
Appendix633

A Proof of Proposition 1634

Recap the definition of model update �(w) in (1) and ✓o = ✓(1/N), we approximate �(w) by the635

first-order Taylor expansion of ✓(w) at w = 1/N . This leads to636

�(w) = ✓(w)� ✓(1/N) ⇡
d✓(w)

dw

����
w=1/N

(w � 1/N), (A1)

where d✓(w)
dw 2 RM⇥N , and recall that M = |✓o| is the number of model parameters. The gradient637

d✓(w)
dw is known as implicit gradient [76] since it is defined through the solution of the optimization638

problem ✓(w) = argmin✓ L(w,✓), where recall that L(w,✓) =
PN

i=1[wi`i(✓, zi)]. By the639

stationary condition of ✓(w), we obtain640

r✓L(w,✓(w)) = 0. (A2)

Next, we take the derivative of (A2) w.r.t. w based on the implicit function theorem [76] assuming641

that ✓(w) is the unique solution to minimizing L. This leads to642


d✓(w)

dw

�T h
r✓,✓L(w,✓)|✓=✓(w)

i
+rw,✓L(w,✓(w)) = 0, (A3)

where ra,b = rarb 2 R|a|⇥|b| is the second-order partial derivative. Therefore,643

d✓(w)

dw
= � [r✓,✓L(w,✓(w))]�1

rw,✓L(w,✓(w))T , (A4)

where rw,✓L(w,✓(w)) can be expanded as644

rw,✓L(w,✓(w)) = rwr✓

NX

i=1

[wi`i(✓(w), zi)] (A5)

= rw

NX

i=1

[wir✓`i(✓(w), zi)] (A6)

=

2

6664

r✓`i(✓(w), z1)T

r✓`i(✓(w), z2)T

...
r✓`i(✓(w), zN )T

3

7775
. (A7)

Based on (A4) and (A7), we obtain the closed-form of implicit gradient at w = 1/N :645

d✓(w)

dw
|w=1/N =� [r✓,✓L(1/N,✓(1/N))]�1 [r✓`i(✓(1/N), z1) . . . r✓`i(✓(1/N), zN )]

=�H
�1 [r✓`i(✓(1/N), z1) . . . r✓`i(✓(1/N), zN )] , (A8)

where H = r✓,✓L(1/N,✓(1/N)).646

Substituting (A8) into (A1), we obtain647

�(w) ⇡ �H
�1 [r✓`i(✓(1/N), z1) . . . r✓`i(✓(1/N), zN )] (w � 1/N)

= �H
�1

NX

i=1

[(wi � 1/N)r✓`i(✓(1/N), zi)]

= H
�1

r✓L(1/N �w,✓o), (A9)

where the last equality holds by the definition of L(w,✓) =
PN

i=1[wi`i(✓, zi)].648

The proof is now complete.649
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B Proof of Proposition 2650

The proof follows [8, Sec. 5], with the additional condition that the model is sparse encoded by a651

pre-fixed (binary) pruning mask m, namely, ✓0 := m � ✓. Then, based on [8, Eq. 5], the model652

updated by SGD yields653

✓0
t ⇡ ✓0

0 � ⌘m�

t�1X

i=1

r✓`(✓
0
0, ẑi) +m� (

t�1X

i=1

f(i)), (A10)

where ✓0
0 = m� ✓0 is the model initialization when using SGD-based sparse training, {ẑi} is the654

sequence of stochastic data samples, t is the number of training iterations, ⌘ is the learning rate, and655

f(i) is defined recursively as656

f(i) = �⌘r
2
✓,✓`(✓

0
0, ẑi)

0

@�⌘

i�1X

j=0

m�r✓`(✓
0
0, ẑj) +

i�1X

j=0

(m� f(j))

