
A Proofs

Theorem 3. The optimal solutions of the L-DUFM (1) for binary classification (K = 2) are s.t.

(H∗
1 ,W

∗
1 , . . . ,W

∗
L) exhibits DNC, if nλH1λW1 . . . λWL

<
(L− 1)L−1

2L+1L2L
. (2)

More precisely, DNC1 is present on all layers; DNC2 is present on σ(H∗
l ) for l ≥ 2 and on H∗

l for
l ≥ 3; and DNC3 is present for l ≥ 2. The optimal W ∗

1 , H
∗
1 do not necessarily exhibit DNC2 or

DNC3. If the inequality in (2) holds with the opposite strict sign, then the optimal solution is only
(H∗

1 ,W
∗
1 , . . . ,W

∗
L) = (0, 0, . . . , 0).

Proof. We will split the proof into two distinct cases: n = 1 and n > 1. The proof for n > 1 will
require the statement to hold for n = 1, so we start with this case. The explicit form of the problem
goes as:

min
H1,W1,...,WL

1

2N
∥WLσ(WL−1(. . .W2σ(W1H1))− I2∥2F +

L∑
l=1

λWl

2
∥Wl∥2F +

λH1

2
∥H1∥2F . (10)

We will solve this problem using a sequence of L sub-problems, where in sub-problem l, we only
optimize over matrices with index L− l+1 and condition on all the other matrices, as well as singular
values of all σ(Hl) for l ≥ 2 (keeping them fixed). Throughout the process, we will strongly rely on
the crucial phenomenon that the optimal solutions of all the sub-problems will only depend on the
singular values of the matrices σ(Hl). We will solve the problem starting from the last weight matrix
WL, through WL−1 and so on, and finishing with the joint optimization over W1, H1. We divide this
procedure into 4 lemmas. The first lemma will only treat WL. The second lemma will treat Wl for
2 ≤ l ≤ L− 1. This lemma will only be used if L ≥ 3. The third lemma will treat W1, H1 jointly
and the fourth, final lemma will then treat the only free variables left – the singular values of σ(Hl)
for all l ≥ 2. Let us denote by S(·) an operator which returns a set of singular values of any given
matrix (in full SVD, i.e. the SVD with number of singular values equal to the smaller dimension of
the matrix). Moreover, let sl,i be the i-th singular value of σ(Hl).

Lemma 4. Fix H1,W1, . . . ,WL−1. Then, the optimal solution of the optimization problem

min
WL

1

4
∥WLσ(WL−1(. . .W2σ(W1H1))− I2∥2F +

λWL

2
∥WL∥2F

is achieved at WL = σ(HL)
T (σ(HL)σ(HL)

T + 2λWL
IdL

)−1 and equals

λWL

2(s2L,1 + 2λWL
)
+

λWL

2(s2L,2 + 2λWL
)
. (3)

Proof. This is a well-known fact from the theory of ridge regression [10]. However, for readers’
convenience, we do the proof here too. If we denote the objective of this as L, then we get:

∂L
∂WL

=
1

2
(WLσ(HL)− I2)σ(HL)

T + λWL
WL.

Since the objective is strongly convex in WL, the unique global optimum is found by setting to 0 the
derivative. Solving for it, we have

WL = σ(HL)
T (σ(HL)σ(HL)

T + 2λWL
IdL

)−1.

Let us denote σ(HL) = UΣV T the rectangular SVD of σ(HL) where U ∈ RdL×dL ,Σ ∈
RdL×2, V ∈ R2×2. Writing the optimal WL in terms of SVD of σ(HL) we get:

WL = V ΣTUT (UΣΣTUT + 2λWL
IdL

)−1

= V ΣTUTU(ΣΣT + 2λWL
IdL

)−1UT

= V ΣT (ΣΣT + 2λWL
IdL

)−1UT .
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Therefore, we obtain the SVD of WL and that (ΣΣT +2λWL
IdL

)−1 is a matrix of singular values of
WL, from which we obtain:

∥WL∥2F =

2∑
i=1

s2L,i

(s2L,i + 2λWL
)2
.

Furthermore, the first summand of the objective is

∥WLσ(HL)− I2∥2F =
∥∥V ΣT (ΣΣT + 2λWL

IdL
)−1UTUΣV T − I2

∥∥2
F

=
∥∥V (ΣT (ΣΣT + 2λWL

IdL
)−1UTUΣ)V T − I2

∥∥2
F

=

2∑
i=1

(
s2L,i

s2L,i + 2λWL

− 1

)2

.

Putting everything together, we get the following optimal value of the objective:

1

4

2∑
i=1

(
s2L,i

s2L,i + 2λWL

− 1

)2

+
λWL

2

2∑
i=1

s2L,i

(s2L,i + 2λWL
)2

=

2∑
i=1

2λ2
WL

2(s2L,i + 2λWL
)2

+
λWL

σ2
1

2(s2L,i + 2λWL
)2

=

2∑
i=1

λWL

2(s2L,i + 2λWL
)
,

which gives the desired result.

Note that the term we optimized for is the only part of the objective in (10) which depends on WL.
Now we are ready to state the crucial lemma (necessary when L ≥ 3), which is presented in an
abstract way so it can be easily applied outside of the scope of this work.

Lemma 5. Let X be any fixed two-column entry-wise non-negative matrix with at least two rows,
and let its singular values be given by {s̃1, s̃2} = S(X). Then, for a given pair of singular values
{s1, s2} and a given dimension d ≥ 2, the optimization problem

min
W

∥W∥2F , s.t. {s1, s2} = S(σ(WX)),

further constrained so that the number of rows of WX is d, has optimal value equal to
s1
s̃1

+
s2
s̃2

,

if X is full rank. If X is rank 1, then the optimal value is s1
s̃1

as long as s2 = 0, otherwise the problem
is not feasible. If X = 0, then necessarily s1 = s2 = 0 with optimal solution 0, otherwise the
problem is not feasible.

Proof. Notice that, for any fixed value of the matrix A := σ(WX), there is at least one W which
achieves such a value of A, unless the rank of A is bigger than the rank of X , however this is a
special case explicitly mentioned in the statement of the lemma for which the problem is non-feasible.
Therefore, we can split the optimization into solving two nested sub-problems. The inner sub-problem
fixes an output A for which {s1, s2} = S(A) and optimizes only over all W for which A = σ(WX).
The outer problem then takes the optimal value of this inner problem and optimizes over all the
feasible outputs A satisfying the constraint on the singular values. We will phrase both of the nested
sub-problems as separate lemmas:

Lemma 6. Let A with columns a, b and X with columns x, y be fixed two-column matrices with at
least two rows, where X is entry-wise non-negative. Then, the optimal value of ∥W∥2F subject to the
constraint A = σ(WX) is

aTa · yT y − 2aT b · xT y + bT b · xTx

xTx · yT y − (xT y)2
, (4)
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unless x and y are aligned. In that case, the optimal value is bT b
yT y

, and we require that a, b are aligned
and ∥y∥ / ∥x∥ = ∥b∥ / ∥a∥ for the problem to be feasible. Moreover, the matrix W ∗X at the optimal
W ∗ is non-negative and thus W ∗X = σ(W ∗X). If the matrix X is orthogonal, then the rows of the
optimal W ∗ are either 0, or aligned with one of the columns of X.

Proof. Note that this optimization problem is separable in rows of W . Thus it suffices to solve the
problem for a single row wj and then sum up over all rows. We will, moreover, split the analysis into
two cases.

Case 1: Here we will assume that the row of A we are optimizing for is (aj , bj), where aj , bj > 0.
In this case, we are facing the following (simple) convex optimization problem:

min
wj

∥wj∥22

s.t. wT
j x = aj

wT
j y = bj

This has a known solution – the pseudoinverse as it is the minimum interpolating solution of a
two-datapoint linear regression. However, using the formula would not simplify the expressions in
the slightest and so we will solve this problem manually. The Lagrange function for this problem is

L(wj , u, v) =

d∑
i=1

w2
ji + u

(
d∑

i=1

wjixi − aj

)
+ v

(
d∑

i=1

wjiyi − bj

)
,

where d is the dimension of the columns of X and rows of W. We know that solving the KKT
conditions for a convex problem with linear constraints yields sufficient and necessary conditions for
the optimality. Let us write:

∂L
∂wji

= 2wji + uxi + vyi
!
= 0.

