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Abstract

Real-world adversarial attacks on machine learning models often feature an asym-1

metric structure wherein adversaries only attempt to induce false negatives (e.g.,2

classify a spam email as not spam). We formalize the asymmetric robustness certi-3

fication problem and correspondingly present the feature-convex neural network4

architecture, which composes an input-convex neural network (ICNN) with a Lips-5

chitz continuous feature map in order to achieve asymmetric adversarial robustness.6

We consider the aforementioned binary setting with one “sensitive” class, and for7

this class we prove deterministic, closed-form, and easily-computable certified ro-8

bust radii for arbitrary ℓp-norms. We theoretically justify the use of these models by9

characterizing their decision region geometry, extending the universal approxima-10

tion theorem for ICNN regression to the classification setting, and proving a lower11

bound on the probability that such models perfectly fit even unstructured uniformly12

distributed data in sufficiently high dimensions. Experiments on Malimg malware13

classification and subsets of the MNIST, Fashion-MNIST, and CIFAR-10 datasets14

show that feature-convex classifiers attain substantial certified ℓ1, ℓ2, and ℓ∞-radii15

while being far more computationally efficient than competitive baselines.16

1 Introduction17

Although neural networks achieve state-of-the-art performance across a range of machine learning18

tasks, researchers have shown that they can be highly sensitive to adversarial inputs that are mali-19

ciously designed to fool the model [11, 61, 53]. For example, the works Eykholt et al. [22] and Liu20

et al. [43] show that small physical and digital alterations of vehicle traffic signs can cause image21

classifiers to fail. In safety-critical applications of neural networks, such as autonomous driving22

[12, 69] and medical diagnostics [1, 71], this sensitivity to adversarial inputs is clearly unacceptable.23

A line of heuristic defenses against adversarial inputs has been proposed, only to be defeated by24

stronger attack methods [14, 36, 7, 64, 47]. This has led researchers to develop certifiably robust25

methods that provide a provable guarantee of safe performance. The strength of such certificates can26

be highly dependent on network architecture; general off-the-shelf models tend to have large Lipschitz27

constants, leading to loose Lipschitz-based robustness guarantees [29, 23, 73]. Consequently, lines28

of work that impose certificate-amenable structures onto networks have been popularized, e.g.,29

specialized model layers [63, 77], randomized smoothing-based networks [41, 18, 76, 72, 3], and30

ReLU networks that are certified using convex optimization and mixed-integer programming [68, 67,31

55, 4, 46]. The first category only directly certifies against one specific choice of norm, producing32

poorly scaled radii for other norms in high dimensions. The latter two method families incur serious33

computational challenges: randomized smoothing typically requires the classification of thousands34

of randomly perturbed samples per input, while optimization-based solutions scale poorly to large35

networks.36
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Despite the moderate success of these certifiable classifiers, conventional assumptions in the literature37

are unnecessarily restrictive for many practical adversarial settings. Specifically, most works consider38

a multiclass setting where certificates are desired for inputs of any class. By contrast, many real-world39

adversarial attacks involve a binary setting with only one sensitive class that must be robust to40

adversarial perturbations. Consider the representative problem of spam classification; a malicious41

adversary crafting a spam email will only attempt to fool the classifier toward the “not-spam” class—42

never conversely [20]. Similar logic applies for a range of applications such as malware detection43

[28], malicious network traffic filtering [57], fake news and social media bot detection [19], hate44

speech removal [27], insurance claims filtering [24], and financial fraud detection [15].45

The important asymmetric nature of these classification problems has long been recognized in46

various subfields, and some domain-specific attempts at robustification have been proposed with47

this in mind. This commonly involves robustifying against adversaries appending features to the48

classifier input. In spam classification, such an attack is known as the “good word” attack [45]. In49

malware detection, numerous approaches have been proposed to provably counter such additive-only50

adversaries using special classifier structures such as non-negative networks [25] and monotonic51

classifiers [32]. We note these works strictly focus on additive adversaries and cannot handle general52

adversarial perturbations of the input that are capable of perturbing existing features. We propose53

adding this important asymmetric structure to the study of norm ball-certifiably robust classifiers.54

This narrowing of the problem to the asymmetric setting provides prospects for novel certifiable55

architectures, and we present feature-convex neural networks as one such possibility.56

1.1 Problem Statement and Contributions57

This section formalizes the asymmetric robustness certification problem for general norm-bounded58

adversaries. Specifically, we assume a binary classification setting wherein one class is “sensitive” and59

seek to certify that, if some input is classified into this sensitive class, then adversarial perturbations60

of sufficiently small magnitude cannot change the prediction.61

Formally, consider a binary classifier fτ : Rd → {1, 2}, where class 1 is the sensitive class for which62

we desire certificates. We take fτ to be a standard thresholded version of a soft classifier g : Rd → R,63

expressible as fτ (x) = Tτ (g(x)), where Tτ : R → {1, 2} is the thresholding function defined by64

Tτ (y) =

{
1 if y + τ > 0,

2 if y + τ ≤ 0,
(1)

with τ ∈ R being a user-specified parameter that shifts the classification threshold. A classifier fτ65

is considered certifiably robust at a class 1 input x ∈ Rd with a radius r(x) ∈ R+ if fτ (x + δ) =66

fτ (x) = 1 for all δ ∈ Rd with ∥δ∥ < r(x) for some norm ∥ · ∥. Thus, τ induces a tradeoff between67

the clean accuracy on class 2 and certification performance on class 1. As τ → ∞, fτ approaches a68

constant classifier which achieves infinite class 1 certified radii but has zero class 2 accuracy.69

For a particular choice of τ , the performance of fτ can be analyzed similarly to a typical certified70

classifier. Namely, it exhibits a class 2 clean accuracy α2(τ) ∈ [0, 1] as well as a class 1 certified71

accuracy surface Γ with values Γ(r, τ) ∈ [0, 1] that capture the fraction of the class 1 samples that72

can be certifiably classified by fτ at radius r ∈ R+. The class 1 clean accuracy α1(τ) = Γ(0, τ) is73

inferable from Γ as the certified accuracy at r = 0.74

The full asymmetric certification performance of the family of classifiers fτ can be captured by75

plotting the surface Γ(r, τ), as will be shown in Figure 1a. Instead of plotting against τ directly, we76

plot against the more informative difference in clean accuracies α1(τ)− α2(τ). This surface can be77

viewed as an asymmetric robustness analogue to the classic receiver operating characteristic curve.78

Note that while computing the asymmetric robustness surface is possible for our feature-convex archi-79

tecture (to be defined shortly), it is computationally prohibitive for conventional certification methods.80

We therefore standardize our comparisons throughout this work to the certified accuracy cross section81

Γ(r, τ∗) for a τ∗ such that clean accuracies are balanced in the sense that α2(τ
∗) = α1(τ

∗), noting82

that α1 monotonically increases in τ and α2 mononically decreases in τ . We discuss finding such a83

τ∗ in Appendix E.4. This choice allows for a direct comparison of the resulting certified accuracy84

curves without considering the non-sensitive class clean accuracy.85
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With the above formalization in place, the goal at hand is two-fold: 1) develop a classification86

architecture tailored for the asymmetric setting with high robustness, as characterized by the surface87

Γ, and 2) provide efficient methods for computing the certified robust radii r(x) used to generate Γ.88

Contributions. We tackle the above two goals by proposing feature-convex neural networks and89

achieve the following contributions:90

1. We exploit the feature-convex structure of the proposed classifier to provide asymmetrically91

tailored closed-form class 1 certified robust radii for arbitrary ℓp-norms, solving the second92

goal above and yielding efficient computation of Γ.93

2. We characterize the decision region geometry of feature-convex classifiers, extend the uni-94

versal approximation theorem for input-convex ReLU neural networks to the classification95

setting, and show that, in high dimensions, feature-convex classifiers can perfectly fit even96

unstructured, uniformly distributed datasets, which theoretically emphasizes our method’s97

capacity for robustness without sacrificing clean accuracy.98

3. We evaluate against several baselines on MNIST 3-8 [37], Malimg malware classification99

[51], Fashion-MNIST shirts [70], and CIFAR-10 cats-dogs [35], and show that our classifiers100

yield certified robust radii competitive with the state-of-the-art, empirically addressing the101

first goal listed above.102

All proofs and appendices can be found in the Supplemental Material.103

1.2 Related Works104

Certified adversarial robustness. Three of the most popular approaches for generating robustness105

certificates are Lipschitz-based bounds, randomized smoothing, and optimization-based methods.106

Successfully bounding the Lipschitz constant of a neural network can give rise to an efficient certified107

radius of robustness, e.g., via the methods proposed in Hein and Andriushchenko [29]. However, in108

practice such Lipschitz constants are too large to yield meaningful certificates, or it is computationally109

burdensome to compute or bound the Lipschitz constants in the first place [65, 23, 73]. To overcome110

these computational limitations, certain methods impose special structures on their model layers to111

provide immediate Lipschitz guarantees. Specifically, Trockman and Kolter [63] uses the Cayley112

transform to derive convolutional layers with immediate ℓ2-Lipschitz constants, and Zhang et al.113

[77] introduces a ℓ∞-distance neuron that provides similar Lipschitz guarantees with respect to the114

ℓ∞-norm. We compare with both these approaches in our experiments.115

Randomized smoothing, popularized by Lecuyer et al. [38], Li et al. [41], Cohen et al. [18], uses the116

expected prediction of a model when subjected to Gaussian input noise. These works derive ℓ2-norm117

balls around inputs on which the smoothed classifier remains constant, but suffer from nondeterminism118

and high computational burden. Follow-up works generalize randomized smoothing to certify input119

regions defined by different metrics, e.g., Wasserstein, ℓ1-, and ℓ∞-norms [39, 62, 72]. Other120

works focus on enlarging the certified regions by optimizing the smoothing distribution [76, 21, 5],121

incorporating adversarial training into the base classifier [58, 78], and employing dimensionality122

reduction at the input [54].123

Optimization-based certificates typically seek to derive a tractable over-approximation of the set124

of possible outputs when the input is subject to adversarial perturbations, and show that this over-125

approximation is safe. Various over-approximations have been proposed, e.g., based on linear126

programming and bounding [68, 67], semidefinite programming [55], and branch-and-bound [4,127

