain t containing human or hand
{Ib, Idrv} sampled in a video, The aim is to reconstruct driving image Îdrv ∈ R3×H×W from base
image Ib ∈ R3×H×W , where the image size is H ×W . To do so, the generation module G warps
base image Ib based on specifications Ddrv←b ∈ RH

4 ×
W
4 ×2 and Cdrv←b ∈ R1×H

4 ×
W
4 estimated by

the warping estimation module W:

Îdrv = G(Ib;Ddrv←b,Cdrv←b), where [Ddrv←b,Cdrv←b] = W(ĥb
p, ĥ

drv
p ). (4)
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In Eq. 4, Ddrv←b and Cdrv←b denote a region-wise displacement field and an inpainting map respec-
tively. The displacement field Ddrv←b is a dense vector field that specifies each pixel location in Idrv

with its corresponding location in Ib. And Cdrv←b is an attention map ranging from 0 to 1, where the
G should do more inpainting on pixels with lower values. We apply a Perceptual Loss to penalize
the semantic differences between the reconstructed image Îdrv and its original image Idrv to refine
the keypoints. The details of each component (in bold) as follows.

Warping Estimation Module W Given the heatmap hp estimated from fkp, we decode it into
coordinates by using a soft-argmax followed by an expectation; this combination is the standard
approach followed in coordinate or integral regression methods [9, 29, 7, 6]. Specifically, we obtain
the k-th 2D keypoint locations µk in all K keypoints while keeping the pretrained heatmaps:

µk =
∑
p∈Ω

p · h̃p, where h̃p =
ehp∑

p′∈Ω ehp′
. (5)

Ω is the area of the heatmaps, which are generated by fkp.

Following the coarse-to-fine pipeline, to obtain a coarse motion of each body part, we need to
obtain the pose transformation parameters. Previous works [25, 27] use the network to do direct
regression but proved to have a poor generalization [28]. We thus follow [28] to use singular value
decomposition (SVD) to compute transformation parameters of the bone map with respect to a
reference heatmap, which is whitened and has zero mean and identity covariance. However, different
from [28], where the bone maps are predicted by the network, we generate the bone map according
to keypoint locations µk and the kinematic tree. Formally, we assume there are J chains in the
kinematic tree and we denote the parent and child node of the kinematic chain cj as µjp and µjc

respectively. The value of bone map Bj at pixel p of the j-th kinematic chain can be formulated as

bj(p) = e−dj(p)/σ
2

, (6)

where σ is a hyperparameter that controls the thickness of the edge and dj denotes the distance
between the pixel p and the edge determined by µjp and µjc. Accordingly, the transformation
parameters2 A of I can be obtained by

Aj = [UjS
1
2
j ,µj ], where UjSjVj =

∑
p∈Ω

bj(p)(p− µj)(p− µj)
T

︸ ︷︷ ︸
SVD

, (7)

where µj is the mean of µjp and µjc. By Eq. 7, we can get the transformations Ab←ref and
Adrv←ref. Finally, the geometric transformation of bone j from driving to base image is calculated
by Adrv←b = Adrv←ref(Ab←ref)−1.

To generate a dense shift to deform Ib to approach Idrv, we next convert J transformation parameters
to a fine-grained displacement field along with background transformation parameters. Specifically,
with the input of Ib, Bb and Bdrv, an hourglass network outputs J+1 masks Mj indicating one
background and J bones. M0 corresponds to the background. Mj(p) denotes the possibility of p
belonging to the j-th region when j > 0. To ensure that the possibilities of every channel sum up
to one, softmax is applied across the channels. Then, the displacement field Ddrv←b(p) ∈ R2, is
generated by

Ddrv←b(p) =

J∑
j=0

Mj(p)Aj

[
p
1

]
︸ ︷︷ ︸

Expand

. (8)

Through region-wise displacement field Ddrv←b, the network gains insight into the specific locations
on the base image that require deformation to match the driving image. Nonetheless, certain regions
may be absent in the base image while present in the driving image. To identify these areas in need
of inpainting by the network, we add an additional layer after the same hourglass to generate the
inpainting map Cdrv←b.

2We only need to rotate, translate, and scale to realize the transformation between the designed bone maps,
which is different from the previous works based on affine transformation.
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Generation Module G We build G with downsampling and upsampling, interconnected through
skip connections. Similar to [28], the feature map from the skip connection is warped by displace-
ment field Ddrv←b and then activated with inpainting map Cdrv←b. We add the processed feature
map to the 1−Cdrv←b activated feature map of the previous layer, and the sum is passed to the next
layer. In this way, G can generate driving images through feature warping and limited inpainting
from a similar image without the need for extensive rendering.

