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Objective

Training an expressive convolutional neural network with a known, tight upper-bound on its
Lipschitz constant by enforcing gradient norm preservation (GNP).

Motivation

Why Lipschitz-constrained Networks?

1. Provable adversarial robustness via large-margin training.

2. 1-Wasserstein distance estimation via Kantorovich and Rubinstein duality [8].

Why Gradient Norm Preservation (GNP)?

1-Lipschitz-constrained networks suffer from two common problems solved by GNP:

1. Loose upper-bound obtained by Lip(f1 ◦ f2) ≤ Lip(f1) Lip(f2).

2. Gradient attenuation during backpropagation since ‖∇xL‖2 ≤ Lip(f ) ‖∇yL‖2, where y = f (x).

Challenges of Enforcing GNP for Convolutional Networks

1. Optimization over the space of GNP convolutions does not have an established method.

2. Topology is unknown for GNP convolutions.

Background

GNP Functions: f is GNP if ||∇f (x)Tg||2 = ||g||2,∀g.

• GNP functions have a Lipschitz constant of 1; Composition of GNP functions are GNP.
• GNP linear functions are orthogonal; GNP convolutions are orthogonal convolutions.

Symmetric Projectors: P(n, k) = {P |P = PT = P2, rank(P) = k,P ∈ Rn×n}.
P(n) =

⋃
k P(n, k) has n + 1 connected components: {P(n, 0), · · · ,P(n, k), · · · ,P(n, n)}.

Orthogonal Convolutions Are Disconnected

Block Convolution Parameterization in 1-D [6]

W(H ,P1:K−1) = H�
[
P1 (I − P1)

]
� · · ·�

[
PK−1 (I − PK−1)

]
,

where Pi ∈ P(n),H ∈ O(n), [X�Y ]i =
∞∑

i ′=−∞

Xi ′Yi−i ′.

Theorem 1: 1-D orthogonal convolution space has 2(K −1)n+ 2 connected components.

Extension to 2-D: Analogous parameterization and disconnectedness results as 1-D [10].
Implication: Gradient-based optimization would be trapped in the initial connected component.

Overcoming Disconnectedness

Theorem 2: For any convolution C =W(H ,P1:K−1,Q1:K−1) with input and output channel
sizes of n (Pi,Qi ∈ P(n)), there exists a convolution C ′ = W(H ′,P ′1:K−1,Q

′
1:K−1) with input

and output channels sizes of 2n constructed from only n-rank projectors (P ′i ,Q
′
i ∈ P(2n, n))

such that C ′(x)1:n = C (x1:n). That is, the first n channels of the output is the same with
respect to the first n channels of the input under both convolutions.

Implication: Using this, one can double the number of channels of a BCOP constructed network
to represent all the connected components of the original network in a single connected component.

Block Convolution Orthogonal Parameterization (BCOP)

A BCOP orthogonal convolution of 2n channel size is

W(H ,P1:K−1,Q1:K−1),Pi,Qi ∈ P(2n, n)

We can use any unconstrained matrix R̃ ∈ R2n×n to parameterize T ∈ P(2n, n),

T = RRT ,R = ψ(R̃)

where ψ can be any differentiable orthogonalization procedure that results in a matrix of the
same size, R ∈ R2n×n, with orthonormal columns: RTR = I (e.g., Björck orthogonalization [2]).

Design Rationale: P(2n, n) is the largest connected component of P(2n) by dimensionality and
using P(2n, n) to construct BCOP layers represents all networks with channel size of n.

Building GNP Convolutional Networks

Network Components Problems under GNP Solutions

Residual connection Degenerates into identity Removed

Batch normalization Not GNP Removed

Zero-padding Degenerates into 1× 1 convolutions Cyclic padding instead

Strided convolution Orthogonality properties unknown Invertible downsampling [5]

Linear layer Not GNP in general Orthogonalize the matrix [1]

Nonlinear activation Not GNP in general GroupSort [1]

Figure: Invertible Downsampling [5] Figure: GroupSort [1]

Empirical Results: Provable Adversarial Robustness Under L2 Norm

Ablation Study (Provable Adversarial Robustness with L2 Metric)

Dataset OSSN [4] RKO [3] SVCM [7] BCOP

MNIST
(ε = 1.58)

Small
Clean 96.86 97.28 97.24 97.54

Robust 42.95 43.58 28.94 45.84

Large
Clean 98.31 98.44 97.93 98.69

Robust 53.77 55.18 38.00 56.37

CIFAR10
(ε = 36/255)

Small
Clean 62.18 61.77 62.39 64.53

Robust 48.03 47.46 47.59 50.01

Large
Clean 67.51 70.01 69.65 72.16

Robust 53.64 55.76 53.61 58.26

State-of-the-art Comparison (L2)

Dataset BCOP-Large FC-3 KW-Large [9] KW-Resnet [9]

MNIST
(ε = 1.58)

Clean 98.69 98.71 88.12 –
Robust 56.37 54.46 44.53 –

CIFAR10
(ε = 36/255)

Clean 72.16 62.60 59.76 61.20
Robust 58.26 49.97 50.60 51.96

Singular Value Distribution of a Conv Layer Jacobian Before and After Training

Empirical Results: 1-Wasserstein Distance Estimation

BCOP RKO OSSN

MaxMin 9.91 8.95 7.39
ReLU 8.28 7.82 7.06

Note: All the methods give a lower
bound on the Wasserstein distance
(higher is better).

References
[1] C. Anil, J. Lucas, and R. Grosse. Sorting out Lipschitz function approximation. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research, pages 291–301, Long Beach, California, USA, 09–15 Jun 2019. PMLR.
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