46, 66]. The α, β-CROWN method [66] uses an efficient bound propagation to linearly bound the128

neural network output in conjunction with a per-neuron branching heuristic to achieve state-of-the-art129

certified radii, winning both the 2021 and the 2022 VNN certification competitions [8, 49]. In contrast130

to optimization-based methods, our approach in this paper is to directly exploit the convex structure131

of input-convex neural networks to derive closed-form robustness certificates for our proposed132

architecture, altogether avoiding the common efficiency-tightness tradeoffs of prior methods.133

Input-convex neural networks. Input-convex neural networks, popularized by Amos et al. [2], are a134

class of parameterized models whose input-output mapping is convex (in at least a subset of the input135

variables). In Amos et al. [2], the authors develop tractable methods to learn an input-convex neural136
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network f : Rd × Rn → R and show that utilizing it for the convex optimization-based inference137

x 7→ argminy∈Rn f(x, y) yields state-of-the-art results in a variety of domains. Subsequent works138

propose novel applications of input-convex neural networks in areas such as optimal control and139

reinforcement learning [16, 75], optimal transport [48], and optimal power flow [17, 79]. Other140

works have generalized input-convex networks to input-invex networks [52] and global optimization141

networks [80] so as to maintain the benign optimization properties of input-convexity. The authors of142

Siahkamari et al. [59] present algorithms for efficiently learning convex functions, while Chen et al.143

[16], Kim and Kim [34] derive universal approximation theorems for input-convex neural networks144

in the convex regression setting. The work Sivaprasad et al. [60] shows that input-convex neural145

networks do not suffer from overfitting, and generalize better than multilayer perceptrons on common146

benchmark datasets. In this work, we incorporate input-convex neural networks as a part of our147

feature-convex architecture and leverage convexity properties to derive novel robustness guarantees.148

1.3 Notations149

The sets of natural numbers, real numbers, and nonnegative real numbers are denoted by N, R,150

and R+ respectively. The d × d identity matrix is written as Id ∈ Rd×d, and the identity map151

on Rd is denoted by Id : x 7→ x. For A ∈ Rn×d, we define |A| ∈ Rn×d by |A|ij = |Aij | for152

all i, j, and we write A ≥ 0 if and only if Aij ≥ 0 for all i, j. The ℓp-norm on Rd is given by153

∥ · ∥p : x 7→ (|x1|p + · · ·+ |xd|p)1/p for p ∈ [1,∞) and by ∥ · ∥p : x 7→ max{|x1|, . . . , |xd|} for154

p = ∞. The dual norm of ∥ · ∥p is denoted by ∥ · ∥p,∗. The convex hull of a set X ⊆ Rd is155

denoted by conv(X). The subdifferential of a convex function g : Rd → R at x ∈ Rd is denoted156

by ∂g(x). If ϵ : Ω → Rd is a random variable on a probability space (Ω,B,P) and P is a predicate157

defined on Rd, then we write P(P (ϵ)) to mean P({ω ∈ Ω : P (ϵ(ω))}). Lebesgue measure on158

Rd is denoted by m. We define ReLU: R → R as ReLU(x) = max{0, x}, and if x ∈ Rd,159

ReLU(x) denotes (ReLU(x1), . . . ,ReLU(xd)). We recall the threshold function Tτ : R → {1, 2}160

defined by (1), and we define T = T0. For a function φ : Rd → Rq and p ∈ [1,∞], we define161

Lipp(φ) = inf{K ≥ 0 : ∥φ(x)− φ(x′)∥p ≤ K∥x− x′∥p for all x, x′ ∈ Rd}, and if Lipp(φ) < ∞162

we say that φ is Lipschitz continuous with constant Lipp(φ) (with respect to the ℓp-norm).163

2 Feature-Convex Classifiers164

Let d, q ∈ N and p ∈ [1,∞] be fixed, and consider the task of classifying inputs from a subset165

of Rd into a fixed set of classes Y ⊆ N. In what follows, we restrict to the binary setting where166

Y = {1, 2} and class 1 is the sensitive class for which we desire robustness certificates (Section 1).167

In Appendix A, we briefly discuss avenues to generalize our framework to multiclass settings using168

one-versus-all and sequential classification methodologies and provide a proof-of-concept example169

for the Malimg dataset.170

We now formally define the classifiers considered in this work. Note that the classification threshold171

τ discussed in Section 1.1 is omitted for simplicity.172

Definition 2.1. Let f : Rd → {1, 2} be defined by f(x) = T (g(φ(x))) for some φ : Rd → Rq and173

some g : Rq → R. Then f is said to be a feature-convex classifier if the feature map φ is Lipschitz174

continuous with constant Lipp(φ) < ∞ and g is a convex function.175

We denote the class of all feature-convex classifiers by F . Furthermore, for q = d, the subclass of all176

feature-convex classifiers with φ = Id is denoted by FId.177

As we will see in Section 3.1, defining our classifiers using the composition of a convex classifier178

with a Lipschitz feature map enables the fast computation of certified regions in the input space.179

This naturally arises from the global underestimation of convex functions by first-order Taylor180

approximations. Since sublevel sets of such g are restricted to be convex, the feature map φ is181

included to increase the representation power of our architecture (see Appendix B for a motivating182

example). In practice, we find that it suffices to choose φ to be a simple map with a small closed-183

form Lipschitz constant. For example, in our experiments that follow with q = 2d, we choose184

φ(x) = (x − µ, |x − µ|) with a constant channel-wise dataset mean µ, yielding Lip1(φ) ≤ 2,185

Lip2(φ) ≤
√
2, and Lip∞(φ) ≤ 1. Although this particular choice of φ is convex, the function g186
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Figure 1: (a) The asymmetric certified accuracy surface Γ(r, τ) for MNIST 3-8, as described in
Section 1.1. The “clean accuracy difference” axis plots α1(τ)− α2(τ), and the black line highlights
the certified robustness curve for when clean accuracy is equal across the two classes. (b) Illustration
of feature-convex classifiers and their certification. Since g is convex, it is globally underapproximated
by its tangent plane at φ(x), yielding certified sets for norm balls in the higher-dimensional feature
space. Lipschitzness of φ then yields appropriately scaled certificates in the original input space.

need not be monotone, and therefore the composition g ◦ φ is nonconvex in general. The prediction187

and certification of feature-convex classifiers are illustrated in Figure 1b.188

In practice, we implement feature-convex classifiers using parameterizations of g, which we now189

make explicit. Following Amos et al. [2], we instantiate g as a neural network with nonnegative weight190

matrices and nondecreasing convex nonlinearities. Specifically, we consider ReLU nonlinearities,191

which is not restrictive, as our universal approximation result in Theorem 3.6 proves.192

Definition 2.2. A feature-convex ReLU neural network is a function f̂ : Rd → {1, 2} defined by193

f̂(x) = T (ĝ(φ(x))) with φ : Rd → Rq Lipschitz continuous with constant Lipp(φ) < ∞ and194

ĝ : Rq → R defined by195

ĝ(x(0)) = A(L)x(L−1) + b(L) + C(L)x(0), x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x(0)

)
,

for all l ∈ {2, 3, . . . , L − 1} for some L ∈ N, L > 1, and for some consistently sized matrices196

A(l), C(l) and vectors b(l) satisfying A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}.197

Going forward, we denote the class of all feature-convex ReLU neural networks by F̂ . Furthermore,198

if q = d, the subclass of all feature-convex ReLU neural networks with φ = Id is denoted by F̂Id,199

which corresponds to the input-convex ReLU neural networks proposed in Amos et al. [2].200

For every f̂ ∈ F̂ , it holds that ĝ is convex due to the rules for composition and nonnegatively weighted201

sums of convex functions [13, Section 3.2], and therefore F̂ ⊆ F and F̂Id ⊆ FId. The “passthrough”202

weights C(l) were originally included by Amos et al. [2] to improve the practical performance of the203

architecture. In some of our more challenging experiments that follow, we remove these passthrough204

operations and instead add residual identity mappings between hidden layers, which also preserves205

convexity. We note that the transformations defined by A(l) and C(l) can be taken to be convolutions,206

which are nonnegatively weighted linear operations and thus preserve convexity [2].207

3 Certification and Analysis of Feature-Convex Classifiers208

We begin by deriving asymmetric robustness certificates for our feature-convex classifier in Sec-209

tion 3.1. In Section 3.2, we introduce convexly separable sets and theoretically analyze the clean210
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performance of our classifiers through this lens. Namely, we show that there exists a feature-convex211

classifier with φ = Id that perfectly classifies the CIFAR-10 cats-dogs training dataset. We show that212

this strong learning capacity generalizes by proving that feature-convex classifiers can perfectly fit213

high-dimensional uniformly distributed data with high probability.214

3.1 Certified Robustness Guarantees215

In this section, we address the asymmetric certified robustness problem by providing class 1 robustness216

certificates for feature-convex classifiers f ∈ F . Such robustness corresponds to proving the absence217

of false negatives in the case that class 1 represents positives and class 2 represents negatives. For218

example, if in a malware detection setting class 1 represents malware and class 2 represents non-219

malware, the following certificate gives a lower bound on the magnitude of the malware file alteration220

needed in order to misclassify the file as non-malware.221

Theorem 3.1. Let f ∈ F be as in Definition 2.1 and let x ∈ f−1({1}) = {x′ ∈ Rd : f(x′) = 1}. If222

∇g(φ(x)) ∈ Rq is a nonzero subgradient of the convex function g at φ(x), then f(x+ δ) = 1 for all223

δ ∈ Rd such that224

∥δ∥p < r(x) :=
g(φ(x))

Lipp(φ)∥∇g(φ(x))∥p,∗
.