Perceptual Loss Following [14, 35], we apply a multi-scale perceptual ℓ1 loss with a pre-trained
VGG-19 network. Mathematically, the reconstruction loss Lrec is formulated as

Lrec =
∑
i

|ϕi(Î
drv)− ϕi(I

drv)|, (9)

where ϕi(I) is the intermediate output of i-th layer of VGG-19.

Training Procedure The overall training of our framework is done in two stages. First is the pre-
training on the source domain with supervised learning in Eq. 1 and invariant feature learning in
Eq. 2 with weighting hyperparameter λa:

Lpre-train = Lsup + λaLalign. (10)

The second stage finetunes in the target domain, with pseudo-labelling from Eq. 3 and geometric
reconstruction from Eq. 9, together with supervision from the source domain to avoid over-fitting:

Lfine-tune = Lsup + λrLrec + λpLpseudo, (11)

where λr and λp are balancing hyper-parameters. We have a warmstart in the fine-tuning where Lsup
and Lpseudo are first used and then add Lrec together to update the overall pipeline.

4 Experiments

4.1 Datasets & Evaluation Metric

Hand Pose Datasets. For the source domain, we consider the synthetic dataset RHD [43] with
44k rendered images for training. For the unlabeled target domain, we consider real-world datasets
H3D [41] and MVHand [39]; these have 11k/2k and 42k/42k training/testing splits respectively. For
H3D, we consider only the subset with one-handed gestures. H3D and MVHand are both multi-view
datasets; we treat each viewpoint as a “video” source.

Human Pose Datasets. SURREAL [31] is a synthetic human dataset with 6 million annotations
including keypoint locations. Human3.6M [8] annotates 3.6 million real-world indoor human poses.
We follow protocol 1, using S1 and S5-S8 for training and S9 and S11 for testing. 3DPW [32] is
a challenging outdoor dataset with 24 videos for training and 24 videos for testing. We obtain 2D
keypoints by projecting the corresponding 3D ground truth.

Evaluation Metric. The convention of domain adaptive pose estimation works [20, 15] is to eval-
uate 2D keypoint detection with Percentage of Correct Keypoint (PCK). We report PCK@0.05,
which tabulates the percentage of correct predictions within the range of 5% of the input image size;
a higher PCK indicates better performance. For 3D keypoint estimation, we evaluate with mean
end-point-error (EPE); a lower EPE indicates better performance.

4.2 Implementation Details

Our framework is shown in Fig. 1. We use ResNet-101 as the feature extractor fenc and deconvolu-
tional layers as the decoder fdec to produce a heatmap of size 2K × 64× 64 for 2D and depth. Each
input image is cropped around the hand or the human and resized to 256×256. The initial learning
rate is 1e-4, and we used Adam optimizer and degraded the learning rate with 0.1 at steps 60 and 75.
Pre-training is done with a batch size of 64 for 40 epochs; fine-tuning is done with a batch size of
32 for 80 epochs. The hyperparameters λa, λr, λp are set as 0.1. We compare with state-of-the-art
domain adaptation methods: RegDA [12], CC-SSL [20], UniFrame [15], SemiHand [36], and Du-
alNet [18]. Where possible, results are reported directly from the corresponding papers; otherwise,
results are based on officially released code. In pre-training, RHD [43] and SURREAL [31] are
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Method RHD→H3D RHD→MVHand
MCP PIP DIP Fin All MCP PIP DIP Fin All

Source only (Lsup) 67.4 64.2 63.3 54.8 61.8 32.1 70.5 64.6 39.8 52.7

SemiHand [36] - - - - 67.2 - - - - 56.3
DualNet [18] - - - - 74.9 - - - - 68.9

CC-SSL [20] 81.5 79.9 74.4 64.0 75.1 - - - - 60.2
RegDA [12] 79.6 74.4 71.2 62.9 72.5 - - - - 60.1
UniFrame[15] 86.7 84.6 78.9 68.1 79.6 45.0 77.7 71.0 57.6 62.9
Ours 89.4 88.3 81.9 73.9 84.1 76.4 76.9 68.7 61.0 70.8

Table 1: Hand 2D keypoint detection. Our method has the best average PCK@0.05 on both datasets and the
most significant improvements on MCP and Fin.