Together with constraints, these are the only KKT conditions for this problem. Solving for wji we
get:

wji =
−uxi − vyi

2
. (11)

Plugging in the constraints we get:
d∑

i=1

vy2i + uxiyi = vyT y + uxT y = −2bj ,

d∑
i=1

ux2
i + vxiyi = uxTx+ vxT y = −2aj .

We can solve for v from the first equation and plug in to the second equation. Since yT y must
be non-zero, otherwise the constraint wT

j y = bj > 0 could not be satsfied, we know v and u are
well-defined. We get:

u =
2bjx

T y − 2ajy
T y

xTxyT y − (xT y)2
, (12)

unless x = αy, which we will deal with later. Now we can plug u in the expression on v and after
some computations we get

v =
2ajx

T y − 2bjx
Tx

xTxyT y − (xT y)2
.

Combining, we get the optimal wj :

bjx
Tx− ajx

T y

xTxyT y − (xT y)2
y +

ajy
T y − bjx

T y

xTxyT y − (xT y)2
x.

If x = αy, then it is clear from (12) that bjxT y = ajy
T y, from which we can deduce α = aj/bj .

From the expression (11) for wji, it is clear that the only solution in this case is wj =
bj
yT y

y and the

same must hold for all other j ∈ {1, . . . , d̃}, where d̃ is the number of rows of W .
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Case 2: Here we will assume that the row of A we are optimizing for is, w.l.o.g. (aj , 0), where
aj > 0. In this case, we are facing the following (simple) convex optimization problem:

min
wj

∥wj∥22

s.t. wT
j x = aj

wT
j y ≤ 0

Again, we can write the Lagrange function for this problem and again, solving for KKT conditions
will provide full description of the optimal solution:

L(wj , u, v) =

d∑
i=1

w2
ji + u

d∑
i=1

wjiyi + v

(
d∑

i=1

wjixi − aj

)
.

We obtain the same condition for wji as in case 1. However, since one of our constraints is now an
inequality, we will deal with complementarity conditions. Let us first assume that u = 0. In that case
wji = −vxi/2 and from the first constraint

v =
−2aj∑

x2
i

.

Thus, wj =
aj

xT x
x. However judging from this, to satisfy the first constraint, we must have xiyi = 0

for all i (remember that
∑

wjiyi must be non-positive and that x, y have non-negative entries).
Therefore necessarily xT y = 0. However, looking at the solution of case 1, we see that after plugging
in xT y = 0 and bj = 0, we get the same expression. Thus, this is a special case of case 1. The
second option for complementarity condition is that

∑
wjiyi = 0. Then, we can proceed in the same

way as in case 1 to obtain the same formula after plugging in b = 0. Then again, this is a special case
of the formula in case 1.

All in all, we have fully solved the optimization problem in question. Now it remains to compute
the optimal value. In the special case that x = αy, we must have bxT y = ayT y, otherwise
there is no feasible solution. In this case this is equivalent to α = a/b, wj = bj/(y

T y)y and
wT

j wj = b2j/(y
T y). Therefore, summing over all rows of W (and keeping in mind that once x = αy,

the same characterization holds for every row) we get ∥W∥2F = bT b
yT y

.

In the general case, let us compute:

wT
j wj =

〈
bjx

Tx− ajx
T y

xTxyT y − (xT y)2
y +

ajy
T y − bjx

T y

xTxyT y − (xT y)2
x,

bjx
Tx− ajx

T y

xTxyT y − (xT y)2
y +

ajy
T y − bjx

T y

xTxyT y − (xT y)2
x

〉
=

(bjx
Tx− ajx

T y)2yT y + 2(bjx
Tx− ajx

T y)(ajy
T y − bjx

T y)xT y + (ajy
T y − bjx

T y)2xTx

(xTxyT y − (xT y)2)2

=
b2j (x

Tx)2yT y − 2bjajx
TxyT yxT y + a2j (x

T y)2yT y + 2bjajx
TxyT yxT y − 2b2jx

Tx(xT y)2

(xTxyT y − (xT y)2)2

+
−2a2jy

T y(xT y)2 + 2bjaj(x
T y)3 + a2j (y

T y)2xTx− 2bjajx
TxyT yxT y + b2j (x

T y)2xTx

(xTxyT y − (xT y)2)2

=
b2j (x

Tx)2yT y − b2jx
Tx(xT y)2 + a2j (y

T y)2xTx− a2jy
T y(xT y)2 − 2ajbjx

TxyT y + 2ajbj(x
T y)3

(xTxyT y − (xT y)2)2

=
(b2jx

Tx+ a2jy
T y − 2ajbjx

T y)(xTxyT y − (xT y)2)

(xTxyT y − (xT y)2)2

=
b2jx

Tx− 2ajbjx
T y + a2jy

T y

xTxyT y − (xT y)2
.

Summing up over rows of W , we get the desired expression:

∥W∥2F =
bT bxTx− 2aT bxT y + aTayT y

xTxyT y − (xT y)2
.

The rest of the statement of the lemma clearly follows from the formula on optimal rows of W.
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Now, as promised, we will optimize over the output matrix A given that we know what the partial
optimal value for each A is.

Lemma 7. Let X be a fixed entry-wise non-negative rank-2 matrix (the rank-1 case is treated
separately later) with columns x, y and A = σ(WX). The minimum of the following optimization
problem over this non-negative matrix A with columns a, b:

min
A

bT bxTx− 2aT bxT y + aTayT y, s.t. S(A) = {s1, s2} (5)

is 1
2 (s

2
1 + s22)(s̃

2
1 − s̃22) +

1
2 (s

2
1 − s22)(s̃

2
1 − s̃22), where {s̃1, s̃2} = S(X).

Proof. First note that since X is assumed to be rank 2, x ̸= αy and so the expression in the objective
is exactly the numerator of the optimal value of the minimization problem over W as stated in
Lemma 6 (the denominator is constant within the scope of this lemma). Now, using the well-known
formulas for the sum and product of squared singular values, we can easily rephrase our constraint in
the following way:

aTa+ bT b = s21 + s22 ∧
aTabT b− (aT b)2 = s21s

2
2.

First, noticing that both the constraints as well as the objective only depend on aTa, bT b, aT b,
we can reduce the problem to one, where we treat these quantities as free variables that we are
optimizing for. The only thing we need to remember will be implicit constraints that aTa, bT b ≥ 0
and (aT b)2 ≤ aTabT b, which is necessary from Cauchy-Schwarz inequality. We will solve this
optimization problem using, again, KKT conditions. This time, we will use a stronger rule for
deciding on the necessity of KKT conditions – the linear independence constraint qualification
(LICQ) rule. According to this rule, any optimal solution has to fulfill the KKT conditions if the
gradients of the equality constraints (in this case only two) are linearly independent. In our case, if we
order the variables as (aTa, bT b, aT b) and writing the gradients as: (1, 1, 0) and (bT b, aTa,−2aT b)
we see that they can only be dependent if aT b = 0 and aTa = bT b. This is only a feasible solution if
s1 = s2. We will return to this case later, showing that it achieves the same objective value as the one
coming from KKT conditions.

Now, let us write down the Lagrange function to this problem:

L(aTa, bT b, aT b, u, v) =aTayT y − 2aT bxT y + bT bxTx+ u(aTa+ bT b− s21 − s22)

+ v(aTabT b− (aT b)2 − s21s
2
2).

Computing the partial derivatives we get:
∂L
∂aTa

= yT y + u+ vbT b
!
= 0,

∂L
∂bT b

= xTx+ u+ vaTa
!
= 0,

∂L
∂aT b

= −2xT y − 2vaT b
!
= 0.

First consider what would happen if v = 0. In this case, xT y = 0 from the third equation and
xTx = yT y from the first two. Then, however, the objective function is constant on the feasible set
and equals 1/2(s21 + s22)(s̃

2
1 + s̃22), which agrees with the statement of the Lemma.

Next, assume v ̸= 0. Then we can express all the variables as follows:

aTa =
−xTx− u

v
,

bT b =
−yT y − u

v
,

aT b = −xT y

v
.