Remark 3.2. For f ∈ F and x ∈ f−1({1}), a subgradient ∇g(φ(x)) ∈ Rq of g always exists at225

φ(x), since the subdifferential ∂g(φ(x)) is a nonempty closed bounded convex set, as g is a finite226

convex function on all of Rq—see Theorem 23.4 in Rockafellar [56] and the discussion thereafter.227

Furthermore, if f is not a constant classifier, such a subgradient ∇g(φ(x)) must necessarily be228

nonzero, since, if it were zero, then g(y) ≥ g(φ(x)) +∇g(φ(x))⊤(y − φ(x)) = g(φ(x)) > 0 for229

all y ∈ Rq, implying that f identically predicts class 1, which is a contradiction. Thus, the certified230

radius given in Theorem 3.1 is always well-defined in practical settings.231

Theorem 3.1 is derived from the fact that a convex function is globally underapproximated by232

any tangent plane. The nonconstant terms in Theorem 3.1 afford an intuitive interpretation: the233

radius scales proportionally to the confidence g(φ(x)) and inversely with the input sensitivity234

∥∇g(φ(x))∥p,∗. In practice, Lipp(φ) can be made quite small as mentioned in Section 2, and235

furthermore the subgradient ∇g(φ(x)) is easily evaluated as the Jacobian of g at φ(x) using standard236

automatic differentiation packages. This provides fast, deterministic class 1 certificates for any237

ℓp-norm without modification of the feature-convex network’s training procedure or architecture.238

3.2 Representation Power Characterization239

We now restrict our analysis to the class FId of feature-convex classifiers with an identity feature240

map. This can be equivalently considered as the class of classifiers for which the input-to-logit map241

is convex. We therefore refer to models in FId as input-convex classifiers. While the feature map φ is242

useful in boosting the practical performance of our classifiers, the theoretical results in this section243

suggest that there is significant potential in using input-convex classifiers as a standalone solution.244

Classifying convexly separable sets. We begin by introducing the notion of convexly separable sets,245

which are intimately related to decision regions representable by the class FId.246

Definition 3.3. Let X1, X2 ⊆ Rd. The ordered pair (X1, X2) is said to be convexly separable if247

there exists a nonempty closed convex set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \X .248

Notice that it may be the case that a pair (X1, X2) is convexly separable yet the pair (X2, X1) is not.249

Although low-dimensional intuition may cause concerns regarding the convex separability of sets250

of binary-labeled data, we will soon see in Theorem 3.9 that, even for relatively unstructured data251

distributions, binary datasets are actually convexly separable in high dimensions with high probability.252

We now show that convexly separable datasets possess the property that they may always be perfectly253

fit by input-convex classifiers.254

Proposition 3.4. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId such that255

X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2) is a convexly256

separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1 for all x ∈ X1 and257

f(x) = 2 for all x ∈ X2.258
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We also show that the converse of Proposition 3.4 holds: the geometry of the decision regions of259

classifiers in FId consists of a convex set and its complement.260

Proposition 3.5. Let f ∈ FId. The decision region under f associated to class 2, namely X :=261

f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.262

Note that this is not necessarily true for our more general feature-convex architectures with φ ̸=263

Id. We continue our theoretical analysis of input-convex classifiers by extending the universal264

approximation theorem for regressing upon real-valued convex functions (given in Chen et al. [16])265

to the classification setting. In particular, Theorem 3.6 below shows that any input-convex classifier266

f ∈ FId can be approximated arbitrarily well on any compact set by ReLU neural networks with267

nonnegative weights. Here, “arbitrarily well” means that the set of inputs where the neural network268

prediction differs from that of f can be made to have arbitrarily small Lebesgue measure.269

Theorem 3.6. For any f ∈ FId, any compact convex subset X of Rd, and any ϵ > 0, there exists270

f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) ̸= f(x)}) < ϵ.271

An extension of the proof of Theorem 3.6 combined with Proposition 3.4 yields that input-convex272

ReLU neural networks can perfectly fit convexly separable sampled datasets.273

Theorem 3.7. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there exists274

f̂ ∈ F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.275

Theorems 3.6 and 3.7 theoretically justify the particular parameterization in Definition 2.2 for learning276

feature-convex classifiers to fit convexly separable data.277

Empirical convex separability. Interestingly, we find empirically that high-dimensional image278

training data is convexly separable. We illustrate this in Appendix D by attempting to reconstruct a279

CIFAR-10 cat image from a convex combination of the dogs and vice versa; the error is significantly280

positive for every sample in the training dataset, and image reconstruction is visually poor. This fact,281

combined with Theorem 3.7, immediately yields the following result.282

Corollary 3.8. There exists f̂ ∈ F̂Id such that f̂ achieves perfect training accuracy for the unaug-283

mented CIFAR-10 cats-versus-dogs dataset.284

The gap between this theoretical guarantee and our practical performance is large; without the feature285

map, our CIFAR-10 cats-dogs classifier achieves just 73.4% training accuracy (Table 3). While high286

training accuracy may not necessarily imply strong test set performance, Corollary 3.8 demonstrates287

that the typical deep learning paradigm of overfitting to the training dataset is attainable and that288

there is at least substantial room for improvement in the design and optimization of input-convex289

classifiers [50]. We leave the challenge of overfitting to the CIFAR-10 cats-dogs training data with an290

input-convex classifier as an open research problem for the field.291

Convex separability in high dimensions. We conclude by investigating why the convex separa-292

bility property that allows for Corollary 3.8 may hold for natural image datasets. We argue that293

dimensionality facilitates this phenomenon by showing that data is easily separated by some f ∈ F̂Id294

when d is sufficiently large. In particular, although it may seem restrictive to rely on models in F̂Id295

with convex class 2 decision regions, we show in Theorem 3.9 below that even uninformative data296

distributions that are seemingly difficult to classify may be fit by such models with high probability297

as the dimensionality of the data increases.298

Theorem 3.9. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =299

{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x
(i)
k , y

(j)
l drawn independently and identi-300

cally from the uniform probability distribution on [−1, 1]. Then, it holds that301

P
(
(X1, X2) is convexly separable

)
≥

1−
(
1− M !N !

(M+N)!

)d
for all d ∈ N,

1 if d ≥ M +N.
(2)

In particular, F̂Id contains an input-convex ReLU neural network that classifies all x(i) into class302

1 and all y(j) into class 2 almost surely for sufficiently large dimensions d.303
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Although the uniformly distributed data in Theorem 3.9 is unrealistic in practice, the result demon-304

strates that the class F̂Id of input-convex ReLU neural networks has sufficient complexity to fit even305

the most unstructured data in high dimensions. Despite this ability, researchers have found that306

current input-convex neural networks tend to not overfit in practice, yielding small generalization307

gaps relative to conventional neural networks [60]. Achieving the modern deep learning paradigm of308

overfitting to the training dataset with input-convex networks is an exciting open challenge [50].309

4 Experiments310

This section compares our feature-convex classifiers against a variety of state-of-the-art baselines311

in the asymmetric setting. Descriptions of the considered datasets and further experimental setup312

details are deferred to Appendix E. Clean class accuracies are balanced as described in Section 1.1313

and Appendix E.4.314

Experimental results for ℓ1-norm balls are reported in Figure 2, where our feature-convex classifier315

radii are similar or better than all other baselines across all datasets. Due to space constraints, we defer316

the corresponding plots for ℓ2- and ℓ∞-norm balls to Appendix F, where our certified radii are not317

dominant but still comparable to methods tailored specifically for a particular norm. We accomplish318

this while maintaining completely deterministic, closed-form certificates with orders-of-magnitude319

faster computation time than competitive baselines.320
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Figure 2: Class 1 certified radii curves for the ℓ1-norm. Note the log-scale on the Malimg plot.

8



For the MNIST 3-8 and Malimg datasets (Figures 2a and 2b), all methods achieve high clean test321

accuracy. Our ℓ1-radii scale exceptionally well with the dimensionality of the input, with two orders322

of magnitude improvement over smoothing baselines for the Malimg dataset. The Malimg certificates323

in particular have an interesting concrete interpretation. As each pixel corresponds to one byte in324

the original malware file, an ℓ1-certificate of radius r provides a robustness certificate for up to r325

bytes in the file. Namely, even if a malware designer were to arbitrarily change r malware bytes,326

they would be unable to fool our classifier into returning a false negative. This may not have an327

immediate practical impact as small semantic changes (e.g., reordering unrelated instructions) could328

induce large ℓp-norm shifts. However, as randomized smoothing was extended from pixel-space to329

semantic transformations [42], we expect that similar extensions can produce practical certifiably330

robust malware classifiers.331

While our method produces competitive robustness certificates for ℓ2- and ℓ∞-norms (Appendix F),332

it offers the largest improvement for ℓ1-certificates in the high-dimensional image spaces considered.333

This is likely due to the characteristics of the subgradient dual norm factor in the denominator of334

Theorem 3.1. The dual of the ℓ1-norm is the ℓ∞-norm, which selects the largest magnitude element in335

the gradient of the output logit with respect to the input pixels. As the input image scales, it is natural336

for the classifier to become less dependent on any one specific pixel, shrinking the denominator in337

Theorem 3.1. Conversely, when certifying for the ℓ∞-norm, one must evaluate the ℓ1-norm of the338

gradient, which scales proportionally to the input size. Nevertheless, we find in Appendix F that339

our ℓ2- and ℓ∞-radii are generally comparable those of the baselines while maintaining speed and340

determinism.341

Our feature-convex neural network certificates are almost immediate, requiring just one forward pass342

and one backward pass through the network. This certification procedure requires fewer than 10343

milliseconds per sample on our hardware and scales well with network size. This is substantially faster344

than the runtime for randomized smoothing, which scales from several seconds per CIFAR-10 image345

to minutes for an ImageNet image [18]. The only method that rivaled our ℓ1-norm certificates was346

α, β-CROWN; however, such bound propagation frameworks suffer from exponential computational347

complexity in network size, and even for small CIFAR-10 ConvNets typically take on the order of348

minutes to certify nontrivial radii.349

Unlike the randomized smoothing baselines, our method is completely deterministic in both prediction350

and certification. Randomized prediction poses a particular problem for randomized smoothing351

certificates: even for a perturbation of a “certified” magnitude, repeated evaluations at the perturbed352

point will eventually yield misclassification for any nontrivial classifier. While the splitting-based353

certificates of Levine and Feizi [40] are deterministic, they only certify quantized (not continuous)354

