28

29

30

31

32

33
34

Appendix: Proof and Simulation Details

Anonymous Author(s)
Affiliation
Address

email

This appendix consists of four sections: section [7]summarizes our improvements from D-ICRL [1],
section [§] provides some basic notions and notations that will be used in the proof, section [9|presents
the proofs of all the lemmas and theorem in the paper, and section [I0] gives the simulation details.

7 Improvements from D-ICRL

Our algorithm improves D-ICRL in almost every aspect. In the following context, we summarize
our improvements in four categories: assumption, algorithm, theoretical guarantee, and empirical
performance.

Assumption. Our method has weaker assumptions than D-ICRL does: (i) we relax the linear reward
assumption in D-ICRL; (ii) we do not require the learners to know the budget b while D-ICRL does;
(iii) we do not require all-to-all communications among learners while D-ICRL does.

Algorithm. Our algorithm is simpler and more efficient than D-ICRL: (i) our algorithm has a simple
single-loop structure where only two gradient descent steps (one for the outer problem and the other
for the inner problem) are needed. D-ICRL has a double-loop structure, it needs K gradient descent
steps to solve the inner problem. More importantly, we only need a simple gradient descent step to
update the outer decision variable while D-ICRL needs multiple steps, including gradient tracking
and successive convex approximation, to update the outer decision variables. (ii) As a result, our
algorithm is more efficient in terms of computation complexity.

Theoretical guarantee. Our method achieve stronger theoretical guarantees: (i) we provide better
rate of the inner problem, i.e., our rate is O(=7 +) (see Subsection(9.6.3) while D-ICRL’s is
O(m). (if) We provide the rate of the outer problem while D-ICRL can only provides asymptotic

convergence of the outer problem. (iii) we provide performance guarantee (i.e., constraint violation
and cumulative reward difference between the experts and learners) when the reward and cost
functions are linear, while D-ICRL does not.

Empirical performance. Our algorithm has better empirical performance. In both experiments, we
extend D-ICRL to an online centralized version, called DLM. Experimental results show that our
algorithm can reach the same performance with D-ICRL but is more than six times faster at each
iteration and more than five times faster to reach 90% success rate.

8 Notions and notations

Define that p™(s,a) = ¢(s,a) + v [, res P8, @)p™ (s")ds', ™ (s) = Joeam(als)u™ (s, a)da,
JE(s,a) = ro(s,a) + v [,cs P(s']s,a)J7 (s')ds’, and JTT (s) é Joeam(als)J] (s, a)da. We
define the state-action visitation frequency as 9™ (s,a) = E [Zt o VI{S, = s}1{A; = a}]
and state visitation frequency as 1™ (s) = E™ [ZtT:O Y1{S; = s}], where 1{-} is the indicator
function. For a given vector @, we define the cost Q-function as QF 4(s,a) = @y (s,a) and the

cost value-function as V] y(s) = o um(s).

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

35

36

37

38

39

40

41

42

43
44
45

46
47
48
49

50

51
52
53
54
55
56
57
58

59
60

61

62

63
64
65

Lemma 5. For any (s,a) € S x A, any w, any trajectory ¢, and any =, ||[p"(s)||, ||u" (s, a)|],

_~T . A
18|l are bounded by =2/ 3™15 10)dy. vo (T)|| and ||V g.J1, ()] are
bounded by C(%;YT)

Proof. We know that u™(s,a) = ¢(s,a) + EgA[Z? lvtqb(St,AtHSo = s,4 = a
Since [|¢(s,a)]| < /S5 1@ds, then ||u™(s,a)]| < L\/SXEI0d. As pT(s) =

Jacam(als)u™ (s, a)da, [|u™(s)]| and ||a(C)] SNE 1d;y. Analo-
gously, [|EG 4[3>-:2 7" Vore(Si, Ar)|So = so]|| and Vo, (C)|] are bounded by M O

8.1 Constrained soft Bellman policy

We provide the formula of the constrained soft Bellman policy which can be approximated through
soft Q learning [2] and soft actor-critic [3]]. The following formula is for discrete state-action space
and the one for continuous state-action space can be found in Appendix of [1]].

exp(Q (s, a))

meatel) = W
Vsoft =1In Z exp soft)))’
acA
Sh(s,a) =ro(s,a) +w d(s,a) +v Y P(s[s,a)VS5(s).

s'eS

It is obvious that the constrained soft Bellman policy is continuous in (6, w) as it is a composition
of continuous functions of (#,w). We can regard 79 4+ w ' ¢ as a new reward function and use soft
Q-learning or soft actor-critic to approximate the constrained soft Bellman policy with this new
reward function as input.

9 Proof

This section provides the proof of all the lemmas and theorem in the paper. Subsection[9.1] provides
the proof of Lemmas 1 and 3, subsection[9.2] provides the proof of Lemma 2, subsection [9.3|explains
why non-linear cost functions will make the problem ill-defined, subsectlon[ﬂ]prowdes the derivation
of the gradient approximation L(6,w), subsection [9.5|provides the proof of Lemma 4, subsection
[0.6] provides the proof of Theorem 1, and subsection 9.7| provides the proof of Corollary 1. All the
proof is for continuous environments except the proof for Lemmas 1 and 2. The reason is that [[1]]
has a similar proof for Lemmas 1 and 2 that proves for continuous environments and linear reward
functions, for distinction, here we prove for discrete environments and non-linear reward functions.

