
A Proofs469

A.1 Proof of Theorem 4.1470
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f V 1

tot − T ∗
f V 2

tot

∥∥
∞ ≤ γ

∥∥V 1
tot − V 2

tot

∥∥
∞

474

A.2 Proof of Proposition 4.2475

Proof. For a behavior-regularized Dec-POMDP with f(πtot, µtot) = log(πtot/µtot), the learning476

objective can be written as maxπtot E [
∑∞

t=0 γ
t (r (ot,at)− αlog (πtot (at|ot) /µtot (at|ot)))]. Its477

Lagrangian function can obtain when the optimal global policy is written as follows:478
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where dπtot
is the stationary joint observation distribution of the global policy πtot. u and β are479

Lagrangian multipliers for the equality and inequality constraints.480

According to the Karush-Kuhn-Tucker (KKT) conditions where the derivative of the Lagrangian481

objective function with respect to the global policy is zero at the optimal solution, it follows that:482
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From Eq. (16), we can further solve the optimal global policy as:483
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The above formula can be further simplified. β is the Lagrangian multiplier, and meets com-484

plementary slackness β(a|o)πtot(a|o) = 0. Considering the joint observation o is fixed,485

exp
(
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)
is always larger than 0. Therefore, for any positive probability486

action, its corresponding Lagrangian multiplier β(a|s) is 0. Therefore, πtot(a|o) can be reformulated487

as:488
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Bringing Eq. (17) into
∑

a πtot(a|o) = 1, we have:489

Ea∼µtot

[
exp

(
Qtot(o,a)− u(o)

α
− 1

)]
= 1 (18)

The left side of Eq. (18) can be seen as a continuous and monotonic function of u, so it has only one490

solution denoted as u∗, and we denote the corresponding policy πtot as π∗
tot.491

Integrating Eq. (17) into the expression of optimal global state value, we can get:492
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To summarize, we obtain the optimality condition of the behavior regularized MDP with Reverse KL493

divergence as follows:494
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where u(o) is a normalization term and has a optimal value u∗ that makes the corresponding optimal495

policy π∗
tot satisfy

∑
a∈An π∗

tot(a|o) = 1.496

497

B Experiment Settings498

B.1 Multi-Agent MuJoCo499

Multi-agent Mujoco [7] is a benchmark framework developed for assessing and comparing the500

effectiveness of algorithms in continuous multi-agent robotic control. Within this framework, a501

robotic system is partitioned into independent agents, each tasked with controlling a specific set of502

joints. The agents collaborate harmoniously to accomplish shared objectives, such as acquiring the503

ability to walk through an environment, with the ultimate goal of maximizing the cumulative reward.504

Multi-agent MuJoCo environment consists of multiple different robot configurations, and it is often505

used for the study of novel MARL algorithms for decentralized coordination in isolation.506

To generate the dataset transitions, we captured the interactions between the environment and trained507

online MARL algorithms. Specifically, we use HAPPO [16] algorithm to collect data. The expert508

dataset is generated by employing the converged HAPPO algorithm. This involves training the509

algorithm until it reaches a state of convergence, where the agents have learned optimal policies.510

The medium dataset is generated by first training a policy online using HAPPO, early-stopping511

the training, and collecting samples from this partially-trained policy. The medium-replay dataset512

consists of recording all samples in the replay buffer observed during training until the policy reaches513

the medium level of performance. The medium-expert dataset by mixing equal amounts of expert514

demonstrations and suboptimal data. For all datasets, the hyperparameter env_args.agent_obsk515

(determines up to which connection distance agents will be able to form observations) is set to 1. The516

reward distribution of our datasets is listed in Table 2.517

B.2 The StarCraft Multi-Agent Challenge518

The StarCraft Multi-Agent Challenge (SMAC) benchmark is chosen as our testing environment. Due519

to its high control complexity, SMAC is a popular multi-agent cooperative control environment for520

evaluating advanced MARL methods. It consists of a collection of StarCraft II microscenarios in521
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Table 2: The multi-agent MuJoCo dataset

Scenario Quality Reward Distribution

2-Agent Ant

expert 2.06±0.35
medium 1.42±0.37

medium-expert 1.74±0.48
medium-replay 1.03±0.21

3-Agent Hopper

expert 3.64±0.79
medium 3.16±1.00

medium-expert 3.41±0.93
medium-replay 2.37±0.69

6-Agent HalfCheetah

expert 2.79±1.76
medium 1.43±1.36

medium-expert 2.11±1.71
medium-replay 0.66±1.09

which two groups of units engage in combat. Agents based on the MARL algorithm control the first522

group’s units, while a built-in heuristic game AI bot with different difficulties controls the second523

group’s units. Scenarios vary in terms of the initial location, number and type of units, and elevated524

or impassable terrain. The available actions for each agent include no operation, move[direction],525

attack [enemy id], and stop. The reward that each agent receives is the same. The hit-point damage526

dealt and received determines the agents’ share of the reward. SMAC consists of several StarCraft II527

multi-agent micromanagement maps. We consider 4 representative battle maps, including 2 hard map528

(5m_vs_6m, 2c_vs_64zg), and 2 super hard maps (6h_vs_8z, corridor), as our experiment tasks. The529

task type and other details of the maps are listed in the Table 3.530

Table 3: SMAC maps for experiments.