ℓ1-perturbations, which scale poorly to ℓ2- and ℓ∞-certificates (Appendix F). Furthermore, the355

certification runtime grows linearly in the smoothing noise σ; evaluating the certified radii at σ used356

for the Malimg experiment takes several minutes per sample.357

Ablation tests examining the impact of Jacobian regularization, the feature map φ, and data augmen-358

tation are included in Appendix G. We illustrate the certification performance of our method across359

all combinations of MNIST classes in Appendix H.360

5 Conclusion361

This work introduces the problem of asymmetric certified robustness, which we show naturally applies362

to a number of practical adversarial settings. We define feature-convex classifiers in this context and363

theoretically characterize their representation power from geometric, approximation theoretic, and364

statistical lenses. Closed-form sensitive-class certified robust radii for the feature-convex architecture365

are provided for arbitrary ℓp-norms. We find that our ℓ1-robustness certificates in particular match or366

outperform those of the current state-of-the-art methods, with our ℓ2- and ℓ∞-radii also competitive367

to methods tailored for a particular norm. Unlike smoothing and bound propagation baselines, we368

accomplish this with a completely deterministic and near-immediate computation scheme. We also369

show theoretically that significant performance improvements should be realizable for natural image370

datasets such as CIFAR-10 cats-versus-dogs. Possible directions for future research include bridging371

the gap between the theoretical power of feature-convex models and their practical implementation,372

as well as exploring more sophisticated choices of the feature map φ.373
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Supplementary Material591

A Classification Framework Generalization592

While outside the scope of our work, we note that there are two natural ways to extend our approach593

to a multiclass setting with one sensitive class. Let Y = {1, 2, . . . , c}, with class 1 being the sensitive594

class for which we aim to generate certificates.595

One approach involves a two-step architecture, where a feature-convex classifier first distinguishes596

between the sensitive class 1 and all other classes {2, 3, . . . , c} and an arbitrary second classifier597

distinguishes between the classes {2, 3, . . . , c}. The first classifier could then be used to generate598

class 1 certificates, as described in Section 3.1.599

Alternatively, we could define g to map directly to c output logits, with the first logit convex in the600

input and the other logits concave in the input. Concavity can be easily achieved by negating the601

output of a convex network. Let the ith output logit then be denoted as gi and consider an input602

x where the classifier predicts class 1 (i.e., g1(φ(x)) ≥ gi(φ(x)) for all i ∈ {2, 3, . . . , c}); since603

the difference of a convex and a concave function is convex, we can generate a certificate for the604

nonnegativity of each convex decision function g1 ◦φ−gi ◦φ around x. Minimizing these certificates605

over all i ∈ {2, 3, . . . , c} yields a robustness certificate for the sensitive class.606

Note that g mapping to 2 or more logits, all convex in the input, would not yield any tractable607

certificates. This is because the classifier decision function would now be the difference of two608

convex functions and have neither convex nor concave structure. We therefore choose to instantiate609

our binary classification networks with a single convex output logit for clarity.610

A.1 Malimg Multiclass Extension611

As a proof-of-concept, we provide a concrete realization of the first scheme above on the Malimg612

dataset. Namely, consider the setting where we want to distinguish between “clean” binaries and 24613

classes of malware. A malware designer seeks to maliciously perturb the bytes in their binary to fool614

a classifier into falsely predicting that the malware is “clean.” We therefore consider a cascading615

architecture where first a feature-convex classifier answers the “clean or malware” question, and then616

a subsequent classifier (not necessarily feature-convex) predicts the particular class of malware in617

the case that the feature-convex classifier assigns a “malware” prediction. Note that, in the initial618

step, we can either certify the “clean” binaries or the collection of all 24 malware classes, simply619

by negating the feature-convex classifier output logit. We logically choose to certify the malware620

classes as done in our experiments of Section 4; these certificates provide guarantees against a piece621

of malware going undetected.622

We use the same feature-convex architecture and training details as described in Appendix E. For623

the cascaded malware classifier, we use a ResNet-18 architecture trained with Adam for 150 epochs624

with a learning rate of 10−3. The confusion plot for the multiclass classifier is provided in Figure 3,625

with an overall accuracy of 96.5%. With the exception of few challenging classes to distinguish, the626

classifier achieves reasonable performance despite the unbalanced class sizes.627

Figure 4 visualizes the distribution of certified radii for the four most common malware classes in628

the dataset, excluding the “Yuner.A” class which featured duplicated images. Note that certification629

performance varies between classes, with high correlation across different norms for a particular630

malware class. Classes which tend to have larger certificates can be interpreted as clustering further631

away from the clean binaries, requiring larger perturbations to fool the classifier.632

B Feature Map Motivation633

This section examines the importance of the feature map φ with a low-dimensional example. Consider634

the binary classification setting where one class X2 ⊆ Rd is clustered around the origin and the635

other class X1 ⊆ Rd surrounds it in a ring. Here, the pair (X1, X2) is convexly separable (see636

Definition 3.3) as an ℓ2-norm ball decision region covering X2 is convex (Figure 5a). Note that the637

reverse pair (X2, X1) is not convexly separable, as there does not exist a convex set containing X1638

but excluding X2. A standard input-convex classifier with φ = Id would therefore be unable to639
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Figure 3: The row-normalized confusion plot for the Malimg multiclass classifier. The overall
accuracy of the composite classifier is 96.5%. The various malware classes (1-24) are circumscribed
with a black rectangle. These are certified against the class of “clean” binaries. See Section 4 for
more details on the mock clean binaries.

discriminate between the classes in this direction (Proposition 3.5), i.e., we would be able to learn a640

classifier that generates certificates for points in X1, but not X2.641

The above problem is addressed by choosing the feature map to be the simple concatenation642

φ(x) = (x, |x|) mapping from Rd to Rq = R2d, with associated Lipschitz constants Lip1(φ) ≤ 2,643

Lip2(φ) ≤
√
2, and Lip∞(φ) ≤ 1. In this augmented feature space, X1 and X2 are convexly644

separable in both directions, as they are each contained in a convex set (specifically, a half-space)645

whose complement contains the other class. We are now able to learn a classifier that takes X2 as the646

sensitive class for which certificates are required (Figure 5b). This parallels the motivation of the647

support vector machine “kernel trick,” where inputs are augmented to a higher-dimensional space648

wherein the data is linearly separable (instead of convexly separable as in our case).649

C Proofs for Section 3 (Certification and Analysis of Feature-Convex650

Classifiers)651

Theorem 3.1. Let f ∈ F be as in Definition 2.1 and let x ∈ f−1({1}) = {x′ ∈ Rd : f(x′) = 1}. If652

∇g(φ(x)) ∈ Rq is a nonzero subgradient of the convex function g at φ(x), then f(x+ δ) = 1 for all653

δ ∈ Rd such that654

∥δ∥p < r(x) :=
g(φ(x))

Lipp(φ)∥∇g(φ(x))∥p,∗
.
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Figure 4: Certified radii distributions for four malware classes in the Malimg dataset.
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Figure 5: Experiments demonstrating the role of the feature map φ = (x, |x|) in R2, with the output
logit shaded. Certified radii from our method are shown as black rings. (a) Certifying the outer class
(dark red points). This is possible using an input-convex classifier as a convex sublevel set contains
the inner class (dark blue points). (b) Certifying the inner class (dark red points). This would not
be possible with φ = Id as there is no convex set containing the outer class (dark blue points) but
excluding the inner. The feature map φ enables this by permitting convex separability in the higher
dimensional space. Note that although the shaded output logit is not convex in the input, we still
generate certificates.

Proof. Suppose that ∇g(φ(x)) ∈ Rq is a nonzero subgradient of g at φ(x), so that g(y) ≥ g(φ(x))+655

∇g(φ(x))⊤(y − φ(x)) for all y ∈ Rq . Let δ ∈ Rd be such that ∥δ∥p < r(x). Then it holds that656

g(φ(x+ δ)) ≥ g(φ(x)) +∇g(φ(x))⊤(φ(x+ δ)− φ(x))

≥ g(φ(x))− ∥∇g(φ(x))∥p,∗∥φ(x+ δ)− φ(x)∥p
≥ g(φ(x))− ∥∇g(φ(x))∥p,∗ Lipp(φ)∥δ∥p
> 0,
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so indeed f(x+ δ) = 1.657

Lemma C.1. For any nonempty closed convex set X ⊆ Rd, there exists a convex function g : Rd → R658

such that X = g−1((−∞, 0]) = {x ∈ Rd : g(x) ≤ 0}.659

Proof. Let X ⊆ Rd be a nonempty closed convex set. We take the distance function g = dX660

defined by dX(x) = infy∈X ∥y − x∥2. Since X is closed and y 7→ ∥y − x∥2 is coercive for661

all x ∈ Rd, it holds that y 7→ ∥y − x∥2 attains its infimum over X [10, Proposition A.8]. Let662

x(1), x(2) ∈ Rd and let θ ∈ [0, 1]. Then there exist y(1), y(2) ∈ X such that g(x(1)) = ∥y(1)−x(1)∥2663

and g(x(2)) = ∥y(2)−x(2)∥2. Since X is convex, it holds that θy(1)+(1−θ)y(2) ∈ X , and therefore664

g(θx(1) + (1− θ)x(2)) = inf
y∈X

∥y − (θx(1) + (1− θ)x(2))∥2

≤ ∥θy(1) + (1− θ)y(2) − (θx(1) + (1− θ)x(2))∥2
≤ θ∥y(1) − x(1)∥2 + (1− θ)∥y(2) − x(2)∥2
= θg(x(1)) + (1− θ)g(x(2)).