Lemma 6. The gradients V, Inm,g(als) = p™e(s,a) — p™#(s) and Vglnm,e(als) =
Egi 7207 Vere(Se, Ar)|So = s, Ao = a] — Egy [3272 7" Vere(Se, A)|So = s].

Lemma [6]have been proved in [1]] and thus we omit the proof.

9.1 Proof of Lemmas 1 and 3

Paper [[1] has a similar Lemma where they prove for the case of linear reward functions and continuous
state-action space. Here, we prove for the case of non-linear reward functions and discrete state-action
space.

The Lagrangian of problem (2) is F(m,w;0) = H(w) + Jp, (1) + w T (u(m) — N—L ZiV:Ll a(¢cny).
To find the optimal solution of

max F(m,w;0) st Y mw(als)=1 Vs€S, m(als) >0 V(s,a)eSxA
a€A

66 . We introduce the following auxiliary problem:
max F(7', \,w;0) st.7w'(als) >0 VY(s,a) eSxA, >0, (6)

Tr?

67 where F(7t, \, w; 9) F(m,w;0)4+3 " cs.450 Msit(Daca 7' (als)—1). Here, the policy 7" depends

es on ¢ and we force 7’ to be stationary. To solve the auxiliary problem (B)), we take the partial derivatives
o of F' with respect to 7 and \ to 0:

OF (m', A\ w;8) B . - B
“orals) P(S; = s)(In7"(als) + 1+ ro(s,a) +w ¢(s,a) + P(S; = s)-
Eial Y A (—Inn7(Ar]S7) + 19(Sr, Ar) +w ' ¢(Sr, Ar))[Sy = 5, Ay = a] + Agy = 0,
T=t+1
OF (7', A\, w;) . B
70 Thus,
AS wy
Wi;g(a|s) = exp(Wis) -1 exp{re(&a) + quS(&a)

Z ¥ (= Inn, <ATST>+re<ST,AT>+wT¢<ST,AT))|St:s,AtzaJ}20,
T=t+1

Z 7'('3;9(&|S) =1,

acA
71 where 7!, and A, 4 .0 are optimal solutions of (6).Denote

2?%(57(1) =r9(s,a) +w' ¢(s,a)

+7E”‘”"Zy — 775 (Ar|Sr) +19(Sr, Ar) + w T B(Sr, Ar))|Se = 5, Ay = al,

1

VEB(s) = In(————),

exp(57pis Sy — 1)
72 we can verify that
exp(Qh (s, a))
L= mhglals) = Y ——200 = Vig(s) = In()_ exp(Q (s, a)),
a€A a€A exp(Vw?o (5)) a€A
Sh(s,a) =ro(s,a) +wl(s,a) +7) P(s']s,a) Y muola]s)) [—m o (a']s")
s'eS a’'€A

+ (s, a/) +w'o(s',a")

Ww 6 Z Y (= Inm], (AT‘ST) +70(Sr, A7) + WT¢(S'M AL))|Stpr = 8", Apr = a/}] ’
T=t+1

= ro(s,0) +wT6(s,0) +7 3 P(sls.a) 3 malals') [I Tora(|5') + QSIS)]

s'eS a’€A
ro(s,a) +w d(s,a) +v > P(s'|s,a)V3%(s").
s'eS

73 Therefore, the constrained soft Bellman policy is the optimal policy of the auxiliary problem (6) and
74 thus is the optimal policy of max,er F'(7,w; 0) given that) 0 - 4 mw.e(als) = 1.

75 Therefore, G(w;0) = F(m,,9,w;6). Because the feasible set IT is compact, according to Property
76 4.2.3in [4], G(w; 0) is differentiable in w and V,G(w; 0) = (1(7u6) — 7~ SOVE (¢, Similarly,
77 we can get V,,Gl(w; 0) = pu(me.0) — a(¢M).

78

79
80

81

82

83

84
85

86
87

88

When G(w; 0) reaches its optimal point w*(f), we know that V,G(w*(0);0) = p(mx(9)0) —

NLL Zivil (¢ = 0. We use p* to denote the maximum value of problem (2) and d* to denote the
minimum value of min,, G(w; @). Therefore, we have that

H(mw0) + Jrg (o) < p* < d” = G(w™(0);0) = H(mwp) + Jr, (Twso)-
Therefore, p* is obtained at 7.9 and thus 7,6 is the optimal solution of problem (2).
9.2 Proof of Lemma 2

This suffices to show that G(w; 0) is strictly convex in w.

In this proof, we use the continuous version of the constrained soft Bellman policy [1] and the proof
also holds for discrete version of the constrained soft Bellman policy.