Plugging this back into the constraints, we can solve for v, u. We get:

v = −xTx+ yT y + 2u

s21 + s22
.
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Plugging this into the second constraint together with the expressions for aTa, bT b and then simplify-
ing we get:

(yT y + u)(xTx+ u)(s21 + s22)
2

(xTx+ yT y + 2u)2
− (xT y)2(s21 + s22)

2

(xTx+ yT y + 2u)2
= s21s

2
2

yT yxTx− (xT y)2 + (yT y + xTx)u+ u2 =

(
s1s2

s21 + s22

)2

(xTx+ yT y)2

+

(
2s1s2
s21 + s22

)2

(xTx+ yT y)u+

(
2s1s2
s21 + s22

)2

u2

(s21 − s22)
2

(s21 + s22)
2
u2 +

(s21 − s22)
2

(s21 + s22)
2
(xTx+ yT y)u+ xTxyT y − (xT y)2 −

(
s1s2

s21 + s22

)2

(xTx+ yT y)2 = 0

u2 + (xTx+ yT y)u+
(s21 + s22)

2

(s21 − s22)
2
(xTxyT y − (xT y)2)−

(
s1s2

s21 − s22

)2

(xTx+ yT y)2 = 0. (13)

Recall that the case s1 = s2 is treated separately, so we do not divide by zero. Now we can rewrite
this expression w.r.t. {s̃1, s̃2} :

u2 + (s̃21 + s̃22)u+
(s21 + s22)

2

(s21 − s22)
2
s̃21s̃

2
2 −

s21s
2
2

(s21 − s22)
2
(s̃21 + s̃22)

2 = 0

We can now simply solve for this to obtain the roots:

u± =
−(s̃21 + s̃22)±

√
(s̃21 + s̃22)

2 +
4s21s

2
2

(s21−s22)
2 (s̃

2
1 + s̃22)

2 − 4
(s21+s22)

2

(s21−s22)
2 s̃

2
1s̃

2
2

2
,

which after some simplifications yields:

u± =
−(s̃21 + s̃22)±

s21+s22
s21−s22

(s̃21 − s̃22)

2
.

The formula for v can now be obtained:

v± = ∓ s̃21 − s̃22
s21 − s22

Having this, we can now compute the objective value using these quantities. We write it down for
u+, v+ :

bT bxTx+ aTayT y − 2aT bxT y =
−(xTx+ yT y)u− 2(xTxyT y − (xT y)2)

v

=
−(s̃21 + s̃22)u− 2s̃21s̃

2
2

v
=

(s̃21 + s̃22)
2 − s21+s22

s21−s22
(s̃21 − s̃22)(s̃

2
1 + s̃22)− 4s̃21s̃

2
2

2v

=
− (s̃21+s̃22)

2

s̃21−s̃22
(s21 − s22) + (s21 + s22)(s̃

2
1 + s̃22) + 4s̃21s̃

2
2
s21−s22
s̃21−s̃22

2
=

(s21 + s22)(s̃
2
1 + s̃22)− (s21 − s22)(s̃

2
1 − s̃22)

2
,

which is the expression we wanted to prove. Had we done the same computation, but for u−, v−, we
would get

(s21 + s22)(s̃
2
1 + s̃22) + (s21 − s22)(s̃

2
1 − s̃22)

2
,

which is at least as big as the previous expression, so we can drop this one. However, we still need
to check, whether this solution of the KKT system is indeed feasible, because we imposed implicit
constraints into the problem. Thus, we need to check: aTa, bT b ≥ 0 and aTabT b ≥ (aT b)2. The
first two are analogous. We have: aTa = −xT x+u

v , but since the optimal v+ is strictly negative, we
can only analyze the sign of 2xTx+ 2u which is:

2xTx+ 2u = xTx− yT y +
s21 + s22
s21 − s22

(s̃21 − s̃22) ≥ s̃21 − s̃22 − |xTx− yT y|
?
≥ 0.
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However, using the same formulas as the constraints in this optimization problem on s̃1, s̃2 instead,
one can, using very simple computations, check that this indeed holds. For the next condition,
consider that aTabT b − (aT b)2 must have the same sign as (xTx + u)(yT y + u) − (xT y)2 =
xTxyT y − (xT y)2 + u2 + u(xTx + yT y). This resembles the quadratic function in (13). u+ is a
root of that quadratic function. Both this new quadratic function, as well as the one in (13) have the
same coefficients in front of u2 and u. Therefore, to test for the sign of the expression above, it only
suffices to check, whether this alternative quadratic function has at least as big absolute constant:

xTxyT y − (xT y)2 − (s21 + s22)
2

(s21 − s22)
2
(xTxyT y − (xT y)2) +

(
s1s2

s21 − s22

)2

(xTx+ yT y)2 ≥ 0 ⇐⇒

− s21s
2
2

(s21 − s22)
2
4s̃21s̃

2
2 +

s21s
2
2

(s21 − s22)
2
(s̃21 + s̃22)

2 ≥ 0 ⇐⇒ s21s
2
2

(s21 − s22)
2
(s̃21 − s̃22)

2 ≥ 0.

The last inequality trivially holds. Therefore, the solution of KKT conditions is feasible.

Now, let us consider the special case when aT b = 0, aTa = bT b and s1 = s2 for which the LICQ
criterion is not satisfied. A very simple computation then yields that any feasible solution achieves
the same objective value as the one above. This means that if the problem does have a global solution,
it must be this one, otherwise the optimal solution would neither satisfy a KKT condition, nor be
in the region where LICQ does not hold. Therefore, we must, finally, reason that this is indeed a
globally optimal solution, which is not guaranteed by KKT conditions themselves. For this, it is only
necessary to note that the feasible set is obviously compact. Since the objective value is continuous,
we can use the well-known fact that such an optimization problem indeed has a global solution.

Now we are ready to finish the proof of Lemma 5. Let us first still assume s̃1, s̃2 > 0. Then,
combining Lemma 6 with Lemma 7 we get:

min
W

∥W∥2F
s.t. S(σ(WX)) = {s1, s2}

equals
(s21 + s22)(s̃

2
1 + s̃22)− (s21 − s22)(s̃

2
1 − s̃22)

2s̃21s̃
2
2

=
s21
s̃21

+
s22
s̃22

.

Now consider the case s̃2 = 0. According to Lemma 6 this implies s2 = 0. When optimizing over
the matrix A we are facing the following optimization problem:

min
A

bT b

yT y

s.t. S(A) = {s1, 0},
aTa

bT b
=

xTx

yT y
,

where the second constraint is clear from the considerations done in Lemma 6. Combining these two
constraints, one simply gets

bT b =
yT y

xTx+ yT y
s21

and plugging this in the objective value we have s21
s̃21
, which is consistent with the statement of

Lemma 7. The case when X is 0 is trivial. This proves Lemma 5.

Notice that, for all indices but l = 1, we managed to reduce the optimization over full matrices Wl to
the optimization over only the singular values of σ(Hk) matrices. We will do the same with the first
layer’s matrices W1, H1. For this, we again split the optimization of λW1

2 ∥W1∥2F +
λH1

2 ∥H1∥2F given
{s1, s2} = S(σ(W1H1)) into two nested sub-problems, the inner one optimizing the quantity only
for a fixed output H2 := W1H1 and the outer one optimizing over the output H2 given the optimal
value of the inner problem. We can solve the inner subproblem by a direct use of the following
lemma, which describes a variational form of a nuclear norm.
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Lemma 8. The optimization problem

min
A,B;C=AB

λA

2
∥A∥2F +

λB

2
∥B∥2F (6)

is minimized at value
√
λAλB ∥C∥∗, and the minimizers are of the form A∗ = γAUΣ1/2RT , B∗ =

γBRΣ1/2V T . Here, the constants γA, γB only depend on λA, λB; UΣV T is the SVD of C; and R
is an orthogonal matrix.

Proof. See Lemma C.1 of [28].

Using this Lemma 8, we know that the optimal value of the inner optimization problem is√
λW1

λH1
∥H2∥∗ . Therefore we only need to solve the outer problem:

min
H2

∥H2∥∗

s.t. S(σ(H2)) = {s1, s2}.

To solve this problem, we will state a much more general statement, which can be of independent
interest, in the following lemma.

Lemma 9. Let L ≥ 2 be a positive integer. Then, the optimal value of the optimization problem

min
H

∥H∥
2
L

S 2
L

, s.t. S(σ(H)) = {s1, s2} (7)

equals (s1 + s2)
2
L . Here ∥·∥Sp

denotes the p-Schatten pseudo-norm.