Hence, g = dX is convex. Since X = {x ∈ Rd : infy∈X ∥y − x∥2 = 0} = {x ∈ Rd : dX(x) =665

0} = {x ∈ Rd : dX(x) ≤ 0} = {x ∈ Rd : g(x) ≤ 0} by nonnegativity of dX , the lemma holds.666

Proposition 3.4. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId such that667

X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2) is a convexly668

separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1 for all x ∈ X1 and669

f(x) = 2 for all x ∈ X2.670

Proof. Let X ⊆ Rd be a nonempty closed convex set. By Lemma C.1, there exists a convex function671

g : Rd → R such that X = {x ∈ Rd : g(x) ≤ 0}. Define f : Rd → {1, 2} by f(x) = 1 if g(x) > 0672

and f(x) = 2 if g(x) ≤ 0. Clearly, it holds that f ∈ FId. Furthermore, for all x ∈ X it holds that673

g(x) ≤ 0, implying that f(x) = 2 for all x ∈ X . Conversely, if x ∈ Rd is such that f(x) = 2, then674

g(x) ≤ 0, implying that x ∈ X . Hence, X = {x ∈ Rd : f(x) = 2}.675

If (X1, X2) is a convexly separable pair of subsets of Rd, then there exists a nonempty closed convex676

set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \ X , and therefore there exists f ∈ FId such that677

X2 ⊆ X = f−1({2}) and X1 ⊆ Rd \X = f−1({1}), implying that indeed f(x) = 1 for all x ∈ X1678

and f(x) = 2 for all x ∈ X2.679

Proposition 3.5. Let f ∈ FId. The decision region under f associated to class 2, namely X :=680

f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.681

Proof. For all x ∈ Rd, it holds that f(x) = 2 if and only if g(x) ≤ 0. Since f ∈ FId, g is convex,682

and hence, X = {x ∈ Rd : g(x) ≤ 0} is a (nonstrict) sublevel set of a convex function and is683

therefore a closed convex set.684

In order to apply the universal approximation results in Chen et al. [16], we now introduce their pa-685

rameterization of input-convex ReLU neural networks. Note that it imposes the additional constraint686

that the first weight matrix A(1) is elementwise nonnegative.687

Definition C.2. Define F̃Id to be the class of functions f̃ : Rd → {1, 2} given by f̃(x) = T (g̃(x))688

with g̃ : Rd → R given by689

x(1) = ReLU
(
A(1)x+ b(1)

)
,

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x

)
, l ∈ {2, 3, . . . , L− 1},

g̃(x) = A(L)x(L−1) + b(L) + C(L)x,

for some L ∈ N, L > 1, and some consistently sized matrices A(1), C(1), . . . , A(L), C(L), all of690

which have nonnegative elements, and some consistently sized vectors b(1), . . . , b(L).691
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The following preliminary lemma relates the class F̂Id from Definition 2.2 to the class F̃Id above.692

Lemma C.3. It holds that F̃Id ⊆ F̂Id.693

Proof. Let f̃ ∈ F̃Id. Then certainly A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}, so indeed f̃ ∈ F̂Id. Hence,694

F̃Id ⊆ F̂Id.695

Theorem 1 in Chen et al. [16] shows that a Lipschitz convex function can be approximated within an696

arbitrary tolerance. We now provide a technical lemma adapting Theorem 1 in Chen et al. [16] to697

show that convex functions can be underapproximated within an arbitrary tolerance on a compact698

convex subset.699

Lemma C.4. For any convex function g : Rd → R, any compact convex subset X of Rd, and any700

ϵ > 0, there exists f̂ ∈ F̂Id such that ĝ(x) < g(x) for all x ∈ X and supx∈X (g(x)− ĝ(x)) < ϵ.701

Proof. Let g : Rd → R be a convex function, let X be a compact convex subset of Rd, and let702

ϵ > 0. Since g − ϵ/2 is a real-valued convex function on Rd (and hence is proper), its restriction to703

the closed and bounded set X is Lipschitz continuous [56, Theorem 10.4], and therefore Lemma704

C.3 together with Theorem 1 in Chen et al. [16] gives that there exists f̂ ∈ F̃Id ⊆ F̂Id such that705

supx∈X |(g(x)− ϵ/2)− ĝ(x)| < ϵ/2. Thus, for all x ∈ X ,706

g(x)− ĝ(x) =
(
g(x)− ϵ

2

)
− ĝ(x) +

ϵ

2

>
(
g(x)− ϵ

2

)
− ĝ(x) + sup

y∈X

∣∣∣(g(y)− ϵ

2

)
− ĝ(y)

∣∣∣
≥
(
g(x)− ϵ

2

)
− ĝ(x) +

∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣
≥ 0.

Furthermore,707

sup
x∈X

(g(x)− ĝ(x)) = sup
x∈X

|g(x)− ĝ(x)|

= sup
x∈X

∣∣∣(g(x)− ϵ

2

)
− ĝ(x) +

ϵ

2

∣∣∣
≤ sup

x∈X

∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣+ ϵ

2

< ϵ,

which proves the lemma.708

We leverage Lemma C.4 to construct a uniformly converging sequence of underapproximating709

functions.710

Lemma C.5. For all f ∈ FId and all compact convex subsets X of Rd, there exists a sequence711

{f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all n ∈ N and ĝn712

converges uniformly to g on X as n → ∞.713

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. Let {ϵn > 0 : n ∈ N} be a714

sequence such that ϵn+1 < ϵn for all n ∈ N and ϵn → 0 as n → ∞. Such a sequence clearly715

exists, e.g., by taking ϵn = 1/n for all n ∈ N. Now, for all n ∈ N, the function g − ϵn+1 is convex,716

and therefore by Lemma C.4 there exists f̂n ∈ F̂Id such that ĝn(x) < g(x) − ϵn+1 for all x ∈ X717

and supx∈X ((g(x)− ϵn+1)− ĝn(x)) < ϵn − ϵn+1. Fixing such f̂n, ĝn for all n ∈ N, we see that718

supx∈X ((g(x)− ϵn+2)− ĝn+1(x)) < ϵn+1 − ϵn+2, which implies that719

ĝn+1(x) > g(x)− ϵn+1 > ĝn(x)

for all x ∈ X , which proves the first inequality. The second inequality comes from the fact that720

ĝn+1(x) < g(x) − ϵn+2 < g(x) for all x ∈ X . Finally, since g(x) − ĝn(x) > ϵn+1 > 0 for all721

x ∈ X and all n ∈ N, we see that722

sup
x∈X

|g(x)− ĝn(x)| = sup
x∈X

(g(x)− ĝn(x)) < ϵn → 0 as n → ∞,
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which proves that limn→∞ supx∈X |g(x)− ĝn(x)| = 0, so indeed ĝn converges uniformly to g on723

X as n → ∞.724

With all the necessary lemmas in place, we now present our main theoretical results.725

Theorem 3.6. For any f ∈ FId, any compact convex subset X of Rd, and any ϵ > 0, there exists726

f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) ̸= f(x)}) < ϵ.727

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. By Lemma C.5, there exists a728

sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all729

n ∈ N and ĝn converges uniformly to g on X as n → ∞. Fix this sequence.730

For all n ∈ N, define731

En = {x ∈ X : f̂n(x) ̸= f(x)},
i.e., the set of points in X for which the classification under f̂n does not agree with that under f .732

Since ĝn(x) < g(x) for all x ∈ X and all n ∈ N, we see that733

En = {x ∈ X : ĝn(x) > 0 and g(x) ≤ 0} ∪ {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}
= {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}.

Since g is a real-valued convex function on Rd, it is continuous [56, Corollary 10.1.1], and therefore734

g−1((0,∞)) = {x ∈ Rd : g(x) > 0} is measurable. Similarly, ĝ−1
n ((−∞, 0]) = {x ∈ Rd :735

ĝn(x) ≤ 0} is also measurable for all n ∈ N since ĝn is continuous. Furthermore, X is measurable736

as it is compact. Therefore, En is measurable for all n ∈ N. Now, since ĝn(x) < ĝn+1(x) for all737

x ∈ X and all n ∈ N, it holds that En+1 ⊆ En for all n ∈ N. It is clear that to prove the result, it738

suffices to show that limn→∞ m(En) = 0. Therefore, if we show that m
(⋂

n∈N En

)
= 0, then the739

fact that m(E1) ≤ m(X) < ∞ together with Lebesgue measure’s continuity from above yields that740

limn→∞ m(En) = 0, thereby proving the result.741

It remains to be shown that m
(⋂

n∈N En

)
= 0. To this end, suppose for the sake of contradiction742

that
⋂

n∈N En ̸= ∅. Then there exists x ∈ ⋂n∈N En, meaning that g(x) > 0 and ĝn(x) ≤ 0 for743

all n ∈ N. Thus, for this x ∈ X , we find that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts744

the fact that ĝn uniformly converges to g on X . Therefore, it must be that
⋂

n∈N En = ∅, and thus745

m
(⋂

n∈N En

)
= 0, which concludes the proof.746

Theorem 3.7. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there exists747

f̂ ∈ F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.748

Proof. Throughout this proof, we denote the complement of a set Y ⊆ Rd by Y c = Rd \ Y .749

Suppose that X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 = {y(1), . . . , y(N)} ⊆ Rd are such that750

(X1, X2) is convexly separable. Then, by definition of convex separability, there exists a nonempty751

closed convex set X ′ ⊆ Rd such that X2 ⊆ X ′ and X1 ⊆ Rd \ X ′. Let X = X ′ ∩ conv(X2).752

Since X2 ⊆ X ′ and both sets X ′ and conv(X2) are convex, the set X is nonempty and convex.753

By finiteness of X2, the set conv(X2) is compact, and therefore by closedness of X ′, the set X is754

compact and hence closed.755

By Proposition 3.4, there exists f ∈ FId such that f−1({2}) = X . Since conv(X1 ∪X2) is compact756

and convex, Lemma C.5 gives that there exists a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that757

ĝn(x) < ĝn+1(x) < g(x) for all x ∈ conv(X1 ∪X2) and all n ∈ N and ĝn converges uniformly to758

g on conv(X1 ∪X2) as n → ∞. Fix this sequence.759

Let x ∈ X2. Then, since X2 ⊆ X ′ and X2 ⊆ conv(X2), it holds that x ∈ X ′ ∩ conv(X2) =760

X = f−1({2}), implying that f(x) = 2 and hence g(x) ≤ 0. Since ĝn(x) < g(x) for all n ∈ N,761

this shows that f̂n(x) = 2 for all n ∈ N. On the other hand, let i ∈ {1, . . . ,M} and consider762

x = x(i) ∈ X1. Since X1 ⊆ Rd \ X ′ = Rd ∩ (X ′)c ⊆ Rd ∩ (X ′ ∩ conv(X2))
c = Rd ∩ Xc =763

Rd ∩ f−1({1}), it holds that f(x) = 1 and thus g(x) > 0. Suppose for the sake of contradiction764

that f̂n(x) = 2 for all n ∈ N. Then ĝn(x) ≤ 0 for all n ∈ N. Therefore, for this x ∈ X1, we find765

that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts the fact that ĝn uniformly converges to g766
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on conv(X1 ∪X2). Therefore, it must be that there exists ni ∈ N such that f̂ni(x) = 1, and thus767

ĝni(x) > 0. Since ĝn(x) < ĝn+1(x) for all n ∈ N, this implies that ĝn(x) > 0 for all n ≥ ni.768

Hence, f̂n(x) = f̂n(x
(i)) = 1 for all n ≥ ni.769

Let n⋆ be the maximum of all such ni, i.e., n⋆ = max{ni : i ∈ {1, . . . ,M}}. Then the above770

analysis shows that f̂n⋆(x) = 2 for all x ∈ X2 and that f̂n⋆(x) = 1 for all x ∈ X1. Since f̂n⋆ ∈ F̂Id,771

the claim has been proven.772

Theorem 3.9. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =773

{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x
(i)
k , y

(j)
l drawn independently and identi-774

cally from the uniform probability distribution on [−1, 1]. Then, it holds that775

P
(
(X1, X2) is convexly separable

)
≥

1−
(
1− M !N !