1

A , (A11)

with f(0) = 0. Inspired by the second term of (A10), to unlearn the data sample ẑi, we will have to657

add back the first-order gradients under ẑi. This corresponds to the GA-based approximate unlearning658

method. Yet, this approximate unlearning introduces an unlearning error, given by the last term of659

(A10)660

em(✓0, {ẑi}, t, ⌘) := m� (
t�1X

i=1

f(i)). (A12)

Next, if we interpret the mask m as a diagonal matrix diag(m) with 0’s and 1’s along its diagonal661

based on m, we can then express the sparse model m� ✓ as diag(m)✓. Similar to [8, Eq. 9], we can662

derive a bound on the unlearning error (A12) by ignoring the terms other than those with ⌘
2 in f(i),663

i.e., (A11). This is because, in the recursive form of f(i), all other terms exhibit a higher degree of664

the learning rate ⌘ compared to ⌘
2. As a result, we obtain665

e(m) = kem(✓0, {ẑi}, t, ⌘)k2 =

�����m� (
t�1X
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f(i))

�����
2
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2

������
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(Triangle inequality)
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 ⌘
2
�(m) km� (✓t � ✓0)k2

1

t

t� 1

2
t =

⌘
2

2
(t� 1)km� (✓t � ✓0)k2�(m), (A15)

where the inequality (A14) holds given the fact that
Pi�1

j=0 m�r✓`(✓
0
0, ẑj) in (A13) can be approx-666

imated by its expectation i(✓0
t�✓0

0)
t [8, Eq. 7], and �(m) := maxj{�j(r2

✓,✓`), if mj 6= 0}, i.e., the667

largest eigenvalue among the dimensions left intact by the binary mask m. The above suggests that668

the unlearning error might be large if m = 1 (no pruning). Based on (A15), we can then readily669

obtain the big O notation in (2). This completes the proof.670
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C Additional Experimental Details and Results671

C.1 Datasets and models672

We summarize the datasets and model configurations in Tab. A1.

Table A1: Dataset and model setups.

Settings CIFAR-10 SVHN CIFAR-100 ImageNet
ResNet-18 VGG-16 ResNet-18 ResNet-18 ResNet-18

Batch Size 128 128 128 128 1024

673

C.2 Additional training and unlearning settings674

Training configuration of pruning. For all pruning methods, including IMP [15], SynFlow [38],675

and OMP [17], we adopt the settings from the current SOTA implementations [17]; see a summary in676

Tab. A2. For IMP, OMP, and SynFlow, we adopt the step learning rate scheduler with a decay rate of677

0.1 at 50% and 75% epochs. We adopt 0.1 as the initial learning rate for all pruning methods.678

Additional training details of MU. For all datasets and model architectures, we adopt 10 epochs679

for FT, and 5 epochs for GA method. The learning rate for FT and GA are carefully tuned between680

[10�5
, 0.1] for each dataset and model architecture. In particular, we adopt 0.01 as the learning rate681

for FT method and 10�4 for GA on the CIFAR-10 dataset (ResNet-18) at different sparsity levels. By682

default, we choose SGD as the optimizer for the FT and GA methods. As for FF method, we perform683

a greedy search for hyperparameter tuning [12] between 10�8 and 10�6.684

C.3 Detailed metric settings685

Details of MIA implementation. MIA is implemented using the prediction confidence-based attack686

method [46]. There are mainly two phases during its computation: (1) training phase, and (2)687

testing phase. To train an MIA model, we first sample a balanced dataset from the remaining688

dataset (Dr) and the test dataset (different from the forgetting dataset Df ) to train the MIA predictor.689

The learned MIA is then used for MU evaluation in its testing phase. To evaluate the performance690

of MU, MIA-Efficacy is obtained by applying the learned MIA predictor to the unlearned model691

(✓u) on the forgetting dataset (Df ). Our objective is to find out how many samples in Df can be692

correctly predicted as non-training samples by the MIA model against ✓u. The formal definition of693

MIA-Efficacy is then given by:694

MIA-Efficacy =
TN

|Df |
, (A16)

where TN refers to the true negatives predicted by our MIA predictor, i.e., the number of the695

forgetting samples predicted as non-training examples, and |Df | refers to the size of the forgetting696

dataset. As described above, MIA-Efficacy leverages the privacy attack to justify how good the697

unlearning performance could be.698

C.4 Additional experiment results699

Model sparsity benefits privacy of MU for ‘free’. It was recently shown in [27, 28] that model700

sparsification helps protect data privacy, in terms of defense against MIA used to infer training data701

Table A2: Detailed training details for model pruning.