Proof. First note that this optimization problem has two free components: (i) σ(H) so that it satisfies
the constraint, and (ii) H with σ(H) being fixed. This enables us to split the problem into inner
and outer minimization. However, the complexity of the problem will prevent us from doing this
conditioning in a straightforward way. Further, let us also implicitly note that within the proof we
implicitly assume the matrix in question has at least three rows. The case with two rows is very
simple and follows the proof with more rows.

We start by explicitly computing the objective value as a function of important statistics of H . Let
σ(H) have columns r, s. Then,

σ(H)Tσ(H) =

(
rT r rT s
rT s sT s

)
.

Using the well-known formula on the eigenvalues of such matrix, we know λ1 + λ2 = rT r + sT s
and λ1λ2 = rT rsT s− (rT s)2. Solving this system we get:

s21,2 = λ1,2 =
rT r + sT s±

√
(rT r + sT s)2 − 4(rT rsT s− (rT s)2)

2
. (14)

Let us, for now, fix this σ(H). For a while we will only optimize over H s.t. σ(H) is fixed. We
will think about the optimization problem in the following way: consider any δ ≥ 0. Assume we
are allowed to “inject” negative values in the place of zero entries of a fixed σ(H) so that the sum
of squares of those negative entries is exactly δ. What is the minimal value of the objective value
given this δ and what is the optimal injection? Let us denote any quantity which was subject to such
injection (or perturbation) with an extra lower-index P .

To answer this question, first have a closer look at (14). It is clear that after injecting the negative
noise of total squared size δ, the rTP rP + sTP sP in a perturbed matrix will increase by exactly
δ compared to rT r + sT s. Therefore, if we condition on δ, the only degree of freedom lies in
the −4(rTP rP s

T
P sP − (rTP sP )

2) in the perturbed matrix. Crucially, since the objective value is
λ
1/L
1,P + λ

1/L
2,P , by concavity of 1/L-th power, for any fixed sum of λ1,P + λ2,P = rT r + sT s + δ

we want the λi,P to be as far apart as possible. This is obtainable by maximizing the quantity
−4(rTP rP s

T
P sP − (rTP sP )

2) which is equivalent to minimizing rTP rP s
T
P sP − (rTP sP )

2. Importantly,
as it will be clear from the forthcoming reasoning, the minimal value of λ2,P is decreasing with

20



δ. Therefore, it only makes sense to consider all the δ values for which the minimal λ2,P is still
bigger than 0 up to the δ value for which the minimal λ2,P hits 0 for the first time. From that
δ on, every optimal λ2,P is 0, but the λ1,P increases and thus becomes sub-optimal. Now let us
split the δ into δ1 and δ2, denoting the total squared size of perturbations per column. If we also
fix δ1 and δ2 and condition on them, even the quantity rTP rP s

T
P sP is fixed and we are left with

maximizing (rTP sP )
2. Denote p = rT s. To make the next argument clear, let us split the matrix

σ(H) into four blocks of rows, where in each block there is one of the four following types of
rows: (+,+), (+, 0), (0,+), (0, 0). We will now define variables a, b, c, d as sum of squared entries
corresponding to one column of one block. Specifically:

a =
∑

i;σ(H)i1>0,σ(H)i2>0

σ(H)2i1; b =
∑

i;σ(H)i1>0,σ(H)i2>0

σ(H)2i2

c =
∑

i;σ(H)i1>0,σ(H)i2=0

σ(H)2i1; d =
∑

i;σ(H)i1=0,σ(H)i2>0

σ(H)2i2.

The value we are trying to minimize equals, for an unperturbed σ(H) written in this way, (a+ c)(b+
d)− p2. Of course, σ(H) might not have all the types of blocks, in which case the empty sum is just
defined as 0. First, we argue that whatever is the optimal assignment of the negative values given
δ1, δ2, they do not appear in both the (0, 0) block and (+, 0), (0,+) blocks. This is because the only
variable we are optimizing for in this conditioning is (rTP sP )

2. Assume that, given the perturbation,
the quantity rTP sP is negative. Then, any negative values present in the (0, 0) block can be moved
to (+, 0), (0,+) blocks strictly decreasing rTP sP and thus increasing (rTP sP )

2. On the other hand,
if rTP sP happens to be positive, then any negative values present in the (+, 0), (0,+) blocks can
be moved to the (0, 0) block, strictly increasing the rTP sP value and thus (rTP sP )

2 too. Therefore,
we only need to consider cases when we inject the negative values to either the (0, 0) block or to
(+, 0), (0,+) blocks, but not both at once. Let us start with the second case and analyze it. Clearly,
if σ(H) did not have either the (0, 0) block or (+, 0), (0,+) blocks, then we do not even need this
reasoning anymore. Also it is clear, as we will see later, that a matrix σ(H) which would completely
lack 0 entries is suboptimal and thus there is always space to inject negative entries.

Case 1: Injecting negative values to (+, 0), (0,+) blocks. For the same definition of a, b, c, d as
above, we further define the squared sizes of total injected negative values in the perturbed HP per
block as x, y, i.e.,

x =
∑

i;σ(H)i1>0,σ(H)i2=0

H2
P,i2; y =

∑
i;σ(H)i1=0,σ(H)i2>0

H2
P,i1,

and thus x = δ2, y = δ1, x+ y = δ. Trivially, such a construction only makes sense if it is possible
to make rTP sP negative, otherwise it is strictly better to construct an alternative matrix σ(H) with
a + c = a + c; b + d = b + d; p = p, but which includes the (0, 0) block and put all the negative
value there (this is always possible for matrices with at least 3 rows, since we only need two rows
to construct σ(H) which satisfies the outlined constraints). This alternative matrix together with
negative values in the (0, 0) block would be better, because obviously (rP

T sP )
2 > (rTP sP )

2.

Once rTP sP is negative, though, it is clear that it is optimal, given the resources x, y, to produce as
negative value as possible so as to maximize (rTP sP )

2. By the use of Cauchy-Schwartz inequality,
this is possible exactly when the injected negative vectors in the blocks are aligned with their positive
counterparts of that block. Then, the inner product between the negative and positive part of a
block will equal exactly

√
cx or

√
yd. Furthermore, if it is possible to construct σ(H) for which

a+b < a+b; a+c = a+c; b+d = b+d; p = p (which is only possible if there are at least two rows in
the (+,+) block and if p2 < ab – thanks to the fact that then the angle between columns in the (+,+)
block is a free variable and we can decrease it while decreasing a, b to keep p unchanged using the law
of cosine), then our objective value strictly decreases, since

√
cx+

√
yd >

√
cx+

√
dy. Therefore, it

is always optimal for the first and second column of the (+,+) block to be aligned, which also yields
ab = p2. This value of p is necessary also if the (+,+) block has only one row. Thus, we have that
the original value of rT rsT s− (rT s)2 is (a+ c)(b+ d)− ab. The value after perturbation, using all
the knowledge we acquired so far is (a+ c+ y)(b+d+x)− (

√
ab−

√
cx−

√
dy)2. Subtracting, we

get a difference: by + ax+ xy + 2
√
abc

√
x+ 2

√
abd

√
y − 2

√
cd
√
xy. Consider now an alternative
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matrix HP such that x, y remain unchanged and moreover a = b = 0, c + d = a + b + c + d
and cd = (a + c)(b + d) − ab, meaning that the σ(HP ) has the same singular values as σ(HP ).
However, computing the same difference of the same quantities one gets: xy − 2

√
cd
√
xy. This

value is strictly smaller than the previous one for any fixed pair of x, y. Therefore, a matrix σ(H)
which does not contain the (+,+) block is the only possible optimal solution for the injection
which goes into (+, 0), (0,+) blocks. Thus, we can reduce the previous problem into considering
a matrix HP with a = b = 0 and minimizing the difference in objective values xy − 2

√
cd
√
xy,

given x+ y = δ. After plugging in y = δ − x, differentiating for x and putting equal to 0, we get
δ− 2x−

√
cd√

x(δ−x)
(δ− 2x) = 0, which is equivalent to (δ− 2x)(1−

√
cd√

x(δ−x)
) = 0. From here, we

see that either x = δ/2 or cd = x(δ − x), which after solving yields x1,2 = δ±
√
δ2−4cd
2 . If δ2 ≤ 4cd

then the only stationary point is δ/2 and this is clearly an optimal solution. For δ2 = 4cd, the optimal
solution yields a rank 1 matrix so that λ2,P = 0. This means we do not need to care about δ2 > 4cd,
as this would not achieve smaller value of λ2,P , but would increase the value of λ1,P . So, the solution
where x = y = δ/2 is optimal and the objective value is δ2/4− s1s2δ. This is clearly smaller than 0
so we actually achieved a decrease in objective value.