(M+N)!

)d
for all d ∈ N,

1 if d ≥ M +N.
(2)

In particular, F̂Id contains an input-convex ReLU neural network that classifies all x(i) into class776

1 and all y(j) into class 2 almost surely for sufficiently large dimensions d.777

Proof. Throughout the proof, we denote the cardinality of a set S by |S|. For the reader’s convenience,778

we also recall that, for n ∈ N, the symmetric group Sn consists of all permutations (i.e., bijections)779

on the set {1, 2, . . . , n}, and that |Sn| = n!. If σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation780

in Sn, we denote the restriction of σ to the domain I ⊆ {1, 2, . . . , n} by σ|I : I → {1, 2, . . . , n},781

which we recall is defined by σ|I(i) = σ(i) for all i ∈ I , and is not necessarily a permutation on I in782

general.783

Consider first the case where d ≥ M + N . Let b ∈ RM+N be the vector defined by bi = 1 for784

all i ∈ {1, . . . ,M} and bi = −1 for all i ∈ {M + 1, . . . ,M + N}. Then, since x
(i)
k , y

(j)
l are785

independent uniformly distributed random variables on [−1, 1], it holds that the matrix786 

x(1)⊤

...
x(M)⊤

y(1)
⊤

...
y(N)⊤


∈ R(M+N)×d

has rank M +N almost surely, and therefore the linear system of equations787 

x(1)⊤

...
x(M)⊤

y(1)
⊤

...
y(N)⊤


a = b

has a solution a ∈ Rd with probability 1, and we note that from this solution we find that X2 is788

a subset of the nonempty closed convex set {x ∈ Rd : a⊤x ≤ 0} and that X1 is a subset of its789

complement. Hence, (X1, X2) is convexly separable with probability 1 in this case.790

Now let us consider the general case: d ∈ N and in general it may be the case that d < M +N . For791

notational convenience, let P be the probability of interest:792

P = P
(
(X1, X2) is convexly separable

)
.

Suppose that there exists a coordinate k ∈ {1, 2, . . . , d} such that x(i)
k < y

(j)
k for all pairs (i, j) ∈793

{1, 2, . . . ,M} × {1, 2, . . . , N} and that a := min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k } =: b.794
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Then, let X = {x ∈ Rd : xk ∈ [a, b]}. That is, X is the extrusion of the convex hull of the projections795

{y(1)k , . . . , y
(N)
k } along all remaining coordinates. The set X is a nonempty closed convex set, and it796

is clear by our supposition that X2 ⊆ X and X1 ⊆ Rd \X . Therefore, the supposition implies that797

(X1, X2) is convexly separable, and thus798

P ≥ P
(
there exists k ∈ {1, 2, . . . , d} such that x(i)

k < y
(j)
k for all pairs (i, j)

and that min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k }

)
= 1− P

(
for all k ∈ {1, 2, . . . , d}, it holds that x(i)

k ≥ y
(j)
k for some pair (i, j)

or that min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
= 1−

d∏
k=1

P
(
x
(i)
k ≥ y

(j)
k for some pair (i, j) or min{y(1)k , . . . , y

(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
,

where the final equality follows from the independence of the coordinates of the samples. Since799

min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k } almost surely, we find that800

P ≥ 1−
d∏

k=1

(
P(x(i)

k ≥ y
(j)
k for some pair (i, j))

+ P(min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k })

)
= 1−

d∏
k=1

P(x(i)
k ≥ y

(j)
k for some pair (i, j))

= 1−
d∏

k=1

(
1− P(x(i)

k < y
(j)
k for all pairs (i, j))

)
= 1−

d∏
k=1

(
1− P

(
max

i∈{1,2,...,M}
x
(i)
k < min

j∈{1,2,...,N}
y
(j)
k

))

= 1−
d∏

k=1

(
1− P

(
(x

(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈

⋃
σ∈S

Eσ

))
,

(3)

where we define S to be the set of permutations on {1, . . . ,M +N} whose restriction to {1, . . . ,M}801

is also a permutation;802

S =
{
σ ∈ SM+N : σ|{1,...,M} ∈ SM

}
,

and where, for a permutation σ ∈ SM+N , Eσ is the event where an (M + N)-vector has indices803

ordered according to σ;804

Eσ = {z ∈ RM+N : zσ(1) < · · · < zσ(M+N)}.

We note that the final equality in (3) relies on the fact that P(x(i)
k = x

(i′)
k ) = P(y(j)k = y

(j′)
k ) = 0 for805

all i′ ̸= i and all j′ ̸= j, which is specific to our uniform distribution at hand.806

Now, since Eσ, Eσ′ are disjoint for distinct permutations σ, σ′ ∈ SM+N , the bound (3) gives that807

P ≥ 1−
d∏

k=1

(
1−

∑
σ∈S

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

)
. (4)

Since x
(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k are independent and identically distributed samples, they define808

an exchangeable sequence of random variables, implying that P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈809

Eσ) = P(x(1)
k < · · · < x

(M)
k < y

(1)
k < · · · < y

(N)
k ) for all permutations σ ∈ SM+N . Since, under810

the uniform distribution at hand, (x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ for some σ ∈ SM+N almost811
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surely, it holds that812

1 = P

(x
(1)
k , . . . , x

(M)
k , y

(N)
k , . . . , y

(N)
k ) ∈

⋃
σ∈SM+N

Eσ


=

∑
σ∈SM+N

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

= |SM+N |P(x(1)
k < · · ·x(M)

k < y
(1)
k < · · · < y

(N)
k ).

This implies that813

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ) =

1

|SM+N | =
1

(M +N)!

for all permutations σ ∈ SM+N . Hence, our bound (4) becomes814

P ≥ 1−
d∏

k=1

(
1− |S|

(M +N)!

)
= 1−

(
1− |S|

(M +N)!

)d

.

Finally, we immediately see that that map Γ: SM × SN → SM+N defined by815

Γ(σ, σ′)(i) =

{
σ(i) if i ∈ {1, . . . ,M},
σ′(i−M) +M if i ∈ {M + 1, . . . ,M +N},

is injective and has image S, implying that |S| = |SM × SN | = |SM ||SN | = M !N !. Thus,816

P ≥ 1−
(
1− M !N !

(M +N)!

)d

,

which proves (2).817

The unit probability of F̂Id containing a classifier that classifies all x(i) into class 1 and all y(j) into818

class 2 for large d follows immediately from Theorem 3.7.819

D CIFAR-10 Cats-versus-Dogs Convex Separability820

In order to establish that the cat and dog images in CIFAR-10 are convexly separable, we experimen-821

tally attempt to reconstruct an image from one class using a convex combination of all images in the822

other class (without augmentation such as random crops, flips, etc.). Namely, if x is drawn from one823

class and y(1), . . . , y(N) represent the entirety of the other class, we form the following optimization824

problem:825

minimize
α∈RN

∥∥∥x−
N∑
j=1

αjy
(j)
∥∥∥
2

subject to α ≥ 0,

N∑
j=1

αj = 1.

The reverse experiment for the other class follows similarly. We solve the optimization using826

MOSEK [6], and report the various norms of x−∑N
j=1 αjy

(j) in Figure 6. Reconstruction accuracy827

is generally very poor, with no reconstruction achieving better than an ℓ1-error of 52. A typical828

reconstructed image is shown in Figure 7.829

Yousefzadeh [74] and Balestriero et al. [9] showed a related empirical result for CIFAR-10, namely,830

that no test set image can be reconstructed as a convex combination of training set images. However,831

we remark that their findings do not necessarily imply that a training set image cannot be reconstructed832

via other training set images; our new finding that the CIFAR-10 cats-versus-dogs training set is833

convexly separable is required in order to assert Corollary 3.8.834
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Figure 6: Reconstructing CIFAR-10 cat and dog images as convex combinations. The label “Dogs
→ cat” indicates that a cat image was attempted to be reconstructed as a convex combination of all
5000 dog images.

Figure 7: Reconstructing a CIFAR-10 cat image (left) from a convex combination of dog images
(right). The reconstruction error norms are 294.57, 6.65, and 0.38 for the ℓ1-, ℓ2-, and ℓ∞-norms,
respectively. These are typical, as indicated by Figure 6.