Method SURREAL→Human3.6M SURREAL→3DPW
Head Sld Elb Wrist Hip Knee Ankle All Head Sld Elb Wrist Hip Knee Ankle All

Source Only 51.3 69.4 75.4 66.4 37.9 77.3 77.7 67.3 40.9 59.2 65.6 64.2 64.4 56.4 39.8 57.9

CC-SSL [20] - 44.3 68.5 55.2 22.2 62.3 57.8 51.7 41.0 58.5 76.3 67.4 77.6 61.7 47.8 62.5
RegDA [12] - 73.3 86.4 72.8 54.8 82.0 84.4 75.6 41.8 65.8 73.3 68.1 72.8 65.0 49.3 64.8
UniFrame[15] 63.5 78.1 89.6 81.1 52.6 85.3 87.1 79.0 54.6 68.9 77.5 74.8 75.5 67.8 60.3 70.5
Ours 87.5 89.8 90.1 78.7 69.5 85.4 84.8 83.7 66.6 86.6 77.8 75.8 83.6 71.9 65.3 76.7

Table 2: The comparison on PCK@0.05 for 2D human keypoint detection. We achieve the best average
performance on both datasets with the most significant improvements on the head.

used as labeled source dataset Ds in hand and human pose estimation, respectively. In fine-tuning,
the training sets of H3D [41], MVHand [39], Human3.6M [8] and 3DPW [32] are individually
used as unlabeled target dataset Dt for each pose adaptation experiment. And we evaluate on the
corresponding test set.

4.3 Comparison with the State-of-the-Art

Hand Pose. Table 1 shows that for 2D keypoint detection on the hand, our method outperforms
the previous best method by 5.7% and 12.6% on the H3D and MVHand datasets respectively. For
more in-depth analysis, we also report the individual joint results averaged across the fingers i.e.,
MCP, PIP, DIP, Fin3. Adapting RHD → H3D gives a consistent improvement, with increases of
3.1% to 8.5%. On RHD → MVHand, ours still achieves a significant improvement in PCK on MCP,
increasing from 45.0 to 76.4.

Table 5 (b) shows that our method is state-of-the-art on 3D hand pose estimation for both RHD →
H3D and RHD → MVHand. Especially notable is that we surpass DualNet [18], as we use only
RGB images, while they incorporate additional modalities like background masks and depth images.

Human Body Pose. Table 2 shows, for SURREAL → Human3.6M and SURREAL → 3DPW
that our method outperforms state-of-the-art UniFrame [15] by 5.9% for Human3.6M and 8.8% for
3DPW. The biggest improvements come in the head, shoulders, and hips. In particular, we observe
the hip problem arising from the gap in annotation convention between SURREAL and Human3.6M,
so all methods (including ours) have lower accuracy on the hips. However, we outperform others by
32.1% on Human3.6M, indicating our geometric reconstruction can help the model less affected by
the annotation gap.

4.4 Analysis

Effectiveness of Components. We made two core contributions: geometric reconstruction and
integrated pseudo-labelling. We here provide the gain of each component in Table 3 (a). LUniFrame
means we use the pseudo-labelling strategy in [15]. The comparison with LUniFrame reveals the
effectiveness of integrated pseudo-labelling with a 1.2 PCK improvement. Together with geometric
reconstruction, we can further boost the increase to 2.7. Lheatmap means that we remove the warping
estimation module and purely use heatmaps of both images to reconstruct Îdrv. The results show that
using explicit guidance in the generation module could help effectively link reconstruction back to
the underlying poses.

3Hand joints moving away from the palm: MetaCarpoPhalangeal (MCP), PIP (Proximal InterPhalangeal),
DIP (Distal InterPhalangeal) and Fin (Fingertips).

8



before after GT before after GT

H
3D

H
um
an
3.
6M

Figure 2: Comparisons before and after applying geometric reconstruction. Our method can correct the
predictions that are on the background (left) and alleviate the annotation gap (right).

Method RHD→ H3D SURREAL→ Human3.6M

Lpre-train 67.2 69.0
+LUniFrame 80.2 79.8
+Lpseudo 81.4 80.8
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Table 3: (a) Ablation study on the proposed components and the reconstruction module contributes the most
to the final performance. (b) Percentage of correct pseudo-labels in the training set of MVHand dataset. Both
strategies saturate but the proposed integrated pseudo-labelling induces more correct labels. (c) Accuracy
comparison before and after applying reconstruction loss Lrec for a specific set of confident keypoints on Hu-
man3.6M training set. After applying Lrec, we are able to improve the pseudo-label of those keypoints previ-
ously proposed using only Lpseudo and Lsup.

Keypoint Correction by Geometric Reconstruction. We analyze the impact of geometric recon-
struction on confident yet inaccurate keypoints. We first train the model with Lsup and Lpseudo until
convergence, and then save the indices of confident keypoints. Next, the reconstruction loss Lrec is
added to fine-tune the model. We show the accuracy of the pseudo-labels for the keypoints associ-
ated with the saved indices, both before and after adding the reconstruction loss in Table 3 (c). The
reconstruction loss obviously improves the confident yet inaccurate keypoints (i.e., head, shoulder
and hip), while having a negligible influence on other keypoints. This is because confident yet in-
accurate keypoints will cause large reconstruction errors based on image evidence while others will
not. Also, we observe that those confident yet inaccurate keypoints tend to be specific keypoints,
and speculate it is due to the annotation gap.