We show that the Hessian of G(w; 6) is positive definite. From Lemma 1, we know that V,G(w; 0) =
1(7me9). Therefore, we have that:

Vin(b‘”) = vwﬂ(ﬂ'w;@)7
= Ve / Po(s0)p™* (s0)dso,
spES

= Po(So)vaJﬂ'“”e (So)dSo,
sgES

= Py(s0)Ve w0 (aolso) ™ (0, agp)dagdso,
S0ES ap€A

= / PO(SO)/ {Vwﬂw;e(adso) " (80, a0) + Tws0(aolso) - Vo™ (s0, ao) | daodso,
S0ES ap€A
:/ PO(SO)/ VuTwe(aolso) - u™* (s0, ap)daodsg
S0ES ap€A
+/ PO(SO)/ Tws0(aols0) - V™4 (50, ag)dagdso,
SoES ap€EA
= Po(So)/ Vomwe(aolso) - 1" (s0, ap)dagdsg
S0ES ap€A

+/ Po(So)/ Tw:0(@o|S0) P(s1]s0,a0)Vou™* (s1)dsidagdsg.
SpES ap€A s1€ES

Keep the expansion, we know that

VZWG(wﬁ):/ W“*"(s)/ VuTwe(als)u™ (s, a)dads,
€S ac A

S

:/ 77[;“:9(5)/ Tw0(als) Ve Inmy.g(als)p™° (s, a)dads,
sES acA

= ¢‘ﬂ'w:9 (5) / 7Tw;9(a|5) [N’WW:G (Sva) - ,uﬂ-we (8)] /-Lﬂ-w;g (Saa)dads’
seS acA

g0 where the last inequality follows Lemma 6]

90 To show that V2 ,G(w;) is positive definite, for any nonzero vector @, we have:

UJTVin(W;Q)Q,

:/ e (s) / m,w(as)[mewﬁ(s,a)wmwﬂm“ﬂ(s,a))mdads,
seS ac A

[o) [(ol Q5 (5.0 V(9| @3 (s s,
seES acA

- / o (5)Var(QL" (5,))ds,
sES

91

92
93

94

95
96
97
98

99
100
101

102

103

104
105

106
107

108

109

110

where Var(QZ (s, -)) is the variance of the cost Q-function Q- at state s.

Since m..9(als) has non-zero probability to choose any action a at state s, we know that
Var(QZ°(s,-)) > 0. Therefore, V2 G (w;) is positive definite and G (w; 0) is strictly convex.

9.3 Ill-defined problem when the cost function is non-linear

From[9.2] we can see that G(w; 6) is strictly convex in w and arg min,, G(w; #) has a unique optimal
solution if the cost function is linear. If the cost function is non-linear, G(w; 6) is not guaranteed to
be strictly convex in w and thus there may be multiple w*(6) given a . Therefore, the outer problem
is ill-defined since L(#,w*(6)) may have multiple different values given a certain 6.

Moreover, this is also the reason that we learn the reward functions in the outer level instead of
learning them in the inner level as in [1]. Since the reward functions are non-linear, learning them in
the inner level can make the problem ill-defined.

Lemma 7. The two gradients of the global loss function V,L(0,w) = Npu(r) — ZszLl (¢
and Vo L(0,w) = NLEG [0 v Vore(Se, Ar)] — Yooy Vo, (C17).

Proof. Paper [1]] provides a similar proof for linear reward functions. Here, we prove the proof for
non-linear reward function. The global loss function is:

T
— Z’yt/ NpPp(S, = s,A; = a)lnm,.g(als)dads,
s€S JaeA

t=0

where Pp(S; = s, Ay = a) is the empirical probability of (s, a) occurring at time ¢ in a trajectory in
the demonstrations D presented by the experts at each online iteration:

Np
1))
PD(St = 57At = a) £ NiL ;(1{‘9{ = s}]l{a? = 0,})’
We can reformulate 7.9 as follows:
_ Zyp(s,a)
7-‘-W§‘9(a|$) - Zw;@(s) 9
In Z,.0(s,a) = ro(s,a) +w' é(s,a) + ’y/ P(s'|s,a)In Z,.¢(s")ds’,
s'eS

InZ,.0(s) = 1n/ Zy0(s,a)da.
acA
Thus,

T
VoL(0,w) = —Z’yt/ S/ ANLPD(St =5,4 =a)Vyo(InZ,¢(s,a) —InZ,.¢(s))dads,
€s Jae

S

T
— t B B
- ;’y /SES /aeA NLPD(St =5 Ay = a){gb(s’a)

T T
+EZYLY D AT (S A)|Sy = 5, Ay = a] — EGY[D AT (Sr, AL)[Sy = 8] }dads,

T=t+1 T=t

where the last inequality follows from Lemmal6] Here,

/ / St+1—8 At+1—a) ‘ﬂ'w9|: Z ’77— t= 1¢(ST,A)|St+1—s]dads
s'eS

T=t+1

_7/ Pp(Sip1 =5 ES {Z VT (S, Ar)|St+1—5]d3

T=t+1

= PD S; = s, At—a)/ P(s'|s,a)-

seS Jae 'eS
ngAg { Z Y G(Sr, Ar)[Sir = S/] ds'dads,
T=t+1

T

= / Pp(S;=s,A; = a)Egjjjlg [Z V(S AL)|SE = 5, Ay = a} dads.
acA T=t+1
111 Therefore,
T
— Z’yt/ NLPp(S: = s,A: = a)d(s, a)dads
—_ se€S Jac A

T
+/ NLP’D(SO =S, AO = G)Eg:‘j‘e |:Z fytqﬁ(St, At)‘S() = S:| dads,
€S JacA t=0

Nr
= Npp(rase) — Y i(¢H).
v=1

112 Similarly, we have Vo L(0,w) = NLEW‘” ’ [Zt 0V Vore(St, Ay)] — ZiV:Ll Vo, (C).]

13 Lemma 8. (i) There is a positive constant Cg,) such that for any 0 and w, it holds that
114 ||V9L (w 9)||<CV9L]and||V9L(w 0)||<CVGL_Z CVQL[v

115 (ii) There is a positive constant Cy | L 2 such that for any 6 and w, it holds that ||V, L") (w; 0)|| <
116 CV Llv] and||V L((JJ 9)” < Cv L = Z OV Llvl.