E Experimental Setup835

We include a detailed exposition of our experimental setup in this section, beginning with general836

details on our choice of epochs and batch size. We then discuss baseline methods, architecture choices837

for our method, class balancing, and data processing.838

Epochs and batch size. Exempting the randomized smoothing baselines, for the MNIST 3-8 and839

Fashion-MNIST shirts experiments, we use 60 epochs for all methods. This is increased to 150840

epochs for the Malimg dataset and CIFAR-10 cats-dogs experiments. The batch size is 64 for all841

datasets besides the 512× 512 Malimg dataset, where it is lowered to 32.842
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To ensure a fair comparison, the randomized smoothing baseline epochs are scaled larger than the843

aforementioned methods according to the noise value specified in the sweeps in Section I. The final844

epochs and smoothing noise values used are reported in Table 1. Note that as classifiers are typically845

more robust to the noise from splitting smoothing, larger values of σ are used for only this smoothing846

method in the MNIST 3-8 and Malimg datasets. For Malimg, we find experimentally that even noise847

values of up to σ = 100 are tractable for the splitting method, outside the sweep range considered848

in Section I. As verification at that σ already takes several minutes per sample and runtime scales849

linearly with σ, we do not explore larger values of σ.850

Table 1: Randomized smoothing final noise and epoch hyperparameters.
Dataset Laplacian, Uniform, Gaussian Parameters Splitting Parameters

MNIST 3-8 (σ, n) = (0.75, 60) (σ, n) = (0.75 · 4, 60 · 4)
Malimg (σ, n) = (3.5 · 4, 150 · 4) (σ, n) = (100, 150 · 4)
Fashion-MNIST shirts (σ, n) = (0.75, 60) (σ, n) = (0.75, 60)
CIFAR-10 cats-dogs (σ, n) = (0.75 · 2, 600 · 2) (σ, n) = (0.75 · 2, 600 · 2)

Hardware. All experiments were conducted on a single Ubuntu 20.04 instance with an Nvidia RTX851

A6000 GPU. Complete reproduction of the experiments takes approximately 0.08 GPU-years.852

E.1 Datasets853

We introduce the various datasets considered in this work. MNIST 3-8 and Malimg are relatively854

simple classification problems where near-perfect classification accuracy is attainable; the Malimg855

dataset falls in this category despite containing relatively large images. Our more challenging settings856

consist of a Fashion-MNIST shirts dataset as well as CIFAR-10 cats-versus-dogs dataset.857

For consistency with [77], we augment the MNIST and Fashion-MNIST training data with 1-pixel858

padding and random cropping. The CIFAR-10 dataset is augmented with 3-pixel edge padding,859

horizontal flips, and random cropping. The Malimg dataset is augmented with 20-pixel padding and860

random 512× 512 cropping.861

For CIFAR-10, MNIST, and Fashion-MNIST, we use the preselected test sets. For Malimg we hold862

out a random 20% test dataset, although this may not be entirely used during testing. The training set863

is further subdivided by an 80%-20% validation split. For all experiments, we use the first 1000 test864

samples to evaluate our methods.865

MNIST 3-8. For our MNIST binary classification problem, we choose the problem of distinguishing866

between 3 and 8 [37]. These were selected as 3 and 8 are generally more visually similar and867

challenging to distinguish than other digit pairs. Images are 28× 28 pixels and greyscale.868

Malimg. Our malware classification experiments use greyscale, bytewise encodings of raw malware869

binaries Nataraj et al. [51]. Each image pixel corresponds to one byte of data, in the range of 0–255,870

and successive bytes are added horizontally from left to right on the image until wrapping at some871

predetermined width. We use the extracted malware images from the seminal dataset Nataraj et al.872

[51], padding and cropping images to be 512× 512. Note that licensing concerns generally prevent873

the distribution of “clean” executable binaries. As this work is focused on providing a general874

approach to robust classification, in the spirit of reproducibility we instead report classification875

results between different kinds of malware. Namely, we distinguish between malware from the most876

numerous “Allaple.A” class (2949 samples) and an identically-sized random subset of all other 24877

malware classes. To simulate a scenario where we must provide robustness against evasive malware,878

we provide certificates for the latter collection of classes.879

Fashion-MNIST shirts. The hardest classes to distinguish in the Fashion-MNIST dataset are T-shirts880

vs shirts, which we take as our two classes [33, 70]. Images are 28× 28 pixels and greyscale.881

CIFAR-10 cats-dogs. We take as our two CIFAR-10 classes the cat and dog classes since they882

are relatively difficult to distinguish [26, 44, 30]. Other classes (e.g., ships) are typically easier to883

classify since large background features (e.g., blue water) are strongly correlated with the target label.884

Samples are 32× 32 RGB images.885
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E.2 Baseline Methods886

We consider several state-of-the-art randomized and deterministic baselines. For all datasets, we887

evaluate the randomized smoothing certificates of Yang et al. [72] for the Gaussian, Laplacian, and888

uniform distributions trained with noise augmentation (denoted RS Gaussian, RS Laplacian, and RS889

Uniform, respectively), as well as the deterministic bound propagation framework α, β-CROWN890

[66], which is scatter plotted since certification is only reported as a binary answer at a given radius.891

We also evaluate, when applicable, deterministic certified methods for each norm ball. These include892

the splitting-noise ℓ1-certificates from Levine and Feizi [40] (denoted Splitting), the orthogonality-893

based ℓ2-certificates from Trockman and Kolter [63] (denoted Cayley), and the ℓ∞-distance-based894

ℓ∞-certificates from Zhang et al. [77] (denoted ℓ∞-Net). The last two deterministic methods are not895

evaluated on the large-scale Malimg dataset due to their prohibitive runtime. Furthermore, the ℓ∞-Net896

was unable to significantly outperform a random classifier on the CIFAR-10 cats-dogs dataset, and is897

therefore only included in the MNIST 3-8 and Fashion-MNIST shirts experiments.898

We provide additional details on each of the baseline methods below.899

Randomized smoothing. Since the certification runtime of randomized smoothing is large, especially900

for the 512× 512 pixel Malimg images, we evaluate the randomized smoothing classifiers over 104901

samples and project the certified radius to 105 samples by scaling the number fed into the Clopper-902

Pearson confidence interval, as described in [18]. This allows for a representative and improved903

certified accuracy curve while dramatically reducing the method’s runtime. We take an initial guess904

for the certification class with n0 = 100 samples and set the incorrect prediction tolerance parameter905

α = 0.001. For CIFAR-10 we use a depth-40 Wide ResNet base classifier, mirroring the choices906

from Cohen et al. [18], Yang et al. [72]; for all other datasets we use a ResNet-18. All networks are907

trained using SGD with an initial learning rate of 0.1, Nesterov momentum of 0.9, weight decay of908

10−4, and cosine annealing scheduling as described in Yang et al. [72]. Final smoothing noise values909

are selected as in Table 1, and are determined from the noise level comparison sweeps in Appendix I.910

Splitting noise. As this method is a deterministic derivative of randomized smoothing, it avoids the911

many aforementioned hyperparameter choices. We use the same architectures described above for912

the other randomized smoothing experiments.913

Cayley convolutions. To maintain consistency, we use a two-hidden-layer multilayer perceptron914

with (n1, n2) = (200, 50) hidden features, CayleyLinear layers, and GroupSort activations for the915

MNIST experiment. For the more challenging Fashion-MNIST and CIFAR-10 experiments, we use916

the ResNet-9 architecture implementation from [63]. Following the authors’ suggestions, we train917

these networks using Adam with a learning rate of 0.001.918

ℓ∞-distance nets. As the architecture of the ℓ∞-distance net [77] is substantially different from919

traditional architectures, we use the authors’ 5-layer MNIST/Fashion-MNIST architecture and 6-layer920

CIFAR-10 architecture with 5120 neurons per hidden layer. Unfortunately, the classification accuracy921

on the CIFAR-10 cats-dogs experiment remained near 50% throughout training. This was not the922

case when we tested easier classes, such as planes-versus-cars, where large features (e.g., blue sky)923

can be used to discriminate. We therefore only include this model in the MNIST and Fashion-MNIST924

experiments, and use the training procedure directly from the aforementioned paper’s codebase.925

α, β-CROWN. As α, β-CROWN certification time scales exponentially with the network size, we926

keep the certified networks small in order to improve the certification performance of the baseline.927

For all datasets, we train and certify a one-hidden-layer network with 200 hidden units and ReLU928

activations. All networks are adversarially trained for a ℓ∞-perturbation radius starting at 0.001 and929

linearly scaling to the desired ϵ over the first 20 epochs, as described in Kayed et al. [33], which930

trained the models used in Wang et al. [66]. The desired final ϵ is set to 0.3 for MNIST, 0.1 for931

Fashion-MNIST and Malimg, and 2/255 for CIFAR-10. The adversarial training uses a standard PGD932

attack with 50 steps and step size 2ϵ/50. Other optimizer training details are identical to Wang et al.933

[66]. The branch-and-bound timeout is set to 30 seconds to maintain comparability to other methods,934

and robustness is evaluated over a dataset-dependent range of discrete radii for each adversarial norm.935

E.3 Feature-convex Architecture and Training936

Our simple experiments (MNIST 3-8 and Malimg) require no feature map to achieve high accuracy937

(φ = Id); the Fashion-MNIST shirts dataset also benefited minimally from the feature map inclusion.938
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For the CIFAR-10 cats-dogs task, we let our feature map be the concatenation φ(x) = (x− µ, |x−939

µ|), where µ is the channel-wise dataset mean (e.g., size 3 for an RGB image) broadcasted to940

the appropriate dimensions. Our MNIST 3-8 and Malimg architecture then consists of a simple941

two-hidden-layer input-convex multilayer perceptron with (n1, n2) = (200, 50) hidden features,942

ReLU nonlinearities, and passthrough weights. For the more challenging datasets, we use various943

instantiations of a convex ConvNet (described below) where successive layers have a constant number944

of channels and image size. This allows for the addition of identity residual connections to each945

convolution and lets us remove the passthrough connections altogether. Convexity is enforced by946

projecting relevant weights onto the nonnegative orthant after each epoch and similarly constraining947

BatchNorm γ parameters to be positive. We initialize positive weight matrices to be drawn uniformly948

from the interval [0, ϵ], where ϵ = 0.003 for linear weights and ϵ = 0.005 for convolutional weights.949

Jacobian regularization is also used to improve our certified radii [31].950

The convex ConvNet architecture consists of a sequence of convolutional layers, BatchNorms, and951

ReLU nonlinearities. The first convolutional layer is unconstrained, as the composition of a convex952

function with an affine function is still convex [2]. All subsequent convolutions and the final linear953

readout layer are uniformly initialized from some small positive weight interval ([0, 0.003] for954

linear weights, [0, 0.005] for convolutional weights) and projected to have nonnegative weights after955

each gradient step. We found this heuristic initialization choice helps to stabilize network training,956

as standard Kaiming initialization assumptions are violated when weights are constrained to be957

nonnegative instead of normally distributed with mean zero. More principled weight initialization958

strategies for this architecture would form an exciting area of future research. Before any further959

processing, inputs into the network are fed into an initial BatchNorm—this enables flexibility with960

different feature augmentation maps.961

Since the first convolutional layer is permitted negative weights, we generally attain better perfor-962

mance by enlarging the first convolution kernel size (see Table 2). For subsequent convolutions, we963

set the stride to 1, the input and output channel counts to the output channel count from the first964

convolution, and the padding to half the kernel size, rounded down. This ensures that the output965

of each of these deeper convolutions has equivalent dimension to its input, allowing for an identity966

residual connection across each convolution. If Ci(z) is a convolutional operation on a hidden feature967

z, this corresponds to evaluating Ci(z) + z instead of just Ci(z). The final part of the classifier968

applies MaxPool and BatchNorm layers before a linear readout layer with output dimension 1. See969

Figure 8 for a diagram depicting an exemplar convex ConvNet instantiation.970

conv1
stride 2


conv2

nonneg


32 x 32 x 6

16 x 16 x 32
convolutional
ReLU + batchnorm
maxpool
fully connected

feature map
input

16 x 16 x 32

+

16 x 16 x 32

+

16 x 16 x 32

+

maxpool

size 4


4 x 4 x 32

batchnorm + fc

nonneg


scalar logit

conv3

nonneg


conv4

nonneg


Figure 8: An example convex ConvNet of depth 4 with a C1 stride of 2, pool size of 4, and 32× 32
RGB images. There are 6 input channels from the output of the feature map φ : x 7→ (x−µ, |x−µ|).