Experiments CIFAR-10/CIFAR-100 SVHN ImageNet

Training epochs 182 160 90

Rewinding epochs 8 8 5

Momentum 0.9 0.9 0.875

`2 regularization 5e�4 5e�4 3.05e�5

Warm-up epochs 1(75 for VGG-16) 0 8
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information from a learned model. Inspired by the above, we ask if sparsity can also bring the privacy702

benefit to an unlearned model, evaluated by the MIA rate on the remaining dataset Dr (that we term703

MIA-Privacy). This is different from MIA-Efficacy, which reflects the efficacy of scrubbing Df , i.e.,704

correctly predicting that data sample in Df is not in the training set of the unlearned model. In contrast,705

MIA-Privacy characterizes the privacy of the unlearned model about Dr. A lower MIA-Privacy706

implies less information leakage.707

Figure A1: Privacy on Dr (MIA-
Privacy) using different unlearn-
ing methods vs. model sparsity.

Fig. A1 shows MIA-Privacy of unlearned models versus the sparsity708

ratio applied to different unlearning methods in the ‘prune first, then709

unlearn’ paradigm. As we can see, MIA-Privacy decreases as the710

sparsity increases. This suggests the improved privacy of unlearning711

on sparse models. Moreover, we observe that approximate unlearning712

outperforms exact unlearning (Retrain) in privacy preservation of Dr.713

This is because Retrain is conducted over Dr from scratch, leading to714

the strongest dependence on Dr than other unlearning methods. An-715

other interesting observation is that IU and GA yield a much smaller716

MIA-Privacy than other approximate unlearning methods. The ra-717

tionale behind that is IU and GA have a weaker correlation with Dr718

during unlearning. Specifically, the unlearning loss of IU only in-719

volves the forgetting data influence weights, i.e., (1/N �w) in (1).720

Similarly, GA only performs gradient ascent over Df , with the least721

dependence on Dr.722

Performance of ‘prune first, then unlearn’ on various datasets723

and architectures. As demonstrated in Tab. A3 and Tab. A4, the724

introduction of model sparsity can effectively reduce the discrepancy725

between approximate and exact unlearning across a diverse range of726

datasets and architectures. This phenomenon is observable in various unlearning scenarios. Re-727

markably, model sparsity enhances both UA and MIA-Efficacy metrics without incurring substantial728

degradation on RA and TA in different unlearning scenarios. These observations corroborate the729

findings reported in Tab. 3.730

Table A3: MU performance vs. sparsity on additional datasets (CIFAR-100 [41] and SVHN [43]) for both
class-wise forgetting and random data forgetting. The content format follows Tab. 3.

MU UA MIA-Efficacy RA TA RTE
DENSE 95% Sparsity DENSE 95% Sparsity DENSE 95% Sparsity DENSE 95% Sparsity (min)