117 Proof. Similar to the proof of Lemmal we can see that V,, LN (0, w) = pu(m,.0) — 2(¢™) and
18 VoLlYl(0,w) = Eg=? [Zt 0V Vere(St, Ar)] — Vody, (). From Lemma we can see that

1o ||V L (0,w)]] < %j)\/zgz@ Cy_im and || Vo LIPN(0,w)]] < 20(17] 2 Oy, Lt

120 The bounded gradients for the global loss function are obvious due to the fact that ||V L(0, w)]|| <
21 3o [IVe LI (0, w)|| and [[VoL(9,w)|| < 320 (VW L9, w)]l. 0

122 Lemma 9. The gradient Vo LI"\(0,w) is Lipschitz continuous in (6,w) with constant CE[,U] and
123V, LIY(0,w) is Lipschitz continuous in (6, w) with constant cl,

124 Proof. From the proof of Lemma we can see that V,,LI")(0,w) = u(mu.e) — (¢). There-
125 fore, to show the Lipschitz continuous, we need to prove that Vi(m,.¢) is bounded. We show
126 it by bounding V,,1i(7.0) and Vepu(7,.e). From Subsection we know that V,,u(7,.9) =

127 [g™ (8) [ea Twre(als) [/ﬂw;e (8,a)—p™e (s)] (u™ (s, a)) " dads which is bounded as each
128 term is bounded (Lemma[3)).

120 Similar to the proof in Subsection[0.2] we can see that

Vonliaa) = [50(5) [alals) Vol m(als) (a7 (5.0) dads,
sES acA

= w”w%e(s)/ Two(als) [Z’Y Vorg(Se, At)|So = s, Ao = d]
sES acA

t=0

BT A Vare(Si, A[So = s@ (0 (s, @) " dads,
t=0

130 where each term is bounded (Lemma . Therefore, there exists such C’U[f]. Similarly, we can see the
131 existence of C’év]. O

132

133
134
135

136
137

138
139

140

141
142

143

144
145
146

147

148
149

150
151

152

153

9.4 Derivation of the gradient approximation

From Lemma we know V,L(0,w) = NpV,G(w;0). Therefore, VL(0,w*(0)) =
VoL(0,w*(8)) — M(0,w*(0))V,L(6,w*(0)) = VoL(0,w*(#)). As in each iteration, we cannot
get w*(f) but an approximation w. Therefore, we propose the approximation gradient VL(0,w) =
VoL(0,w) = NLEW“’ ’ [Zt 0V Vorg(Se, Ar)] — ZfLLl Vo, (C"]) where the last equality fol-
lows Lemma([7} 7l From Lemmal9] we can see that VL (6,w) is Lipschitz continuous in (6, w) with
Co = S Gy (6,2 (0)) = VL(O,w)|| = [[VoL(6,w"(9)) — VoL(0,w)|| <
Collw™(0) — wl|.

9.5 Proof of Lemma 4

To see the existence of Cr, and Cy, it suffices to show that ||VL(6,w)|| and ||V2L(0,w)|| are
bounded which can be seen in Lemmas[8]and

9.6 Proof of Theorem 1

This section has three subsections where the first subsection proves the consensus, the second
subsection proves the decreasing local regret, and the third subsection proves the sub-linear camulative
constraint violation.

9.6.1 Consensus

From the proof of Lemma we know that V,, L["1(0, w) = VG (w; #). For the distributed gradient
descent in Algorithm 1, we know that (equation (5) in [S]]):

Nr, — Ny, -1
01 (n) — z: @(n — 1,1)]%,01(z:j a(s — 1) z _1,s>]g,};v9uv'l<
o) (s — 1), wl” (s — 1), 5 — 1 — i) ZWL[U 0 (n —1),w(n—1),n —1—14),
Wl N v) S - VINtg)
w!”(n) = ;[q)(n - 1L Dw” (1) - ;ﬂ(s - 1);@(” — L)y ;va (

0l (s — 1), wll(s —1),s =1 — i) — Bn ZV LU (n — 1), wl(n —1),n — 1 —4),

where ®(k, s) & W (s)W (s + 1) --- W (k) is the state transition matrix and [®(k, 5)]"
at the v-th row and v'-th column.