Map Name Ally Units Enemy Units Type
5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
2c_vs_64zg 2 Colossi 64 Zerglings micro-trick: positioning
6h_vs_8z 6 Hydralisks 8 Zealots micro-trick: focus fire
corridor 6 Zealots 24 Zerglings micro-trick: wall off

The offline SMAC dataset used in this study is provided by [22], which is the largest open offline531

dataset on SMAC. Different from single-agent offline datasets, it considers the property of Dec-532

POMDP, which owns local observations and available actions for each agent. The dataset is collected533

from the trained MAPPO agent, and includes three quality levels: good, medium, and poor. For each534

original large dataset, we randomly sample 1000 episodes as our dataset.535

C Implementation Details536

C.1 Details of OMIGA537

The local Q-value, state value networks and policy networks of OMIGA are represented by 3-layers538

ReLU activated MLPs with 256 units for each hidden layer. For the weight network, we use 2-layer539

ReLU activated MLPs with 64 units for each hidden layer. All the networks are optimized by Adam540

optimizer.541

C.2 Details of baselines542

We compare OMIGA against four recent offline MARL algorithms: ICQ [40], OMAR [25], BCQ-MA543

and CQL-MA. For the ICQ and OMAR, we implement them based on the algorithm description544

in their papers. BCQ-MA is the multi-agent version of BCQ, and CQL-MA is the multi-agent545

version of CQL. BCQ-MA and CQL-MA use linear weighted value decomposition structure as546

Qtot =
∑n

i=1 wi(o)Qi (oi, ai) + b(o), wi ≥ 0 for the multi-agent setting. The policy constrain of547

BCQ-MA and the value regularization of CQL-MA are both imposed on the local Q-value.548
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In this paper, all experiments are implemented with pytorch and executed on NVIDIA V100 GPUs.549

C.3 Hyperparameters550

For multi-agent MuJoCo, the hyperparameters of OMIGA and baselines are listed in Table 4.551

An important hyperparameter of OMIGA is the regularization hyperparameter α. The higher α552

encourages OMIGA staying near the behavioral distribution, and lower α makes OMIGA more553

optimistic. On most tasks, we use α = 10 to ensure good regularization effect. On the medium554

quality dataset of HalfCheetah task, we choose α = 1.555

Table 4: Hyperparameters of OMIGA and baselines for multi-agent MuJoCo

Hyperparameter Value
Shared parameters

Q-value network learning rate 5e-4
Policy network learning rate 5e-4
Optimizer Adam
Target update rate 0.005
Batch size 128
Discount factor 0.99
Hidden dimension 256
Weight network hidden dimension 64

OMIGA
State value network learning rate 5e-4
Regularization parameter α 1 or 10

Others
Lagrangian coefficient (ICQ) 10
Tradeoff factor α (OMAR, CQL-MA) 1

For SMAC, the hyperparameters of OMIGA and baselines are listed in Table 5. On most tasks, we556

use α = 10. On the poor dataset of 6h_vs_8z map, the quality of the dataset is relatively poor. It557

does not make much sense to make the policy close to the behavioral policy, so we choose α = 2 to558

make the algorithm more radical.559

On the most SMAC maps, the learning rate of all networks is set to 5e-4. The exception is the map560

2c_vs_64zg, on this map, the learning rate of all networks is set to 1e-4.561

Table 5: Hyperparameters of OMIGA and baselines for SMAC

Hyperparameter Value
Shared parameters

Q-value network learning rate 5e-4 or 1e-4
Policy network learning rate 5e-4 or 1e-4
Optimizer Adam
Target update rate 0.005
Batch size 128
Discount factor 0.99
Hidden dimension 256
Weight network hidden dimension 64

OMIGA
State value network learning rate 5e-4 or 1e-4
Regularization parameter α 2 or 10

Others
Lagrangian coefficient (ICQ) 10
Threshold (BCQ-MA) 0.3
Tradeoff factor α (OMAR, CQL-MA) 1

16



Table 6: Average scores and standard deviations over 5 random seeds on the mixed offline SMAC
datasets

Map Dataset BCQ-MA CQL-MA ICQ OMAR OMIGA(ours)
6h_vs_8z good-poor 11.41±0.44 9.56±0.25 11.00±0.36 9.17±0.19 11.88±0.27
6h_vs_8z good-medium 11.79±0.29 10.08±0.26 11.18±0.25 10.02±0.16 12.05±0.47
6h_vs_8z medium-poor 11.18±0.41 10.73±0.38 11.25±0.35 10.42±0.19 11.85±0.35
corridor good-poor 12.37±1.36 4.88±0.35 11.78±1.53 5.54±0.75 13.01±0.89
corridor good-medium 13.32±0.71 5.77±1.30 12.98±0.62 6.63±0.74 14.02±1.04
corridor medium-poor 8.11±0.35 6.18±0.59 8.27±0.48 6.25 ±0.48 9.70±1.40

D Additional Results562

D.1 Results on mixed datasets563

We want to investigate whether OMIGA has superior performance when the datasets are mixed.564

Unlike BCQ-MA and OMAR, OMIGA doesn’t need to learn a behavior policy. We choose two565

original datasets on the SMAC super hard maps 6h_vs_8z and corridor, and make mixed datasets by566

combining these SMAC datasets of different quality, including good-poor, good-medium, medium-567

poor datasets. Each mixed dataset is blended by 50% of each of the two original datasets. On these568

mixed suboptimal datasets, the behavior policy is heterogeneous. Therefore, it is more difficult for569

algorithms such as BCQ-MA and OMAR to learn an accurate behavior policy, making implicit value570

learning with the regularization framework of OMIGA more appealing.571

Table 6 shows the results that OMIGA consistently outperforms other offline MARL baselines572

under all different mixed dataset experiments. Compared with the results on the original datasets,573

the performance of OMIGA has become more leading, indicating the benefits of implicit value574

regularization of OMIGA.575
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