For training, we use a standard binary cross entropy loss, optionally augmented with a Jacobian971

regularizer on the Frobenius norm of the network Jacobian scaled by λ > 0 [31]. As our certified972
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radii in Theorem 3.1 vary inversely to the norm of the Jacobian, this regularization helps boost our973

certificates at a minimal loss in clean accuracy. We choose λ = 0.0075 for CIFAR-10, λ = 0.075 for974

Malimg and λ = 0.01 for MNIST and Fashion-MNIST. Further ablation tests studying the impact of975

regularization are reported in Appendix G. All feature-convex networks are trained using SGD with a976

learning rate of 0.001, momentum 0.9, and exponential learning rate decay with γ = 0.99.977

Table 2: Convex ConvNet architecture parameters. C1 denotes the first convolution, with C2,...

denoting all subsequent convolutions. The “Features” column denotes the number of output features
of C1, which is held fixed across C2,.... The “Pool” column refers to the size of the final MaxPool
window before the linear readout layer. The MNIST and Malimg architectures are simple multilayer
perceptrons and are therefore not listed here.

Dataset Features Depth C1 size C1 stride C1 dilation C2,... size Pool

Fashion-MNIST 4 3 5 1 1 3 1
CIFAR-10 16 5 11 1 1 3 1

E.4 Class Accuracy Balancing978

As discussed in Section 4, a balanced class 1 and class 2 test accuracy is essential for a fair com-979

parison of different methods. For methods where the output logits can be directly balanced, this980

is easily accomplished by computing the ROC curve and choosing the threshold that minimizes981

|TPR− (1− FPR)|. This includes both our feature-convex classifiers with one output logit and the982

Cayley orthogonalization and ℓ∞-Net architectures with two output logits.983

Randomized smoothing classifiers are more challenging as the relationship between the base classifier984

threshold and the smoothed classifier prediction is indirect. We address this using a binary search985

balancing procedure. Namely, on each iteration, the classifier’s prediction routine is executed over the986

test dataset and the “error” between the class 1 accuracy and the class 2 accuracy is computed. The987

sign of the error then provides the binary signal for whether the threshold should be shifted higher or988

lower in the standard binary search implementation. This procedure is continued until the error drops989

below 1%.990

F ℓ2- and ℓ∞-Certified Radii991

This section reports the counterpart to Figure 2 for the ℓ2- and ℓ∞-norms. Across all experiments, we992

attain substantial ℓ2- and ℓ∞-radii without relying on computationally expensive sampling schemes993

or nondeterminism. Methods that certify to another norm ∥ · ∥p are converted to ℓq-radii at a factor of994

1 if p > q or d1/p−1/q otherwise.995

Certified ℓ2-radii are reported in Figure 9. Our ℓ2-radii are moderate, generally slightly smaller than996

those produced by Gaussian randomized smoothing.997

Certified ℓ∞-radii are reported in Figure 10. For the MNIST 3-8 experiment, the ℓ∞-distance nets998

produce exceptional certified radii. Likewise, the ℓ∞-distance net certificates are dominant for the999

Fashion-MNIST dataset, despite achieving slightly inferior clean accuracy. We note however that the1000

applicability of ℓ∞-distance nets for sophisticated vision tasks is uncertain as the method is unable1001

to achieve better-than-random performance for CIFAR-10 cats-dogs (Section E.2). Our method is1002

comparable to randomized-smoothing and α, β-CROWN in all ℓ∞ experiments.1003
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Figure 9: Class 1 certified radii curves for the ℓ2-norm.
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Figure 10: Class 1 certified radii curves for the ℓ∞-norm.

G Ablation Tests1004

We conduct a series of ablation tests on the CIFAR-10 cats-dogs dataset, examining the impact of1005

regularization, feature maps, and data augmentation.1006

G.1 Regularization1007

Figure 11 examines the impact of Jacobian regularization over a range of regularization scaling1008

factors λ, with λ = 0 corresponding to no regularization. As is typical, we see a tradeoff between1009

clean accuracy and certified radii. Further increases in λ yield minimal additional benefit.1010

G.2 Feature Map1011

In this section, we investigate the importance of the feature map φ. Figure 12 compares our standard1012

feature-convex classifier with φ(x) = (x−µ, |x−µ|) against an equivalent architecture with φ = Id.1013

Note that the initial layer in the convex ConvNet is a BatchNorm, so even with φ = Id, features still1014

get normalized before being passed into the convolutional architecture. We perform this experiment1015

across both the standard cats-dogs experiment (cats are certified) in the main text and the reverse1016

dogs-cats experiment (dogs are certified).1017
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Figure 11: Impact of the Jacobian regularization parameter λ on CIFAR-10 cats-dogs classification.

As expected, the clean accuracies for both datasets are lower for φ = Id, while the certified radii are1018

generally larger due to the Lipschitz scaling factor in Theorem 3.1. Interestingly, while the standard1019

φ produces comparable performance in both experiments, the identity feature map classifier is more1020

effective in the dogs-cats experiment, achieving around 7% greater clean accuracy. This reflects the1021

observation that convex separability is an asymmetric condition and suggests that feature maps can1022

mitigate this concern.1023
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Figure 12: (a) Certification performance with cats as class 1 and dogs as class 2. (b) Certification
performance with dogs as class 1 and cats as class 2.

G.3 Unaugmented Accuracies1024

Table 3 summarizes the experimental counterpart to Section 3.2. Namely, Corollary 3.8 proves1025

that there exists an input-convex classifier (φ = Id) that achieves perfect training accuracy on the1026

CIFAR-10 cats-dogs dataset with no dataset augmentations (random crops, flips, etc.). Our practical1027
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experiments are far from achieving this theoretical guarantee, with just 73.4% accuracy for cats-dogs1028

and 77.2% for dogs-cats. Improving the practical performance of input-convex classifiers to match1029

their theoretical capacity is an exciting area of future research.1030

Table 3: CIFAR-10 accuracies with no feature augmentation (φ = Id) and no input augmentation.
Class 1-class 2 data Training accuracy Test accuracy (balanced)

Cats-dogs 73.4% 57.3%
Dogs-cats 77.2% 63.9%

H MNIST Classes Sweep1031

For our comparison experiments, we select a specific challenging MNIST class pair (3 versus 8). For1032

completeness, this section includes certification results for our method over all combinations of class1033

pairs in MNIST. As this involves training models over 90 combinations, we lower the number of1034

epochs from 60 to 10, maintaining all other architectural details described in Appendix E.1035
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Figure 13: Plotting the median certified radii for the MNIST feature-convex architecture over a range
of class combinations. The horizontal axis is the class being certified. The MNIST 3-8 experiment
considered throughout therefore corresponds to the cell (3, 8) in each plot.

Our certified radii naturally scale with the complexity of the classification problem. As expected,1036

3 and 8 are among the most challenging digits to distinguish, along with 2-8, 5-8, 4-9, and 7-9.1037

Particularly easy combinations to classify typically include 0 or 1.1038

The certification performance is remarkably symmetric across the diagonal despite the asymmetry1039

in our convex architectures. In other words, when classifying between digits i and j, if a convex1040

classifier exists which generates strong certificates for i, then we can generally train an asymmetric1041

classifier that generates strong certificates for j. A few exceptions to this can be seen in Figure 13;1042

the most notable are the 1-9 versus 9-1 pairs and the 4-8 versus 8-4 pairs. A deeper understanding of1043

how class characteristics affect asymmetric certification is an exciting avenue of future research.1044

I Randomized Smoothing Noise Level Sweeps1045

In this section, we reproduce the performance randomized smoothing classifiers under different1046

noise distributions for a range of noise parameters σ. Namely, we sweep over multiples of base1047

values of σ reported in the subcaptions of Figures 14, 15, and 16. The base values of σ were set1048

to σ = 0.75 for the MNIST 3-8, Fashion-MNIST, and CIFAR-10 cats-dogs experiments. For the1049

higher-resolution Malimg experiment, we increase the base noise to σ = 3.5, matching the highest1050

noise level examined in Levine and Feizi [40]. The epochs used for training were similarly scaled1051

by n, starting from the base values provided in Section E, with the exception of the CIFAR-10 base1052

epochs being increased to 600 epochs.1053
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Figure 14: Randomized smoothing certified radii sweeps for the ℓ1-norm. Line shade indicates value
of the integer noise multiplier n, with n ranging from 1 (darkest line) to 4 (lightest line).
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Figure 15: Randomized smoothing certified radii sweeps for the ℓ2-norm. Line shade indicates
value of the integer noise multiplier n, with n ranging from 1 (darkest line) to 4 (lightest line). For
higher-dimensional inputs (Malimg and CIFAR-10) methods which certify to a different norm and
convert are uncompetitive.
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Figure 16: Randomized smoothing certified radii sweeps for the ℓ∞-norm. Line shade indicates value
of the integer noise multiplier n, with n ranging from 1 (darkest line) to 4 (lightest line).
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