o 1s the entry

We define that
) L& g - 1 (0 s]
(9 éi 91) 1 _1 Lv 11 v -1 —1—3
(n) NLUZ::l (1) - ;a s vz: N ZVg —1),w (s =1),s i),
1 Ny, n Ny, 1 -1
o) 2 —> W@ =D 85 —1) > Y VL LMIOM (s — 1), (s — 1), 5 — 1 —4),
N o= s=2 o WL =
therefore we have:
Np 1-1
O(n+1 VL[” glv'] ,w[”l]nm—z’,
(0 +1) = 0(m) - o ZZ (n), (), —)
Ny -1
n+1 Vo L1 00 (n), ' (n), n —).
aln 1) = () - A ZZ (), (n), 0 — 1)

154 Following the proof of proposition 3 in [S]], we can get

_ 1+ e Bo 01 ok /
18(n) — 0" (n)]| < 255~ (1 —P) 70 Y (101 (1)]]

1 — ¢Bo
v'=1
n—1
1+ e Bo Bon=t=s a(n—1)
+§20&(8—1)Cv6[,m(1—6 0) Bg +TL(CV9L+NLCV0L[v])7
_ Np,
1+e€ Bo ’
llw(n) —wll(n)|] < 2 g (1 — B0y 5 Z | (1))|
v/'=1

n—1 B
1 4 ¢ Bo wime Bn—1
+Z2/B(S_1)CV Lj(l_EBU) Bo +(N7L)(CVWL+NLCVWL[1)])7

155 where By = (N, — 1)B.

156 Therefore, the first and third terms in ||#(n) — 01*!(n)|| are respectively O((1 — ¢P0)"/Bo) and
157 O(1/n™). For the second term, we take a look at

n—1 . ln=ny/z .
als —1)(1 —ePo) B = Z als —1)(1 —P0) B
5=2 s=2
n—1 1
+ Y als—1)A—eP)y Fo
[(n—1)/2]
L(n=1)/2] R & n—1 R
<a z_; (1—60) Bo +W Z (1—e¢ 0) Bo |
5= [(n—1)/2]
n—1)/2]-2
<a(l-eB) TR ' X)EJ (1 — fo)s/Bo
s=0

. n—l—%—n/zw /
b (1— eBoys/Bo,
[(n—1)/2]" =
1

— __ _Bo\n/B

B O((l ‘ 0) i nm

158 Therefore, ||O(n) — lY)(n)|| < O(1/n™ + &) and similarly we can get ||w(n) — w(n)|| <
159 O(1/n™ + &) where € = (1 — GBO)l/BO‘

160 From Lemmal6 we can see that ||V, In7,,.0(a|s)|| and ||V In7,,.0(als)|| are both bounded for any
11 (s,a) € S x A. Therefore, ||V,m,.0(als)|| = ||Two(als) Ve Inme.g(als)|] < ||VoInmgg(als)||
162 is bounded. Similarly, we can see that ||Vm,.g(a|s)|| is also bounded. Therefore, 7,,.0(als) is
163 Lipschitz continuous in (w, 8). As w and @ reach consensus respectively, the policy reaches consensus
164 at the rate of O(1/n™ + 1/n" 4 €").

165 9.6.2 Decreasing local regret

166 As the trajectory demonstrated at iteration n is random, we have E¢ {L(& w, n)} = L(0,w) for all

167 n, where VoL (0, w) = ngAe [Zf,T:o YVore(St, Ai)] — Vodr, (7E) and V,L(0,w) = p(mw.e) —

168 (7). Similarly, we can define L*!(#, w). Thus, we have:
E[VL"(0,w) = VoLI(8,w,n)] =0,

C(1—1")

EIVoL®)(6,0) = VoL (0,0, I < (=

)2
E[V,LP(0,w) — V, L (0,w,n)] =0,

169

170

171

172

173

174

175
176

177
178

179

180

di(1=9") 5 & (i)
—T—)22y 1.,

i=1

E[||Vo L (6, w) = VoL (8, 0,n)|]%] < (

Define that Ag(n) £ $=VoL(0(n),@(n)) — 7= S0, Yimo VoLl (011 (n), wl*)(n), n — i)
and A () £ VL), 2(n)) — g SV § S0 V(00 (), 0l), n — i),
From Subsection we know that VL(0,w,n) = VgL(G,w,n) d Vo,L(0,w,n) =
NrV,G(w;0,n). Then we can reformulate that Ag(n) = VoL(0(n),o (n))
i ot Tico VIO (), (n),n — i) and Au(n) & F-VuL(0(n),o(
NLLZA{Lll VLGl (W (n); 01 (n), n — 7). Then, we have:

3

12 (n \|<—Z|\WL &(n)) = VoL (6 (), ol (m))] .
< ;cg’] [né(m 0] + [(n) — <n>||},
1 e _
BBl < 7 3l [He(m 0] + [l (n) — <n>||]
BlllAo(n) ZE[IWLM((n), @(n)) — Vo LI (67) (1), o) () 2

F IV () _,ZWL (10—]

C(1-7")

2
7(1—7~

4 a WIN2 |14 [v] 2 - [v] 2 2
< 5y D2 100 — 0N+ 1) — M|+ ”
N

E[llAu(n)|?] < NiL Y (Chy [Ilﬁ(n) =0 (m)[]* + ||@(n) — w!! (n)IIQ}

v=1
2

N
di(1=7") o= 6
et S) 1@

Lemma 10. The two summations Y ._, a(n)||E[A¢(n)]|| and Y1_, B(n)||E[Au(n)]|| are
bounded by Clgy.

