
Supplemental Materials497

A Details on Neurally-Guided Symbolic Abstraction498

We here provide details on the neurally-guided symbolic abstraction algorithm.499

A.1 Algorithm of Neurally-Guided Symbolic Abstraction500

We show the algorithm of neurally-guided symbolic abstraction in Algorithm 1.501

Algorithm 1 Neurally-Guided Symbolic Abstraction

Input: C0, πθ , hyperparameters (Nbeam , Tbeam)
1: Cto_open ← C0
2: C ← ∅
3: t = 0
4: while t < Tbeam do
5: Cbeam ← ∅
6: for Ci ∈ Cto_open do
7: C = C ∪ {Ci}
8: for R ∈ ρ(Ci) do

Evaluate each clause
9: score = eval(R, πθ)

select top-k rules
10: Cbeam = top_k(Cbeam , R, score, Nbeam)

selected rules are refined next
11: Cto_open = Cbeam
12: t = t+ 1

return C

A.2 Rule Generation502

At line 8 in Algorithm 1, given action rule C, we generate new action rules using the following503

refinement operation:504

ρ(C) = {XA ← X
(1)
S , . . . X

(n)
S , YS | YS ∈ G∗S ∧ YS ̸= X

(i)
S }, (7)

where G∗S is a non-ground state atoms. This operation is a specification of (downward) refinement505

operator, which a fundamental technique for rule learning in ILP [Nienhuys-Cheng and de Wolf,506

1997], for action rules to solve RL tasks.507

We use mode declarations [Muggleton, 1995, Cropper et al., 2022] to define the search space,508

i.e. G∗S in Eq. 7 which are defined as follows. A mode declaration is either a head declaration509

modeh(r, p(mdt1, . . . , mdtn)) or a body declaration modeb(r, p(mdt1, . . . , mdtn)), where r ∈ N is510

an integer, p is a predicate, and mdti is a mode datatype. A mode datatype is a tuple (pm, dt), where511

pm is a place-marker and dt is a datatype. A place-marker is either #, which represents constants, or512

+ (resp. −), which represents input (resp. output) variables. r represents the number of the usages of513

the predicate to compose a solution. Given a set of mode declarations, we can determine a finite set514

of rules to be generated by the rule refinement.515

Now we describe mode declarations we used in our experiments. For Getout, we used the following516

mode declarations:517

modeb(2, type(−object,+type))
modeb(1, closeby(+object,+object))

modeb(1, on_left(+object,+object))
modeb(1, on_right(+object,+object))
modeb(1, have_key(+object))
modeb(1, not_have_key(+object))

13

For 3Fishes, we used the following mode declarations:518

modeb(2, type(−object,+type))
modeb(1, closeby(+object,+object))

modeb(1, on_top(+object,+object))
modeb(1, at_bottom(+object,+object))
modeb(1, on_left(+object,+object))
modeb(1, on_right(+object,+object))
modeb(1, bigger_than(+object,+object))
modeb(1, high_level(+object,+object))
modeb(1, low_level(+object,+object))

For Loot, we used the following mode declarations:519

modeb(2, type(−object,+type))
modeb(2, color(+object,#color))

modeb(1, closeby(+object,+object))

modeb(1, on_top(+object,+object))
modeb(1, at_bottom(+object,+object))
modeb(1, on_left(+object,+object))
modeb(1, on_right(+object,+object))
modeb(1, have_key(+object))

B Additional Results520

B.1 Weights learning521

Fig. 6 shows the NUDGE agent π(C,W) parameterized by rules C and weights W before training522

(top) and after training (bottom) on the GetOut environment. Each element on the x-axis of the plots523

corresponds to an action rule. In this examples, we have 10 action rules C = {C0, C1, . . . , C9}, and524

we assign M = 5 weights i.e. W = [w0,w1, . . . ,w4]. The distributions of rule weighs with softmax525

are getting peaked by learning to maximize the return. The right 4 rules are redundant rules, and526

theses rules get low weights after learning.527

B.2 Deduction Pipeline528

Fig. 7 provides the deduction pipeline of a NUDGE agent on 3 different states. Facts can be deduced529

from an object detection method, or directly given by the object centric environment. For state #1,530

the agent chooses to jump as the jump action is prioritized over the other ones and all atoms that531

compose this rules’ body have high valuation (including closeby). In state #2, the agent chose to go532

left as the rule left_key is selected. In state #3, the agent selects right as the rule right_door has533

the highest forward chaining evaluation.534

B.3 Policies of every logic environment.535

We show the logic policies obtained by NUDGE in GetOut, 3Fishes, and Loot in Fig. 8, e.g. the first536

line of GetOut, “0.574 : jump(X):-closeby(O1, O2), type(O1, agent), type(O2, enemy).”, repre-537

sents that the action rule is chosen by the weight vector w1 with a value 0.574. NUDGE agents538

have several weight vectors w1, . . . ,wM and thus several chosen action rules are shown for each539

environment.540

14

Weights on action rules (after training)

w_0
w_1
w_2
w_3
w_4

w_0
w_1
w_2
w_3
w_4

C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9

C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9

Weights on action rules (before training)