Case 2: Injecting negative values to (0, 0) block. For this, it is not necessary to distinguish
(+,+), (+, 0), (0,+)) blocks, so we treat them as one. We can define:

e =
∑

i;σ(H)i1+σ(H)i2>0

σ(H)2i1+; f =
∑

i;σ(H)i1+σ(H)i2>0

σ(H)2i2

x =
∑

i;σ(H)i1=0,σ(H)i2=0

σ(H)2i1; y =
∑

i;σ(H)i1=0,σ(H)i2=0

σ(H)2i2.

The original objective value is ef − p2, while the perturbed one is (e+ x)(f + y)− (p+
√
xy)2 and

so the difference is xf + ye− 2p
√
xy. However, using Cauchy-Schwartz inequality, this is bigger or

equal to xf + ye− 2
√
fexy ≥ 0. Thus, it is not possible to improve the objective value in this case,

unlike the previous case where it was. Therefore, this case is clearly sub-optimal and we do not need
to deal with it.

The only thing that could potentially go wrong with this proof is that there is not enough rows to
build our necessary blocks. This can only happen if σ(H) is a 2× 2 matrix. This case is, however,
very simple and we will not explicitly treat it, but the statement and the proof path are the same for it.

We solved our optimization problem for every fixed allowed perturbation size δ. Now we just need to
optimize over 0 ≤ δ ≤ 2s1s2. So we face the following optimization problem:

min
0≤δ≤2s1s2

(
s21 + s22 + δ

2
+

1

2

√
(s21 + s22 + δ)2 − 4(s21s

2
2 + δ2/4− s1s2δ)

) 1
L

+

(
s21 + s22 + δ

2
− 1

2

√
(s21 + s22 + δ)2 − 4(s21s

2
2 + δ2/4− s1s2δ)

) 1
L

.

Denote λδ,1 the value of the first summand of the above objective value (without 1/L-th power) and
similarly λδ,2 the value of the second summand (so those are the eigenvalues of optimal HT

PHP

given exactly δ allowed negative injection). The derivative of the objective w.r.t. δ equals:
1

nλ
L−1
L

δ,1

(
1

2
+

(s1 + s2)
2

2Dδ

)
+

1

nλ
L−1
L

δ,2

(
1

2
− (s1 + s2)

2

2Dδ

)
,

where Dδ :=
√
(s21 + s22 + δ)2 − 4(s21s

2
2 + δ2/4− s1s2δ denotes the square root part of the λδ;1,2

expression. We will prove that this derivative is either 0 for L = 2 or strictly negative on [0, 2s1s2]
everywhere except a set of measure 0 for L ≥ 3. This guarantees for L = 2 the optimal value being
equal to the unperturbed matrix while also defines the set of optimal solutions. For L ≥ 3 the optimal
value is attained at δ = 2s1s2, the objective value is easily expressible and the optimal solution is
characterized by a single perturbation size. To test whether this expression is smaller than 0, nothing

happens if we multiply it with 2Lλ
L−1
L

δ,1 λ
2L−2

L

δ,2 , so we get:

λ
2L−2

L

δ,1

(
1 +

(s1 + s2)
2

Dδ

)
+ λ

L−1
L

δ,1 λ
L−1
L

δ,2

(
1− (s1 + s2)

2

Dδ

)
.
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We can now compute

λδ,1λδ,2 =
(s21 + s22 + δ)2 − (s21 − s22)

2 − 2(s1 + s2)δ

4
=

(
2s1s2 − δ

2

)2

to get

λ
2L−2

L

δ,2

(
1 +

(s1 + s2)
2

Dδ

)
+

(
2s1s2 − δ

2

) 2L−2
L
(
1− (s1 + s2)

2

Dδ

)
.

This expression resembles a form for which the use of Jensen inequality would be convenient.
However, there are two issues. First, the coefficients, though summing up to 1 are not a convex
combination since (s1+s2)

2

Dδ
≥ 1. So this is a combination outside of the convex hull of the inputs.

However, Jensen inequality outside the convex hull is applicable with opposite sign. The bigger issue
is that the function to use the Jensen inequality on, f(x) = x

2L−2
L is only easily defined on R+. To

make sure that we can safely use Jensen inequality, we first need to check that the linear combination,
though outside of the convex hull of the inputs, still lies in R+. We are therefore asking whether

λδ,2

(
1 +

(s1 + s2)
2

Dδ

)
+

2s1s2 − δ

2

(
1− (s1 + s2)

2

Dδ

)
≥ 0.

Now, we can multiply out and simplify this expression (after multiplying by 2):

s21 + s22 + δ −Dδ + (s21 + s22)
(s1 + s2)

2

Dδ
+ δ

(s1 + s2)
2

Dδ
− (s1 + s2)

2 + 2s1s2

− δ − 2s1s2(s1 + s2)
2

Dδ
+

δ(s1 + s2)
2

Dδ
≥ 0 ⇐⇒

((s1 − s2)
2 + 2δ)(s1 + s2)

2 ≥ (s21 − s22)
2 + 2(s1 + s2)

2δ,

but this holds even with equality. So we proved that the combination of inputs we are considering
here is exactly 0 for which x

2L−2
L is well-defined. So we can freely use Jensen inequality:

λ
2L−2

L

δ,2

(
1 +

(s1 + s2)
2

Dδ

)
+ (2s1s2 − δ)

2L−2
L

(
1− (s1 + s2)

2

Dδ

)
≤(

λδ,2

(
1 +

(s1 + s2)
2

Dδ

)
+

2s1s2 − δ

2

(
1− (s1 + s2)

2

Dδ

)) 2L−1
L

= 0.

Note that if L = 2, the function we applied Jensen inequality on was, in fact, linear and thus we
retained equality. If L ≥ 3, then since the function in question is strictly convex, the equality can
only hold if λδ,2 = 2s1s2 − δ. After writing down the expression on λδ,2 it becomes clear that this is
equivalent to a quadratic equation on δ, which can have at most two solutions. So we proved that the
derivative is smaller than 0 on the whole interval of interest except a set of measure at most 0, where
it is 0. Therefore, the only optimum is at δ = 2s1s2. Plugging this in the objective value one gets
(s1 + s2)

2
L and from the proof we also get the precise description of the optimizers for both L = 2

and L > 2 cases.

Now we are ready to formally make the reduction of the optimization problem in (10) into the
optimization over only singular values of the matrices σ(Hl) for 2 ≤ l ≤ L. We formulate this
reduction in a separate lemma for clarity.

Lemma 12. The optimal value of the following optimization problem:

min
WL,...,W1,H1

1

4
∥WLσ(WL−1 . . .W2σ(W1H1))− I2∥2F +

L∑
l=1

λWl

2
∥Wl∥2F +

λH1

2
∥H1∥2F

s.t. {sl,1; sl,2} = S(σ(Hl)) ∀ 2 ≤ l ≤ L

with H1 having two columns and all the matrices having at least two rows is
2∑

i=1

(
λWL

2(s2L,i + 2λWL
)
+

L−1∑
l=2

(
λWl

2

s2l+1,i

s2l,i

)
+
√
λW1

λH1
s2,i

)
,

where the
s2l+1,i

s2l,i
is defined as 0 if s2l+1,i = s2l,i = 0.
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Proof. The proof follows easily by applying the Lemmas 9, 5 and 4.

Now we are only left with optimizing the objective over all the sl,i. Crucially, the objective function
is separable and symmetric in the i index. Therefore we can optimize for each index separately.
Importantly, if there is only a single solution to this problem, then the solution must be the same for
both indices i, which will yield orthogonality of the σ(Hl) matrices. The ultimate goal is to show
that this is indeed the case modulo some special circumstances. The optimal value of this reduced
optimization problem is presented in the following, final lemma with abstract notation of the free
variables.