Proof. We first take a look at 2521 a(n)||6(n) — 81*1(n)||. It has three terms and we bound each
term one by one.

The first term is bounded:
d 1+eBo w1 L /) n—1
23 el S (e 3 o)) < 2625 5 Il 31—).
n=1 v'=1 v'=1 n=
For the second term, let S,, = > " 21a(s —1)(1 — €Po) Bo, then
Sn—1 Sh = als) By 2522 — Oé(S — 1) By os=l
_ — 1 — By s _ 1 — By
aln—1) afn) ga(-1 (1—e) ™ ; a(n) (1—e) ™,
n—2
_§ oo~ Dot —alla(n 1) et al))
pors a(n —1)a(n) a(n)

181

182

183

184

185

186

187

188

189
190

191
192

193
194

B a(s —Da(n) —a(s)a(n—1) - (Boy P52 a(n —3)a(n) —a(n — 2)a(n — 1)
B g a(n —1)a(n) (1) * a(n — 1)a(n)
3(3(1 — B0y Ry

Because exponential terms decay faster than polynomial terms, there exists N such that
n—3 —

a(n73)a051(172:?)(;1(:3)a(n71) _%(1— eBo) By > Oifn > N. Moreover, a(s—1)a(n)—a(s)a(n—

1)=(sn—s)™ — (sn n)™ > 0, then a‘?n 0

constant M such that (5 < M if n > N. Then, Z:Zl a(n)S, < anl(a(n))zM is bounded.

> a(n) if n > N. Therefore, we can find a positive

For the third term, it is easy to see that anz a(n)a(n — 1) is bounded. Therefore,
ST a(n)]|8(n) — 01°)(n)]| is bounded.

With similar derivation, we can see that Z:Zl a(n)||o(n) —wll(n)]], Z:Zl B(n)]|0(n) — 6 (n)]],
and ZZ=1 B(n)||@(n) — wll(n)]|| are bounded. Therefore, Ciay exists. O

Lemma 11. The summations Zzzl(a(n))2E[||A9(n)||2] and Z:Zl(ﬁ(n))zE[HAw(n)HQ] are
bounded by D,

Proof. Tt suffices to show that ||0(n) — 6[*](n)||? and ||©(n) — w*)(n)||? are bounded. First, ||0(n) —
6[*I(n)||? is bounded as

- » 1+ e Bo
16w — P < 42
14 ¢ Bo n-1-s aln —1))3?
ZQ(X CV@Lﬁ(l_GBO) Bo)2+((‘ZV72))(CVQL+NLCV9LM)2,
L

where each of the three terms is bounded. Similarly, ||@(n) — w(’l(n)||? is bounded. Thus Dy
exists. O

Therefore, we have:

E|L(O(n+1),&(n+ 1))} < L(0(n),w(n)) + B |[VoL(0(n),&(n)] " [0(n+ 1) - (n)]

+ Vo L(B(n), @(m))] " [w(n +1) = e(n)] + Cr[[|(n + 1) = 0(n)|* + [|w(n + 1) - W(n)IIQ]] ;
= L(0(n),w(n)) — B [a(n)[WL(é(n), w(n))]"[=Do(n) + N%Vef?(é(n)@(n))]
= B(n)[VuL(O(n),&(m))] " - [~Au(n) + N%Vwi(é(n)@(n))] +Cr[(a(n)*

H—mw+£yMWWMWW+wwm—mw+&ywmmwmﬁ}

L(d(
%&?vaLmhﬁﬁunDH2+/%nﬂlﬂAwUUH'IVWL@OHJNn»H+20L~E{@NnDZ

n),&(n)) — %Z)HWE(@(TL%@(n))ll2 +a(m)[[E[As(m)]]| - [VeL(0(n), @ (n))]]

(120117 + IV L(B(n), @(m))I1*) + (B(n)* (|1 Aw(n)]|* + IVwL(G(n),w(n))lz)],

anmﬁinam>wwu><»W

10

+B(n)(%—ZCLB(NIV L(O(n), &(n))IIQ]

< B[L(O(n),&(n))] = BILO(n +1),(n + 1))] + a(n)Ov, || E[Aq (n)]|
+B(n)Co, 2l ElAL ()]l + 2(a(n))*CLE[[Ap(m)|[*] + 2(8(n))*CL]| Aus ()],
1

()5 = 2C1a(n))||[VoL(0(n), &(n))||*

E |

M=

= 5|

n=1

|

S5 - 2c‘m<n>>|vwzw(n),w(nw]

IA
&
h
=
=
“&
E
bu
=

(n+1),&(n+ 1))} + Cinax(Cw, 1 + Cy,,1) + 4C L Dinay,

3
NE
=
Qi
2
2
<
)
=
5—5‘
S
€
<
=y

3
Il
-

IN
ME
=
| —
2
S
Z|
|
[\
Qu
S
=
<
3
E
=

3
Il
-

(3
M=
&)
=2l
3
(e
=
2|
S
=

3
—

IN
.ﬁm I

h

=

(1),(1)) - L*} + Coun(Cour + Co) + AC Do

196 Similarly, we have

198

2

< 3 2 B[INaLEm). oI + VLB, 0P

+ [Z(Cé“” +CN(18(n) — 0¥ ()] + ||w(n) — W <n>|>12]
We have that -
N

> 118(n) — H2<Z4

n=1

14 ¢ Bo n—1-s (a(n —1))?
Z 20[CVeLﬁ (1 — GBO) Bo)2 + T%(CVOL + NLCV@L[U])Q'