Class-wise forgetting, CIFAR-100

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.97±0.01 96.68±0.15 73.74±0.19 69.49±0.41 48.45
FT 26.45±6.29 (73.55) 73.63±5.06 (26.37) 92.44±5.93 (7.56) 98.88±4.32 (15.60) 99.86±0.04(0.11) 97.72±0.47 (1.04) 74.08±0.23 (0.74) 71.37±0.18 (3.00) 3.76
GA 81.47±0.32(18.53) 99.01±0.01 (0.99) 93.47±4.56 (6.53) 100.00±0.00 (0.00) 90.33±1.71 (9.64) 80.45±0.78 (16.23) 64.94±0.74 (8.80) 60.99±0.14 (8.50) 0.21
IU 84.12±0.34 (15.88) 99.78±0.01 (0.22) 98.44±0.45 (1.56) 99.33±0.00 (0.67) 96.23±0.02 (3.74) 95.45±0.17 (1.23) 71.24±0.22 (2.50) 70.79±0.11 (0.95) 4.30

Random data forgetting, CIFAR-100

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.97±0.01 96.68±0.15 73.74±0.19 69.49±0.41 48.45
FT 26.45±6.29 (73.55) 73.63±5.06 (26.37) 92.44±5.93 (7.56) 98.88±4.32 (15.60) 99.86±0.04(0.11) 97.72±0.47 (1.04) 74.08±0.23 (0.74) 71.37±0.18 (3.00) 3.61
GA 81.47±0.32(18.53) 99.01±0.01 (0.99) 93.47±4.56 (6.53) 100.00±0.00 (0.00) 90.33±1.71 (9.64) 80.45±0.78 (16.23) 64.94±0.74 (8.80) 60.99±0.14 (8.50) 0.21
IU 84.12±0.34 (15.88) 99.78±0.01 (0.22) 98.44±0.45 (1.56) 99.33±0.00 (0.67) 96.23±0.02 (3.74) 95.45±0.17 (1.23) 71.24±0.22 (2.50) 70.79±0.11 (0.95) 4.29

Class-wise forgetting, SVHN

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 95.71±0.12 94.95±0.05 42.84
FT 11.48±8.12 (88.52) 51.93±19.62 (48.07) 86.12±9.62 (13.88) 99.42±0.51 (0.58) 100.00±0.00 (0.00) 99.00±0.00 (1.00) 95.99±0.07 (0.28) 95.89±0.02 (0.94) 2.86
GA 83.87±0.19 (16.13) 86.52±0.11 (13.48) 99.97±0.02 (0.03) 100.00±0.00 (0.00) 99.60±0.15 (0.40) 98.37±0.11 (1.63) 95.27±0.02 (0.44) 93.42±0.07 (1.53) 0.28
IU 95.11±0.02 (4.89) 100.00±0.00 (0.00) 99.89±0.04 (0.11) 100.00±0.00(0.00) 100.00±0.00 (0.00) 99.85±0.02 (0.15) 95.70±0.09 (0.01) 94.90±0.04 (0.05) 3.19

Random data forgetting, SVHN

Retrain 4.89±0.11 4.78±0.23 15.38±0.14 15.25±0.18 100.00±0.00 100.00±0.00 95.54±0.09 95.44±0.12 42.71
FT 3.56±0.27 (1.33) 3.97±0.20 (0.81) 10.05±0.24 (5.33) 10.87±0.13 (4.38) 99.89±0.04 (0.11) 98.57±0.09 (1.43) 93.55±0.12 (1.99) 93.54±0.17 (1.90) 2.73
GA 0.99±0.42 (3.90) 2.68±0.53 (2.10) 3.07±0.53 (12.31) 9.31±0.48 (5.94) 99.43±0.22 (0.57) 97.83±0.43 (2.17) 94.03±0.21 (1.51) 93.33±0.27 (2.11) 0.26
IU 3.48±0.13 (1.41) 5.62±0.48 (0.84) 9.44±0.27 (5.94) 12.28±0.41(2.97) 96.30±0.08 (3.70) 95.67±0.15 (4.33) 91.59±0.11 (3.95) 90.91±0.26 (4.53) 3.21

Table A4: MU performance vs. sparsity on the additional architecture (VGG-16 [45]) for both class-wise
forgetting and random data forgetting on CIFAR-10. The content format follows Tab. 3.