Lemma 11. The optimization problem

min
xl;2≤l≤L

λWL

2(xL + 2λWL
)
+

L−1∑
l=2

(
λWl

2

xl+1

xl

)
+
√
λW1

λH1

√
x2 (8)

is optimized at an entry-wise positive, unique solution if

λH1

L∏
l=1

λWl
<

(L− 1)L−1

2L+1L2L
, (9)

and at (x2, . . . , xL) = (0, . . . , 0) otherwise. When (9) holds with equality, both solutions are optimal.
Here, 0/0 is defined to be 0.

Proof. Here we will need to distinguish the cases L = 2 and L > 2. We start with the case L = 2.
Let us reparametrize the problem so that we will work with y =

√
x2. We get the following expression

to optimize the y over:
λW2

2(y2 + 2λW2
)
+
√
λW1λH1y.

This function is simple enough so that we understand its shape. It has precisely one inflection
point, below which it is concave, later it is convex. The derivative at 0 is strictly positive. Judging
from this, the function either has 0 as a single global optimum, or it has two global optima, one
at 0 and one at a strictly positive local minimum of the strictly convex part of the function, or the
global minimum is achieved uniquely at the strictly convex part of the function. To find out, we
only need to solve f(y) = f(0) for y, where f stands for the optimized function and determine the
number of solutions. The quadratic equation this is equivalent to after excluding the point y = 0
as a solution is 4y2

√
λW1

λH1
− y + 8λW2

√
λW1

λH1
= 0. This has a unique solution if and only

if λW2
λW1

λH1
= 1/256, which is precisely the threshold from the statement of the lemma. The

cases outside of this threshold are easily mapped to the system having the global solution 0 or some
positive point.

Let us now consider the case L > 2. First note that, once for any l0 the optimal x∗
l0
= 0, then at this

particular solution all the x’s must be 0. If l0 = L, then this claim is apparent backward-inductively
optimizing always over x with one index lower. If 2 ≤ l0 < L, then the claim is trivial backward-
inductively for all l ≤ l0, while for all l > l0 this solution is forced by feasibility issues. From now on
we will thus work with an implicit strict positiveness assumption. Taking derivatives of this objective
w.r.t. xl for different l and putting them equal 0 we arrive at three types of equations depending on l:√

λWL

λWL−1

√
xL−1 = xL + 2λWL

,

x2
l =

λWl

λWl−1

xl+1xl−1, for 3 ≤ l ≤ L− 1,

x
3
2
2 =

λW2√
λW1

λH1

x3. (15)

Here we can notice two things. First, we have L − 1 equations for L − 1 variables, so we should
expect a single solution in most of the cases. Second, the equations are rather simple and recursive.
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Having either a value of x2 or xL, all other values are uniquely determined. Let us denote q := xL

xL−1
.

Based on this, we can arrive at the following formula:

xL−k =

∏k−1
j=1 λWL−j−1

λk−1
WL−1

q−kxL, (16)

for all 1 ≤ k ≤ L− 2. An empty product is defined as 1. To derive this, for L = 3 the statement is
only about x2 and is trivial. For L > 3, the k = 1 case is trivial, then one can proceed by induction
using the recurrent formula x2

l =
λWl

λWl−1
xl+1xl−1. From formula (16), one can derive another useful

equation:
xk+1

xk
=

λWL−1

λWk

q, for 2 ≤ k ≤ L− 1.

Combining this with (15), we also get x2 =
λ2
WL−1

λW1
λH1

q2. Combining now this equation with for-
mula (16) for x2 from before one gets:

λ2
WL−1

λW1
λH1

q2 =

∏L−3
j=1 λWL−j−1

λL−3
WL−1

q2−LxL ⇐⇒ xL =
λL−1
WL−1

λH1

∏L−2
j=1 λWj

qL.

Notice that we managed to express all the terms present in the main objective as simple functions of
q and regularization parameters. Plugging all of these expressions back in the objective, we get:

λWL

2

(
λL−1
WL−1

λH1

∏L−2
j=1 λWj

qL + 2λWL

) +
LλWL−1

2
q. (17)

Since we only care about relative values of this expression, the optimization will be equivalent after
multiplying it by 2/λWL−1

so we get:

1
λL
WL−1

λH1
λWL

∏L−2
j=1 λWj

qL + 2λWL−1

+ Lq. (18)

Differentiating this function twice we can see that the second derivative is negative from 0 up to a
single threshold at which it is 0, then it is positive. Therefore, based on the value of the first derivative
at this threshold, and taking into account that the first derivative at 0 is strictly positive, we can easily
see that the function has either a single global minimum at 0 or it has two global minima at 0 and at
some positive q or it has a single global optimum at some positive q. To find out which of the cases
we are at, we can simply solve for

1
λL
WL−1

λH1
λWL

∏L−2
j=1 λWj

qL + 2λWL−1

+ Lq =
1

2λWL−1

.

After excluding the trivial solution q = 0, this is equivalent to:

2λWL−1
LqL − qL−1 +

4LλH1
λWL

∏L−2
j=1 λWj

λL−2
WL−1

= 0.

The case at which we stand w.r.t. the global solutions of the above objective function is equivalent to
the number of solutions of this equation. Since the LHS of this equation is a very simple function, it
is apparent that the number of solutions to this equation is equivalent to the sign of the LHS evaluated
at the single zero-derivative positive q. The derivative is 2λWL−1

L2qL−1 − (L − 1)qL−2 which
after solving for q > 0 yields q = L−1

2λWL−1
L2 . Plugging this back into the LHS above, we get the

expression

21−LL1−2Lλ1−L
WL−1

(L− 1)L − (L− 1)L−121−Lλ1−L
WL−1

L2−2L +
4LλH1

λWL

∏L−2
j=1 λWj

λL−2
WL−1

.
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Thresholding this for 0 and simplifying, we get the final

λH1

L∏
j=1

λWj
=

(L− 1)L−1

2L+1L2L
.

If the LHS is smaller than this threshold, the function in (18) has a single non-zero global optimum.
If the LHS is at the threshold, the optimization problem has both 0 and some single non-zero point
for a global solution. If the LHS is above the threshold, the optimization problem has only 0 as a
single solution.

With all this, Theorem 3 follows very easily. We only need to conclude that if the optimization
problem in Lemma 11 has a single non-zero solution, then both the optimal s∗l,1 and s∗l,2 are forced to
be the same for each l. From this, we obtain the orthogonality of all the σ(H∗

l ) for l ≥ 2. However,
from Lemma 6 we know that even the optimal H∗

l for l ≥ 3 must be orthogonal, since it is non-
negative and equal to σ(H∗

l ). From the same lemma, we conclude the statement about W ∗
l for l ≥ 2.

The optimal W ∗
1 , H

∗
1 follow easily from Lemma 8.

By now, we only considered the case n = 1. Now, we proceed to the general n case, where we
need to also prove DNC1. We will proceed by contradiction. Assume there exist H̃∗

1 ,W
∗
1 , . . . ,W

∗
L

which optimize L-DUFM, but H̃∗
1 is not DNC1-collapsed. Now, since the objective function in 10 is

separable in the columns of H1, we know

1
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2
,

where h
(1)
c,i , h

(1)
c,j are columns of H̃∗

1 , for all c, i, j applicable and ec is the c-th standard basis vector.

Otherwise, we could have just exchanged all sub-optimal h(1)
c,i with the optimal one and achieve better

objective value. However, if the last equality holds, then we can construct an alternative H̄∗
1 where

for each class c, we pick any h
(1)
c,i and place it instead of all other h(1)

c,j within the class c. In this way,
the H̄∗

1 will be DNC1-collapsed, while still an optimal solution. However, for H̄∗
1 , we now know

that if H∗
1 is constructed by taking just a single sample from both classes (thus forcing n = 1), this

must be an optimal solution of the n = 1 L-DUFM with nλH1 as the regularization term for H1 and
same feature vector dimensions and other regularization terms. This is because if there was a better
solution for the corresponding problem, then we could construct a counterexample to optimality in
the original L-DUFM problem by just simply taking this alternative, better solution and using the
feature vectors of this solution for each sample of each individual class.