Figure 6: Weights on action rules via softmax before training (top) and after training (bottom) on
NUDGE in GetOut. Each element on the x-axis of the plots corresponds to an action rule. NUDGE
learns to get high returns while identifying useful action rules to solve the RL task. The right 5 rules
are redundant rules, and theses rules get low weights after learning.

Figure 7: The logic reasoning of NUDGE agents makes them interpretable. The detailed logic
pipeline for the input state #1 of the Getout environment and the condensed action selection for state
#2 and state #3.

C Illustrations of our environments541

We showcase in Fig. 9 one state of the 3 object-centric environments and their variations. In GetOut542

(blue humanoid agent), the goal is to obtain a key, then go to a door, while avoiding a moving543

enemy. GetOut-2En is a variation with 2 enemies. In 3Fishes, the agent controls a green fish and is544

confronted with 2 other fishes, one smaller (that the agent need to “eat”, i.e. go to) and one bigger,545

that the agent needs to dodge. A variation is 3Fishes-C, where the agent can eat green fishes and546

dodge red ones, all fishes have the same size. Finally, in Loot, the (orange) agent is exposed with 1547

or 2 chests and their corresponding (i.e. same color) keys. In Loot-C, the chests have different colors.548

All 3 environment are stationary in the sense of Delfosse et al. [2021].549

15

GetOut
0.574:jump(X):-closeby(O1,O2),type(O1,agent),type(O2,enemy).
0.315:right_go_to_door(X):-have_key(X),on_left(O1,O2),type(O1,agent),type(O2,door).
0.296:right_go_to_door(X):-have_key(X),on_left(O1,O2),type(O1,agent),type(O2,door).
0.291:right_go_get_key(X):-not_have_key(X),on_left(O1,O2),type(O1,agent),

type(O2,key).
0.562:right_go_to_door(X):-have_key(X),on_left(O1,O2),type(O1,agent),type(O2,door).

#3Fishes
0.779:right_to_eat(X):-is_bigger_than(O1,O2),on_left(O2,O1),type(O1,agent),

type(O2,fish).
0.445:down_to_dodge(X):-is_bigger_than(O2,O1),on_left(O2,O1),type(O1,agent),

type(O2,fish).
0.579:down_to_eat(X):-high_level(O1,O2),is_smaller_than(O2,O1),type(O1,agent),

type(O2,fish).
0.699:up_to_dodge(X):-closeby(O2,O1),is_smaller_than(O1,O2),low_level(O2,O1),

type(O1,agent),type(O2,fish).
0.601:up_to_eat(X):-is_bigger_than(O2,O1),on_left(O2,O1),type(O1,agent),

type(O2,fish).
0.581:left_to_eat(X):-closeby(O1,O2),on_right(O1,O2),type(O1,agent),type(O2,fish).

Loot
0.844:up_to_door(X):-close(O1,O2),have_key(O2),on_top(O2,O1),type(O1,agent),

type(O2,door).
0.268:right_to_key(X):-close(O1,O2),on_right(O2,O1),type(O1,agent),type(O2,key).
0.732:right_to_door(X):-close(O1,O2),have_key(O2),on_left(O1,O2),type(O1,agent),

type(O2,door).
0.508:up_to_key(X):-close(O1,O2),on_top(O2,O1),type(O1,agent),type(O2,key).
0.995:left_to_door(X):-close(O1,O2),have_key(O2),on_left(O2,O1),type(O1,agent),

type(O2,door).
0.414:down_to_key(X):-close(O1,O2),on_top(O1,O2),type(O1,agent),type(O2,key).
0.992:down_to_door(X):-close(O1,O2),have_key(O2),on_top(O1,O2),type(O1,agent),

type(O2,door).
0.447:left_to_key(X):-close(O1,O2),on_left(O2,O1),type(O1,agent),type(O2,key).

Figure 8: NUDGE produces an interpretable policy as set of weighted rules. Weighted action
rules discovered by NUDGE in the each logic environment.