The Amount of Correct Pseudo-labels. We select pseudo-labels with high confidence. However,
we cannot assure that their accuracy is within PCK@0.05 for effective adaptation. We therefore
tabulate the percentage of correct pseudo-labels, whose accuracy is within PCK@0.05, in unlabeled
training data aggregated by the last ten epochs. As shown in Table 3 (b), the percentage saturates
to 59% for the pseudo-labelling strategy and to 72% for the proposed integrated pseudo-labelling.
Since the pseudo-labels are explored on training data with augmentations, their accuracy might not
align consistently with the accuracy observed on the evaluation set. It is evident that both our ap-
proach and Uniframe eventually reach a saturation point for accurate pseudo-labels, but our method
involves more usable pseudo-labels and leads to a better result.

Fairness & Stride Strategy. In our method, we need a pair of images with a similar background
and the same object (human/hand). In contrast, existing state-of-the-art methods only require a
single image during training on the target domain. For a fair comparison, we first consider the
most common module to utilize adjacent paired input, i.e., temporal consistency by applying ℓ2 loss
on the predicted heatmaps ∥hi

p − hi+1
p ∥2 of two consecutive frames Ii, Ii+1. Results in Table 5

(a) show it can only gain marginal improvement. Another consideration is whether the difference
between the two poses affects the effectiveness of the reconstruction. We attempted to amplify the
pose difference of two images from small to large by adjusting the stride from [0,5] to [30, 50]. As
shown in Table 4, our method performs best on [5,15]. This makes sense that degenerately close
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Stride [0, 5] [0, 15] [5, 15] [15, 30] [30, 50]

SURREAL→ Human3.6M 81.8 83.5 83.7 83.1 82.5

Table 4: Ablation study on frame strides for the task of SURREAL→Human3.6M evaluated by PCK@0.05.
We can see that all strides lead to improvement, and our method is robust to the selection of strides within a
certain range.

Method RHD→MVHand SURREAL→Human3.6M

RegDA[12] 60.7(↑ 0.6) 76.4(↑ 0.8)

UniFrame[15] 63.4(↑ 0.5) 79.3(↑ 0.3)

Ours 70.8 83.7

Method RHD→ H3D RHD→ MVHand

Source only 27.77 21.21
SemiHand[15] 19.19 19.75
DualNet[18] 17.08 16.45

Ours 16.92 16.37

(a) (b)

Table 5: (a) We add temporal consistency to ensure equivalence in the input information, which only brings
minor improvement. (b) The comparison on EPE (mm) for 3D hand pose. By only improving 2D and applying
a simple 3D pseudo-labelling strategy, we beat the state-of-the-art methods.

frames will make the network find the shortcut to self-reconstruction and far frames will make the
generation too difficult to have a meaningful perceptual loss on keypoint locations.

4.5 Qualitative Results

Hand Pose. Fig. 2 (left) shows a common case in only using pseudo-labelling, where the fingertip is
predicted on the background, although it is near the ground truth location. Applying our geometric
reconstruction results in more accurate fingertip predictions. Besides, the wrong prediction of the
pinky fingertip falling on the palm can also be rectified via the perceptual loss in our reconstruction
module.

Human Body Pose. Fig. 2 (right) shows the comparison of our method on a Human3.6M sample
before and after applying geometric reconstruction, where the shoulders are much lower in “be-
fore” compared to “GT”. One possible cause is the difference in the annotation conventions across
datasets, e.g. The annotation of the shoulders in SURREAL is closer to the chest, while Human3.6M
localizes them at a reasonable shoulder position (See Supp.). Similar differences due to the annota-
tion gap are reflected in the accuracy of head and hips, as shown in Table 2. Our method, however,
can refine the pose prediction by leveraging the correlation between bone map and reconstruction,
which is independent of the pose prior learned in the source domain. More analysis can be seen in
Supp.

5 Conclusion

Pseudo-labelling is a common strategy for domain adaptive pose estimation which selects confident
predictions to supervise the network. However, the number of accurate labels under this selection
will saturate with the progress of training and some of the wrong predictions will remain unchanged.
We hereby introduce a novel geometric reconstruction module to relieve this problem that aims to
reconstruct the driving image according to keypoint locations and geometric transformations from
the base image to the driving image. The incredible improvement especially comes from keypoints
that generalize extremely poorly to target domain by only pseudo-labelling. We hope this will inspire
future work to explore reconstruction-based methods to bridge the gap between source and target
domains.
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