Therefore, since H∗
1 must be optimal in the new n = 1 problem (with a slight abuse of notation,

we re-label the nλH1 back to λH1), we know that σ(H∗
2 ) is collapsed in the way described by the

theorem statement for n = 1. By non-negativity of σ(H∗
2 ), this means that σ(H∗

2 ) has two columns,
let’s call them x, y for which: x, y ≥ 0;xT y = 0, ∥x∥ = ∥y∥ (by the notation x ≥ 0 we mean
entry-wise inequality). This also implies that there is no such i that xi, yi > 0. Moreover, let us
assume σ(H∗

2 ) ̸= 0. We can do that, as otherwise simple arguments would lead us into the degenerate
solution where all W ∗

l = 0, for which obviously all the columns in the originally optimal H̃∗
1 would

need to be 0 implying simple DNC1 and reducing easily to the case of too big regularization explicitly
stated in Theorem 3. We can now omit this case and assume non-triviality of the solution. We will
first show that for a given set of optimal weight matrices (W ∗

1 ,W
∗
2 , . . . ,W

∗
L), the matrix σ(H∗

2 ) is
uniquely determined regardless of what H∗

1 is. First, by the uniqueness of the solutions in Lemma 11
and by the fact that s2i depends monotonically on ∥x∥, it follows that for any candidate direction
z, ∥z∥ = 1, there is a unique multiplier α > 0 for which αz can be a column of σ(H∗

2 ), i.e. there
is a uniquely determined norm under which any candidate direction z must enter σ(H∗

2 ). Now,
however, by DNC3 for l = 2 we know that rows of W2 are either zero or aligned with the columns
of σ(H∗

2 ). Moreover, since H∗
3 (which in case L = 2 shall be considered the output of the network)

is orthogonal and thus rank 2, the weight matrix W ∗
2 must contain both the columns of σ(H∗

2 ) as
its rows in direction. However, it cannot contain more than 2 different directions, otherwise for any
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fixed optimal σ(H∗
2 ), there would be an extra direction which would contradict DNC3. Thus, W ∗

2
contains exactly two linearly independent (orthogonal) directions. But then, in turn, only these two
directions can be columns of σ(H∗

2 ). So σ(H∗
2 ) is unique, possibly up to a switching of its columns

x, y. However, only one permutation of these columns is optimal, because we know that the output of
the matrix, HL+1 is orthogonal and only one of its permutations is better aligned with I2. Therefore
σ(H∗

2 ) is fully unique.

Invoking Lemma 9, we know that the whole range of matrices A2 are such that σ(A2) = σ(H∗
2 ),

while ∥A2∥∗ = ∥H∗
2∥∗ . Namely, by Lemma 9, all the matrices A2 which satisfy that condition

are represented by having columns of the form x − ty, y − tx for t ∈ [0, 1]. This can be derived
as follows. According to the lemma and the description of σ(H∗

2 ), this matrix is a good candidate
for the non-negative part of the optimal solution of the corresponding optimization problem, and
so the optimal solution (in the case of L = 2 a solution for which the nuclear norms of it and its
non-negative part are equal) whose non-negative part equals σ(H∗

2 ) exists. The negative values,
according to Lemma 9, must follow a strict, yet still non-unique pattern. The negative values of
the (+, 0) rows of σ(H∗

2 ) must be arranged so that they are aligned with the positive values in the
corresponding rows, thus being multiple of x. The negative values of the (0,+) rows must be, on
the other hand, aligned with y. The coefficients of homothety between x and the negative part in
the (+, 0) rows and between y and the negative part of the (0,+) rows must be equal due to the
condition on equal l2 norms of the negative parts corresponding to (+, 0), (0,+) rows and the fact
that ∥x∥ = ∥y∥ . Finally, the coefficients of homothety must be non-positive (yielding non-negative t)
to retain the negativeness and no smaller than −1, due to the final condition of Lemma 9, stating that
the product of any two negative values of counterfactually signed rows must be at most as big as the
product of the corresponding positive entries and due to the already established alignment of positive
and negative parts. In this way, the only matrices A2 which satisfy these conditions are represented
by having columns of the form x− ty, y − tx for t ∈ [0, 1], as stated above (note that −ty is aligned
with x on (+, 0) rows of σ(H∗

2 ) and similarly for −tx).

Let us denote by At
2 a matrix of that form for a particular t. Now, the SVD of At

2 is as follows: U t

is composed of (x − y)/(
√
2 ∥x∥) and (x + y)/(

√
2 ∥x∥), Σt is a diagonal matrix with diagonal

entries equal to ∥x∥ (1 + t) and ∥x∥ (1− t), and V t is composed of the vectors (1/
√
2,−1/

√
2)T

and (1/
√
2, 1/

√
2)T . For t ̸= 0, this is the unique SVD up to ± multiplications. For t = 0, A0

2 is
orthogonal and the SVD is non-unique. However, as we will see, this will not be relevant in the
following argument. Invoking Lemma 8 we see that, for each t, the set of possible W t

1 which can be
the optimal solution is St = {cλU t(Σt)1/2RT } for all possible orthogonal R of suitable dimensions.
From this representation, we see that the non-uniqueness of SVD is “wrapped” in the freedom of RT .
If t = 0, Σ0 is diagonal and commutative and U0RT obviously cover all possible representations
of U in the SVD of A0

2. If t > 0, we can easily cover the freedom in signs by R too. Thus, we
can assume a fixed U and V for all t ∈ [0, 1]. The question is, whether for 0 ≤ t1 < t2 ≤ 1,
St1 ∩ St2 = ∅. To find out, consider some Rt1 and Rt2 orthogonal. We want to know whether it is
possible that cλU t1(Σt1)1/2(Rt1)T = cλU

t2(Σt2)1/2(Rt2)T . First, this obviously does not hold if
t2 = 1, because of the rank inequality. Assume t2 < 1 and do the computation:

cλU
t1(Σt1)1/2(Rt1)T = cλU

t2(Σt2)1/2(Rt2)T ⇐⇒
U(Σt1)1/2(Rt1)T = U(Σt2)1/2(Rt2)T ⇐⇒
(Σt1)1/2(Rt1)T = (Σt2)1/2(Rt2)T ⇐⇒

(Σt1)1/2(Σt2)−1/2 = (Rt2)T (Rt1),

where in the first equivalence we used the established knowledge that we can use the unique repre-
sentative U for all t. However, the diagonal elements of (Σt1)1/2(Σt2)−1/2 are

√
(1 + t1)/(1 + t2)

and
√
(1− t1)/(1− t2). The first one is strictly greater than 1. On the other hand, all the entries

of (Rt2)T (Rt1) are inner products between columns of orthogonal matrices and thus at most 1 in
absolute value. This proves St1 ∩ St2 = ∅ for 0 ≤ t1 < t2 ≤ 1.

Thus, there is just a single t∗ for which W ∗
1 is optimal and, moreover, there is a single A∗

2 = At∗

2
that can be the output of the first layer. Then, if we analyze the two systems of linear equations
A∗

2 = W ∗
1X , where X is the d× 2 matrix variable (each system for each column of X), we know

that there is a unique min-l2 norm solution per system. The min-l2 norm solution must be the only
optimal solution, because H1 is regularized using the Frobenius norm. Thus, there is a single H1
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which can be the optimal solution. However, this is a contradiction with the assumption that we had a
freedom while constructing H̄∗

1 from H̃∗
1 – a possibility of choosing different columns from some

classes as the representative of that class. Therefore, the H̃∗
1 must have had a single feature vector

per class in the first place, which contradicts the assumption that it is not DNC1 collapsed.

Now that we have the DNC1 collapse, we can obtain the DNC2-3 collapse easily by just again going
from the full H̃∗ to the reduced n = 1 version of it. Moreover, we know what are the forms of W ∗

1
and H∗

1 – orthogonal transformations of the SVD of H∗
2 . However, it must be said that these optimal

matrices do not need to be orthogonal themselves, due to the (Σt)1/2 multiplication, which makes the
matrix non-orthogonal (consider for instance just taking the identity matrix extended to rectangularity
for R). This concludes the proof of Theorem 3.

B Extension to multiple classes

Here, we comment shortly on why it is challenging to formulate an equivalent of Theorem 3 for
K > 2. First of all, it is already unclear how to carry out the proof of Lemma 5 for K > 2 and even
whether it holds. However, the bigger issue lies in Lemma 9. Note that ∥H2∥∗ ≥ ∥σ(H2)∥∗ only
holds for matrices with two rows or columns. A simple counterexample with 3× 3 matrix goes as
follows:

A =

(−1 0 1
0 1 1
1 1 0

)
,

for which ∥A∥∗ = 3.464 and ∥σ(A)∥∗ = 3.494. However, this does not mean that Theorem 3
does not hold for K > 2. For instance, at orthogonal matrices, which are collapsed, one can show
that this equation holds by computing the sub-gradient of the nuclear norm and using convexity.
It is also hard to come up with counterexamples to the inequality for matrices which are close to
orthogonal. Therefore, it is our belief that the cost of losing orthogonality in other loss terms makes
the compensation of achieving slightly lower nuclear norm insufficient. However, to make this
argument formal, one needs a sophisticated control over this quantity together with all the other
results.