MU UA MIA-Efficacy RA TA RTE
DENSE 95% Sparsity DENSE 95% Sparsity DENSE 95% Sparsity DENSE 95% Sparsity (min)

Class-wise forgetting, VGG-16

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.01 99.97±0.00 94.83±0.10 92.93±0.06 30.38
FT 28.00±8.16 (72.00) 34.94±5.37 (65.06) 63.23±17.68 (36.77) 68.02±12.03 (31.98) 99.87±0.05(0.13) 99.60±0.08 (0.37) 92.80±1.28 (2.03) 92.96±0.85 (0.03) 1.81
GA 77.51±3.47 (22.49) 83.93±2.14 (16.07) 80.13±4.27 (19.87) 88.04±3.18 (11.96) 96.09±0.13(3.91) 97.33±0.08 (2.64) 88.80±1.33 (6.03) 89.95±0.78 (2.98) 0.27
IU 88.58±0.86 (11.42) 98.78±0.44 (1.22) 92.27±1.14 (7.73) 99.91±0.05 (0.09) 96.89±0.27(3.11) 93.18±0.28 (6.79) 89.81±1.01 (5.02) 87.45±0.81 (5.48) 2.51

Random data forgetting, VGG-16

Retrain 7.13±0.60 7.47±0.30 13.02±0.77 13.51±0.50 100.00±0.01 99.93±0.01 92.80±0.17 91.98±0.22 30.29
FT 0.86±0.29 (6.27) 1.46±0.22 (6.01) 2.62±0.47 (10.40) 3.82±0.41 (9.69) 99.76±0.12(0.24) 99.47±0.11 (0.53) 92.21±0.13 (0.59) 92.03±0.37 (0.05) 1.77
GA 9.11±0.83 (1.98) 6.91±0.96 (0.56) 7.77±1.01 (5.25) 8.37±1.35 (5.14) 93.08±0.93 (6.92) 93.63±1.16 (6.30) 86.44±1.32 (6.36) 89.22±1.59 (4.53) 0.31
IU 1.02±0.43 (6.11) 3.07±0.50 (4.40) 2.51±0.61 (9.51) 6.86±0.67 (6.65) 99.14±0.03(0.86) 97.35±0.31 (2.58) 91.01±0.29 (1.79) 89.49±0.37 (2.49) 2.78
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To demonstrate the effectiveness of our methods on a larger dataset, we conducted additional731

experiments on ImageNet [44] with settings consistent with the class-wise forgetting in Tab. 3. As we732

can see from Tab. A5, sparsity reduces the performance gap between exact unlearning (Retrain) and733

the approximate unlearning methods (FT and GA). The results are consistent with our observations734

in other datasets. Note that the 83% model sparsity (ImageNet, ResNet-18) is used to preserve the735

TA performance after one-shot magnitude (OMP) pruning.736

Table A5: Performance overview of MU vs. sparsity on ImageNet considering class-wise forgetting. The content
format follows Tab. 3.

MU UA MIA-Efficacy RA TA RTE
DENSE 83% Sparsity DENSE 83% Sparsity DENSE 83% Sparsity DENSE 83% Sparsity (hours)

Class-wise forgetting, ImageNet

Retrain 100.00 100.00 100.00 100.00 71.75 69.18 69.49 68.86 26.18
FT 63.60 (36.40) 74.66 (25.34) 68.61 (31.39) 81.43 (18.57) 72.45 (0.70) 69.36 (0.18) 69.80 (0.31) 68.77 (0.09) 2.87
GA 85.10 (14.90) 90.21 (9.79) 87.46 (12.54) 94.25 (5.75) 65.93 (5.82) 62.94 (6.24) 64.62 (4.87) 64.65 (4.21) 0.01

Performance of `1 sparsity-aware MU on additional datasets. As seen in Fig. A2, `1-sparse MU737

significantly reduces the gap between approximate and exact unlearning methods across various738

datasets (CIFAR-100 [41], SVHN [43], ImageNet [44]) in different unlearning scenarios. It notably739

outperforms other methods in UA and MIA-Efficacy metrics while preserving acceptable RA and740