D Hyperparameters and rules sets550

D.1 Hyperparameters551

We here provide the hyperparameters used in our experiments. We set the clip parameter ϵclip = 0.2,552

the discount factor γ = 0.99. We use the Adam optimizer, with 1e− 3 as actor learning rate, 3e− 4553

as critic learning rate. The episode length is 500 timesteps. The policy is updated every 1000 steps554

We train every algorithm for 800k steps on each environment, apart from neural PPO, that needed555

5M steps on Loot. We use an epsilon greedy strategy with ϵ = max(e
−episode

500 , 0.02).556

D.2 Rules set557

All the rules set C of the different NUDGE and logic agents are available at https://anonymous.558

4open.science/r/LogicRL-C43B in the folder nsfr/nsfr/data/lang.559

E Details of Differentiable Forward Reasoning560

We provide details of differentiable forward reasoning used in NUDGE. We denote a valuation vector561

at time step t as v(t) ∈ [0, 1]G. We also denote the i-th element of vector x by x[i], and the (i, j)-th562

element of matrix X by X[i, j]. The same applies to higher dimensional tensors.563

16

Loot Loot-C 3Fishes 3Fishes-C

GetOut GetOut-2En

Figure 9: Pictures of our environments (GetOut, Loot and 3Fishes) and their variations (GetOut-
2En, Loot-C and 3Fishes-C). All these environments can provide object-centric state descriptions
(instead of pixel-based states).

E.1 Differentiable Forward Reasoning564

We compose the reasoning function f reason
(C,W) : [0, 1]G → [0, 1]GA , which takes the initial valuation565

vector and returns valuation vector for induced action atoms. We describe each step in detail.566

(Step 1) Encode Logic Programs to Tensors. To achieve differentiable forward reasoning, each567

action rule is encoded to a tensor representation. Let S be the number of the maximum number of568

substitutions for existentially quantified variables in C, and L be the maximum length of the body of569

rules in C. Each action rule Ci ∈ C is encoded to a tensor Ii ∈ NG×S×L, which contain the indices570

of body atoms. Intuitively, Ii[j, k, l] is the index of the l-th fact (subgoal) in the body of the i-th rule571

to derive the j-th fact with the k-th substitution for existentially quantified variables.572

For example. let R0 = jump(agent):-type(O1, agent), type(O2, enemy), closeby(O1, O2) ∈ C573

and F2 = jump(agent) ∈ G, and we assume that constants for objects are {obj1, obj2}. R0 has574

existentially quantified variables O1 and O2 on the body, so we obtain ground rules by substituting575

constants. By considering the possible substitutions for O1 and O2, namely {O1/obj1, O2/obj2}576

and {O1/obj2, O2/obj1}, we have two ground rules, as shown in top of Table 3. Bottom rows577

of Table 3 shows elements of tensor I0,:,0,: and I0,:,1,:. Facts G and the indices are represented on578

the upper rows in the table. For example, I0,2,0,: = [3, 6, 7] because R0 entails jump(agent)579

with the first (k = 0) substitution τ = {O1/obj1, O2/obj2}. Then the subgoal atoms are580

{type(obj1, agent), type(obj2, enemy), closeby(obj1, obj2)}, which have indices [3, 6, 7], re-581

spectively. The atoms which have a different predicate, e.g., closeby(obj1, obj2), will never be582

entailed by clause R0. Therefore, the corresponding values are filled with 0, which represents the583

index of the false atom.584

(Step 2) Assign Rule Weights. We assign weights to compose the policy with several action rules585

as follows: (i) We fix the target programs’ size as M , i.e. , where we try to find a policy with M586

action rules. (ii) We introduce C-dim weights W = [w1, . . . ,wM]. (iii) We take the softmax of each587

weight vector wj ∈W and softly choose M action rules out of C action rules to compose the policy.588

(Step 3) Perform Differentiable Inference. We compute 1-step forward reasoning using weighted589

action rules, then we recursively perform reasoning to compute T -step reasoning.590

[(i) Reasoning using an action rule] First, for each action rule Ci ∈ C, we evaluate body atoms for591

different grounding of Ci by computing b
(t)
i,j,k ∈ [0, 1]:592

b
(t)
i,j,k =

∏
1≤l≤L

gather(v(t), Ii)[j, k, l] (8)

17

(k = 0) jump(agent):-type(obj1, agent), type(obj2, enemy), closeby(obj1, obj2).
(k = 1) jump(agent):-type(obj2, agent), type(obj1, enemy), closeby(obj2, obj1).

j 0 1 2 3 4 5
G ⊥ ⊤ jump(agent) type(obj1, agent) type(obj2, agent) type(obj1, enemy)

I0,j,0,: [0, 0, 0] [1, 1, 1] [3, 6, 7] [0, 0, 0] [0, 0, 0] [0, 0, 0]
I0,j,1,: [0, 0, 0] [1, 1, 1] [4, 5, 8] [0, 0, 0] [0, 0, 0] [0, 0, 0]

j 6 7 8 . . .
G type(obj2, enemy) closeby(obj1, obj2) closeby(obj2, obj1) . . .