C Further numerical experiments on DUFM and ablations

In this section, we further investigate the effect of significant parameters on the training dynamics of
DUFM. We focus on the effect of depth, regularization strength and width on the outcome of DUFM
optimization. All the plots (except the one in Appendix C.5) are averaged over 10 runs with one
standard deviation to both sides displayed as a confidence band. First, however, we supplement the
numerical results from Section 4.2 with the promised plots of the losses.

C.1 Extra material to the numerical results in Section 4.2

In Figure 3, we plot the loss functions and theoretical optimum, together with the disentangled
loss functions computed separately on the fit term and the regularization terms for H1, Wl, with
1 ≤ l ≤ L. As already discussed in Section 4.2, the DUFM finds the global optimum perfectly and
exhibits superb DNC.

C.2 Effect of depth on DUFM training

As already seen by showing 3- and 6-layered DUFM, the depth does not play a significant role on
the training of DUFM. However, an implicit bias of GD can be observed for very deep DUFMs. To
demonstrate this, we plot the 10-DUFM training results in Figure 4.

Though not well visible on the plots, the DNC2 is sometimes achieved also on H1, H2, which in the
shallower DUFMs was an exception. This shows that with increasing depth, GD is more and more
implicitly biased towards finding DNC2 representations for these feature matrices too.
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Figure 3: Losses and partial losses for 3-DUFM (left) and 6-DUFM (right) as described in Section 4.2.
The total training loss is compared to the numerically computed optimum (based on (17)). The
unlabeled loss curves correspond to all the regularization losses.

Figure 4: Losses and DNC metric progressions as a function of training time. The unlabeled loss
curves correspond to all the regularization losses. Here, the 10-DUFM is trained. The variance in
some of the DNC metrics is due to the non-zero chance of qualitatively different behaviors for the
first and second layer.
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C.3 Effect of width on DUFM training

Unlike depth, width has a significant effect on the DUFM training, especially at small widths. The
reason is that the model parameters often get stuck in sub-optimal configurations due to the difficult
optimization landscape. To compare, we ran 4-DUFM training with the same hyperparameters except
the width. We repeated the experiments for widths of 2, 5, 10, 20, 64, 1000. We plot all the results in
Figure 5.

The results suggest that the risk of DUFM not reaching the global optimum and thus DNC drastically
decreases with the width. Already for width 20, the DUFM did not fail to reach the global optimum
once in ten runs. On the other hand, for width of only 2, the DUFM did not reach the global optimum
in any run. Interestingly, the smaller widths yielded less expected behaviour. For instance for width
10, we encountered two runs both reaching a perfect optimum and DNC, of which one exhibited
DNC2 also for H1, H2, while the other did not. Noticeably, for width 1000 we see higher variance in
some DNC metrics. This is because some of these specific metrics converged to very low values for
some runs and for some other stayed comparably higher. This effect appears to be an implicit bias of
SGD.

C.4 The effect of weight decay on DUFM training

As expected for the MSE loss setup, the weight decay is the main driving force for the occur-
rence of DNC. Therefore, predictably, the weight decay has a direct influence on the speed of
convergence towards both DNC and global optimality. This is clearly demonstrated in Figure 6,
where we plot the training dynamics of 4-DUFM with width 64 and weight decays of sizes
0.0001, 0.0005, 0.0009, 0.0013, 0.0017. By increasing the value of the weight decay, the loss as
well as DNC metrics converge much faster. However, there is no qualitative change in the result of
the training for different values of weight decay.

C.5 Interconnection of DNC and optimality of DUFM

As an interesting bonus, we show a single, cherry-picked run for the 4-DUFM with width 10 (although
such runs occur quite often at this width). This training first got stuck at an almost-optimal solution,
then after a long stay in the saddle point, it jumped to the optimum. The DNC metrics showed a
clear decrease at exactly that point of the training, as shown in Figure 7. This run clearly shows how
interconnected the deep neural collapse is with optimality.

D Pre-trained DUFM experiments on CIFAR-10

Here, we specify the training conditions from Section 4.2 in more detail, and add results of further
runs to provide more robust evidence. We use three different architectures - ResNet20, DenseNet121
and VGG13. We only impose one change to these - the standard backbone is extended with one
extra fully-connected layer with output dimension 64 to enable free features and reasonable size
of the DUFM. The weights are initialized with He initialization [9] with scaling 1. The DUFMs
in question are 3- and 5-layered of constant width 64. We train with weight decay 0.00001 and
with learning rate 0.001 on 1000000 full GD steps. The backbone was then trained using stochastic
gradient descent with batch size 128, learning rate 0.00001 and with 10000 epochs on classes 0 and 1
of CIFAR-10. While in Figure 1 we plot results of a single training of the 3-DUFM model followed
by 7 independend trainings of independent initializations of the ResNet20, here we add two more
independent trainings of the DUFM averaged over further 7 independent runs of ResNet20 training.
The results are qualitatively the same as in the main body, which suggests that the ability of ResNet20
to make unconstrained features suitable for the emergence of DNC is robust w.r.t. the well-trained
DUFM head. The results of these two runs are depicted in Figure 8.

As a side note, we remark that unlike end-to-end training or DUFM training, the ResNet20 training
with pre-trained DUFM head is more prone to undesired behaviours. First of all, we need a rather
small learning rate to prevent divergence and even with that, a minority of runs never jumps from
50% training accuracy. Therefore, in our results, we only report those runs, which converged to near
100% training accuracy.
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Figure 5: Losses and DNC metric progressions as a function of training time. The unlabeled loss
curves correspond to all the regularization losses. Each row represents a different width, in increasing
order ranging through {2, 5, 10, 20, 64, 1000}. As the width increases, the training gets more stable.
For width 2, no training converges to optimum. For width 5, the training only rarely converges to
optimum. For width 10, the training usually converges to optimum, but often after encountering
saddle points. From width 20, we see a stable training behavior with almost no difference between
different high-width trainings.
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Figure 6: Losses and DNC metric progressions as a function of training time. The unlabeled loss
curves correspond to all the regularization losses. Each row represents a different value of weight
decay in increasing order through a set {0.0001, 0.0005, 0.0009, 0.0013, 0.0017}. By increasing the
weight decay, the training dynamics get faster.
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Figure 7: Losses and DNC metric progressions as a function of training time. The unlabeled loss
curves correspond to all the regularization losses. The plot shows a single run of the training of 4-
DUFM with width 10. After staying in a close-to-optimal saddle point, the model achieved optimum,
the DNC metrics rapidly decreasing.

Figure 8: Loss functions and deep neural collapse metrics as a function of training progression. The
rows correspond to different pre-training runs of the 3-DUFM model. On the left, the training loss
function and its decomposition are displayed. Next, the DNC1-3 metrics are displayed. The ResNet20
recovers the DNC metrics for DUFM, in accordance with our theory. This validates unconstrained
features as a modeling principle for neural collapse.
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Figure 9: Loss functions and deep neural collapse metrics as a function of training progression.
The first row corresponds to VGG13 experiments, the second row corresponds to DenseNet121
experiments with the pre-trained 3-DUFM model. On the left, the training loss function and its
decomposition are displayed. Next, the DNC1-3 metrics are displayed. Both architectures recover
the DNC metrics for DUFM, in accordance with our theory. This validates unconstrained features as
a modeling principle for neural collapse.

Figure 10: Loss functions and deep neural collapse metrics as a function of training progression.
The head considered is a pre-trained 5-DUFM model. On the left, the training loss function and its
decomposition are displayed. Next, the DNC1-3 metrics are displayed. The ResNet20 recovers the
DNC metrics for DUFM, in accordance with our theory. This validates unconstrained features as a
modeling principle for neural collapse.

We further present the results of the same experiment but with 5-DUFM attached to ResNet20 as
well as 3-DUFM attached to DenseNet121 and VGG13, to even further validate the robustness of
our results. These results are presented in Figures 9 and 10, and they are in full accordance with the
ResNet20 experiments.
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