TA performances, thus becoming a practical choice for unlearning scenarios. In class-wise and741

random data forgetting cases, `1-sparse MU exhibits performance on par with Retrain in UA and742

MIA-Efficacy metrics. Importantly, the use of `1-sparse MU consistently enhances forgetting metrics743

with an insignificant rise in computational cost compared with FT, underscoring its effectiveness and744

efficiency in diverse unlearning scenarios. For detailed numerical results, please refer to Tab. A6.745
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CIFAR-100 SVHN ImageNet CIFAR-100 SVHN
Class-wise forgetting Class-wise forgetting Class-wise forgetting Random data forgetting Random data forgetting

Fine-tuning L1-sparse MURetrain

Figure A2: Performance of sparsity-aware unlearning vs. FT and Retrain on class-wise forgetting and random
data forgetting under (CIFAR-10, ResNet-18). Each metric is normalized to [0, 1] based on the best result
across unlearning methods for ease of visualization, while the actual best value is provided. The figure format is
consistent with Fig. 5.

D Broader Impacts and Limitations746

Broader impacts. Our study on model sparsity-inspired MU provides a versatile solution to forget747

arbitrary data points and could give a general solution for dealing with different concerns, such as the748

model’s privacy, efficiency, and robustness. Moreover, the applicability of our method extends beyond749

these aspects, with potential impacts in the following areas. ¨ Regulatory compliance: Our method750

enables industries, such as healthcare and finance, to adhere to regulations that require the forgetting751

of data after a specified period. This capability ensures compliance while preserving the utility and752

performance of machine learning models. ≠ Fairness: Our method could also play a crucial role in753

addressing fairness concerns by facilitating the unlearning of biased datasets or subsets. By removing754

biased information from the training data, our method contributes to mitigating bias in machine755

learning models, ultimately fostering the development of fairer models. Æ ML with adaptation and756

sustainability: Our method could promote the dynamic adaptation of machine learning models by757

enabling the unlearning of outdated information, and thus, could enhance the accuracy and relevance758

of the models to the evolving trends and dynamics of the target domain. This capability fosters759

sustainability by ensuring that ML models remain up-to-date and adaptable, thus enabling their760

continued usefulness and effectiveness over time.761

Limitations. One potential limitation of our study is the absence of provable guarantees for762

`1-sparse MU. Since model sparsification is integrated with model training as a soft regulariza-763
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Table A6: Performance of sparsity-aware MU vs. Retrain, FT and IU considering class-wise forgetting and
random data forgetting, where the table format and setup are consistent with Tab. 3. The unit of RTE is minutes
for all datasets, except ImageNet. For ImageNet, indicated by an asterisk (⇤), RTE is measured by hours.

MU UA MIA-Efficacy RA TA RTE (min)

Class-wise forgetting, CIFAR-10

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 94.83±0.11 43.23
FT 22.53±8.16 (77.47) 75.00±14.68 (25.00) 99.87±0.04 (0.13) 94.31±0.19 (0.52) 2.52
IU 87.82±2.15 (12.18) 95.96±0.21 (4.04) 97.98±0.21 (2.02) 91.42±0.21 (3.41) 3.25

`1-sparse MU 100.00±0.00 (0.00) 100.00±0.00 (0.00) 98.99±0.12 (1.01) 93.40±0.43 (1.43) 2.53

Class-wise forgetting, CIFAR-100

Retrain 100.00±0.00 100.00±0.00 99.97±0.01 73.74±0.19 48.45
FT 26.45±6.29 (73.55) 92.44±5.93 (7.56) 99.86±0.04(0.11) 74.08±0.23 (0.74) 3.76
IU 84.12±0.34 (15.88) 98.44±0.45 (1.56) 96.23±0.02 (3.74) 71.24±0.22 (2.50) 4.30