11

199

200

201

202

203

204

205

206

207

209

210

211

212

213
214
215
216

. . = —B
It is clear that we can find a positive constant Cpax such that 25:1 4(%)2(1 -

530)%(27/ 162 + a(”il(CveL—kNLCWL[)2 < Crnax- Now, we take a look at

Bo

(X021 2a(s — 1)C, BE 2 (1 — €80)*Fo)2, Let Ry = Y2775 2a(s — 1)Cyyp St (1
eBo)Tos, Similar to Lemma we can see that aRE:i) < M for some positive M. Then
SN R2 < 2N (a(n))2M?2. Therefore, zjf 1\|§() — 61*)(n)]|2 is bounded. With simi-
lar derivation, we can see that 27]:[:1 l|[@(n) — wl*l(n)||? is bounded. We use Cpay to denote

Yoy 10(n) = 00T (n)| 2 + [[@(n) — WM (1)||? < Conax.
Therefore,

}VN B |IIV20").V

<

=] -

N

Z V0L (Fw), &) + VLB, I+ N SO (C 1 ci) o]
n= v'=1
o Cy Cs

+ + ==)

< N1-m N1-n2 N’

where C7 = ;E[L(G(l),w(l)) - L* + Cmax(CVQL + CV“,L) + 4CLDmax:|, Cy =

$E|LO).6(0) = L' + CualCrit + Cout) + 4CeDma. €1 = Ny T () +

o])2Cinax» and L* is the optimal value of L.

Therefore,

uMz

[|ZVL Wm0 = IF].

N
vaE[HVL (), T2 + 96)))
n=1
1 -1
S VL). ”<n>,n—i>|2]
1=0
20, 20, 203 2(Cp)?
A Nl-m A Ni-nz ' N + I

9.6.3 Sub-linear cumulative constraint violation

From , we know that 32 E [||VWE(9M (n),wl! (n))|2} = O(N" + 1). Note that V,, L. =

NLV,G (proved in [9.4), therefore, the rate for the inner problem min,, G(w;#) is O(N72~1 +
1/N). From Lemma , we know that V,L(0,w) = Npu(r) — ZUNil (¢, thus V,L(6, w) =
Ni(i(me) — p(mg)). We know that J..,, (mg) = 0 as the experts will not violate the hard constraint.
Therefore,

N N
Z E |:J2E(Tl (n);010] (n) :| Z E|: Twlvl(n);01v] (n)) ‘]CE (WE))2:| s

n=1 n=1
N
—ZE[<w£u<w(n>;mv]<n>>—wEu r5)] ZE[|wE| oty oti) — 1),
n=1
N
_||WEH2 7 (plv] [v] 2| _ N2
= el S B9 L@).) 2| = o + 1),
L pn=1

12

217

218
219

220

221
222

223

224
225
226

227
228
229
230
231
232
233
234

240
241

9.7 Proof of Corollary 1

When the reward function is a linear combination similar to the cost function, this proof is similar to
the proof of sub-linear cumulative constraint violation in Subsection [9.6.3]

10 Simulation details

The Python3 code was run on a laptop with one Intel Core 17-9750H 2.60GHz CPU and 16 GB of
RAM under Ubuntu 18.04 operating system.

10.1 The benefit of learning both reward and cost functions

While learning a well-structured reward function can prevent some “bad" movements by assigning
negative reward to those movements, we provide the benefits of learning both reward and cost
functions as follows:

(i) Learning both reward and cost functions can make it clear that how much a state-action pair is
rewarded and penalized. For example, consider a state-action pair (s, a) that has ground truth reward
rg(s,a) = 1 and ground truth cost cg(s,a) = 0.5. Suppose we only use a single neural network
ro(s,a) to learn a well-structured reward function, even if we can have very good performance (say,
ro(s,a) = 0.5), we do not know whether (s, a) violates the constraints or how much it violates
the constraints since the single reward function outputs positive value at (s, a). However, if we
learn reward and cost function separately, we can clearly solve this problem. While learning a
well-structured reward function can help discourage “bad" movements in some cases (e.g., when
each state-action pair is either rewarded or penalized but not both), learning both reward and cost
functions can give us more information.