`1-sparse MU 95.67±0.53 (4.33) 100.00±0.00 (0.00) 98.01±0.02 (1.96) 71.35±0.22 (2.39) 3.79

Class-wise forgetting, SVHN

Retrain 100.00±0.00 100.00±0.00 100.00±0.00 95.71±0.12 42.84
FT 11.48±8.12 (88.52) 86.12±9.62 (13.88) 100.00±0.00 (0.00) 95.99±0.07 (0.28) 2.86
IU 95.11±0.02 (4.89) 99.89±0.04 (0.11) 100.00±0.00 (0.00) 95.70±0.09 (0.01) 3.19

`1-sparse MU 100.00±0.00 (0.00) 100.00±0.00 (0.00) 99.99±0.01 (0.00) 95.88±0.14 (0.17) 2.88

Class-wise forgetting, ImageNet

Retrain 100.00±0.00 100.00±0.00 71.75±0.45 69.49±0.27 26.18⇤

FT 63.60±7.11 (36.40) 68.61±9.04 (31.39) 72.45±0.16 (0.70) 69.80±0.23 (0.31) 2.87⇤

IU 43.35±5.26 (56.65) 60.83±6.17 (39.17) 66.28±0.77 (4.97) 66.25±0.53 (3.24) 3.14⇤

`1-sparse MU 99.85±0.07 (0.15) 100.00±0.00 (0.00) 68.07±0.13 (3.68) 68.01±0.21 (1.48) 2.87⇤

Random data forgetting, CIFAR-10

Retrain 5.41±0.11 13.12±0.14 100.00±0.00 94.42±0.09 42.15
FT 6.83±0.51 (1.42) 14.97±0.62 (1.85) 96.61±0.25 (3.39) 90.13±0.26 (4.29) 2.33
IU 2.03±0.43 (3.38) 5.07±0.74 (8.05) 98.26±0.29 (1.74) 91.33±0.22 (3.09) 3.22

`1-sparse MU 5.35±0.22 (0.06) 12.71±0.31 (0.41) 97.39±0.19 (2.61) 91.26±0.20 (3.16) 2.34

Random data forgetting, CIFAR-100

Retrain 24.76±0.12 49.80±0.26 99.98±0.02 74.46±0.08 48.70
FT 0.78±0.34 (23.98) 1.13±0.40 (48.67) 99.93±0.02 (0.05) 75.14±0.09 (0.68) 3.74
IU 1.53±0.36 (23.23) 6.58±0.42 (43.22) 99.01±0.28 (0.97) 71.76±0.31 (2.70) 3.80

`1-sparse MU 20.77±0.27 (3.99) 36.80±0.44 (13.00) 98.26±0.15 (1.72) 71.52±0.21 (2.94) 3.76

Random data forgetting, SVHN

Retrain 4.89±0.11 15.38±0.14 100.00±0.00 95.54±0.09 42.71
FT 3.56±0.27 (1.33) 10.05±0.24 (5.33) 99.89±0.04 (0.11) 93.55±0.12 (1.99) 2.73
IU 3.48±0.13 (1.41) 9.44±0.27 (5.94) 96.30±0.08 (3.70) 91.59±0.11 (3.95) 3.21

`1-sparse MU 4.06±0.14 (0.83) 11.80±0.22 (3.58) 99.96±0.01 (0.04) 94.98±0.03 (0.56) 2.73

tion, the lack of formal proof may raise concerns about the reliability and robustness of the approach.764

Furthermore, while our proposed unlearning framework is generic, its applications have mainly765

focused on solving computer vision tasks. As a result, its effectiveness in the domain of natural766

language processing (NLP) remains unverified. This consideration becomes particularly relevant767

when considering large language models. Therefore, further investigation is necessary for future768

studies to explore the applicability and performance of the framework in NLP tasks.769
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