(i1) Even in the cases where each state-action pair is either rewarded or penalized, it is hard for a
single reward function to recover constraints that are close to the highly-rewarded areas (e.g., goals).
Here, we use a single agent example to illustrate this in detail:

9 100 o -

8 075 8 0.75

7 050 050
025 025
0.00 0.00

s -0.25 -0.25

2 -0.50 -050
-0.75 -0.75

0 -100 0

o 1 2 3 4 5 6 7 B 9 o 1 2 3 4 5 6 7 8 9

(a) Real environment (b) Learned environment (reward only)

9

8 05
00
-05
-10
-15

0

©o 1 2 3 4 5 6 7 8 9

(c) Learned environment (reward & cost)

B o o

HON W s W oo o~

-

I I R ST -

Figure 1: An example where the goal and obstacle are close

Figure[T] shows a scenario where the goal and obstacle are close to each other where the yellow block
is the goal and the dark block is the obstacle. In the real environment, the reward of the goal state is

13

242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258

259

260
261
262

263
264
265

266

267

269

270
271
272
273
274
275
276
277

278

279

280

281
282

283
284

286
287

1, the reward of the obstacle state is —1, and the reward of other states is 0. We can see that if we
only use a neural network to learn a reward function, we cannot learn the obstacle near the goal. In
contrast, if we learn both reward and cost functions, we can learn the obstacle close to the goal. The
reason is that we use neural networks to learn the reward function and neural networks are continuous.
Therefore, the states near the goal state will also have relatively high reward even if they may be the
obstacle states. The benefit of learning an extra cost function is that now the outcome of reaching an
obstacle state is its reward minus cost. Even if the reward neural network still assigns relatively high
reward to the obstacle state near the goal, the extra cost function will heavily penalize the obstacle
state. Then, visiting the obstacle state has low outcome (i.e., reward minus cost) even if it is close to
the goal.

In conclusion, while learning a well-structured reward function may replace learning both reward and
cost functions in some cases, it is not general and it does not provide enough information we want,
especially for the cases where we are more interested in constraints [6]. Moreover, there are some
other works that support this conclusion. For example, [[7] points out that it is often the case that
the recovered reward function fails to capture the implicit constraints. In [8], the authors augment
some constraint signals to the reward neural network but the learned behaviors still have unsatisfying
constraint violation performance.

10.2 Evasion from patrolled area

Due to the well-known curse of dimensionality, the reinforcement learning (or dynamic programming)
of multiple experts is hard to compute. To alleviate this issue, we model the experts as separate MDPs
for most of the time and only model them as a Markov game (MG) when they are close to each other.

At each iteration, the experts demonstrate Ny, trajectories and each of the Ny, learners observe one of
them. We design the cost function such that it is positive at obstacles and zero elsewhere. Following
[6l 8], we study hard constraints and choose b = 0. The adjacency matrix of the communication
network is {8? 82] and the reward function of each expert is a neural network with four hidden
layers. The activation functions are relu and the number of neurons in each layer is respectively 512,
256, 256, 128.

10.3 Drone motion planning with obstacles

The simulator is built in Gazebo based on a package called hector_quadrotor [9]. The total demon-
strations we provide are 80 pairs of trajectories. The neural network structure is same to the one in
the last experiment. The state of each drone is its 2-D coordinates and the action of each drone is
its moving direction which is characterized by a 2-D vector. For example, the action [1,1]T means
that the moving direction is 45 degrees upper right and the action [—1,1] " means that the moving
direction is 45 degrees upper left. We restrict the length of each moving step as 0.1. The state space
of each drone is the set of all the 2-D coordinates in the room and the action space of each drone is
all the directions.

The communication network for the four learners has two stages and the adjacency matrix in stage 1

0.24 0.24 0.26 0.26 0.26 0.26 0.24 0.24
(024024 026 026) oo oL 0.26 026 024 0.24
51026 026 024 0.24|300mMsSELEZIS 1004 024 0.26 0.26]

026 0.26 0.24 0.24 024 024 0.26 0.26
References

[1] S. Liu and M. Zhu, “Distributed inverse constrained reinforcement learning for multi-agent
systems,” in Advances in Neural Information Processing Systems, 2022.

[2] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep energy-based
policies,” in International Conference on Machine Learning, pp. 1352-1361, 2017.

[3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in International Conference on Machine
Learning, pp. 1861-1870, 2018.

14

288
289

290
291

292

294
295
296

297
298

299
300
301

[4] C. A.Floudas, Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford
University Press, 1995.

[5] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE
Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, 2009.

[6] D.R. Scobee and S. S. Sastry, “Maximum likelihood constraint inference for inverse reinforce-
ment learning,” in International Conference on Learning Representations, 2019.

[7]1 D. Park, M. Noseworthy, R. Paul, S. Roy, and N. Roy, “Inferring task goals and constraints
using bayesian nonparametric inverse reinforcement learning,” in Conference on robot learning,
pp. 1005-1014, 2020.

[8] S.Malik, U. Anwar, A. Aghasi, and A. Ahmed, “Inverse constrained reinforcement learning,” in
International Conference on Machine Learning, pp. 7390-7399, 2021.

[9] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk, “Comprehensive sim-
ulation of quadrotor uavs using ros and gazebo,” in International Conference on Simulation,
Modeling and Programming for Autonomous Robots, pp. 400-411, 2012.

15

	Improvements from D-ICRL
	Notions and notations
	Constrained soft Bellman policy

	Proof
	Proof of Lemmas 1 and 3
	Proof of Lemma 2
	Ill-defined problem when the cost function is non-linear
	Derivation of the gradient approximation
	Proof of Lemma 4
	Proof of Theorem 1
	Consensus
	Decreasing local regret
	Sub-linear cumulative constraint violation

	Proof of Corollary 1

	Simulation details
	The benefit of learning both reward and cost functions
	Evasion from patrolled area
	Drone motion planning with obstacles