I0,j,0,: [0, 0, 0] [0, 0, 0] [0, 0, 0] . . .
I0,j,1,: [0, 0, 0] [0, 0, 0] [0, 0, 0] . . .

Table 3: Example of ground rules (top) and elements in the index tensor (bottom). Each fact has its
index, and the index tensor contains the indices of the facts to compute forward inferences.

where gather : [0, 1]G × NG×S×L → [0, 1]G×S×L is:593

gather(x,Y)[j, k, l] = x[Y[j, k, l]]. (9)

The gather function replaces the indices of the body state atoms by the current valuation values594

in v(t). To take logical and across the subgoals in the body, we take the product across valuations.595

b
(t)
i,j,k represents the valuation of body atoms for i-th rule using k-th substitution for the existentially596

quantified variables to deduce j-th fact at time t.597

Now we take logical or softly to combine all of the different grounding for Ci by computing598

c
(t)
i,j ∈ [0, 1]:599

c
(t)
i,j = softorγ(b

(t)
i,j,1, . . . , b

(t)
i,j,S) (10)

where softorγ is a smooth logical or function:600

softorγ(x1, . . . , xn) = γ log
∑

1≤i≤n

exp(xi/γ), (11)

where γ > 0 is a smooth parameter. Eq. 11 is an approximation of the max function over probabilistic601

values based on the log-sum-exp approach [Cuturi and Blondel, 2017].602

[(ii) Combine results from different action rules] Now we apply different action rules using the603

assigned weights by computing h
(t)
j,m ∈ [0, 1]:604

h
(t)
j,m =

∑
1≤i≤C

w∗
m,i · c

(t)
i,j , (12)

where w∗
m,i = exp(wm,i)/

∑
i′ exp(wm,i′), and wm,i = wm[i]. Note that w∗

m,i is interpreted as a605

probability that action rule Ci ∈ C is the m-th component of the policy. Now we complete the 1-step606

forward reasoning by combining the results from different weights:607

r
(t)
j = softorγ(h

(t)
j,1, . . . , h

(t)
j,M). (13)

Taking softorγ means that we compose the policy using M softly chosen action rules out of C608

candidates of rules.609

[(iii) Multi-step reasoning] We perform T -step forward reasoning by computing r
(t)
j recursively for610

T times: v(t+1)
j = softorγ(r

(t)
j , v

(t)
j). Finally, we compute v(T) ∈ [0, 1]G and returns vA ∈ [0, 1]GA611

by extracting only output for action atoms from v(T). The whole reasoning computation Eq. 8-13612

can be implemented using only efficient tensor operations. See App. E.2 for a detailed description.613

E.2 Implementation Details614

Here we provide implementational details of the differentiable forward reasoning. The whole615

reasoning computations in NUDGE can be implemented as a neural network that performs forward616

18

reasoning and can efficiently process a batch of examples in parallel on GPUs, which is a non-trivial617

function of logical reasoners.618

Each clause Ci ∈ C is compiled into a differentiable function that performs forward reasoning using619

the tensor. The clause function is computed as:620

C
(t)
i = softorγ3

(
prod2

(
gather1(Ṽ

(t), Ĩ)
))

, (14)

where gather1(X,Y)i,j,k,l = Xi,Yi,j,k,l,k,l
2 obtains valuations for body atoms of the clause Ci621

from the valuation tensor and the index tensor. prod2 returns the product along dimension 2, i.e. the622

product of valuations of body atoms for each grounding of Ci. The softorγ function is applied along623

dimension 3, on all the grounding (or possible substitutions) of Ci.624

softorγd is a function for taking logical or softly along dimension d:625

softorγd(X) = γ log
(
sumd exp(X/γ)

)
, (15)

where γ > 0 is a smoothing parameter, sumd is the sum function along dimension d. The results626

from each clause Ct
i ∈ RB×G is stacked into tensor C(t) ∈ RC×B×G.627

Finally, the T -time step inference is computed by amalgamating the inference results recursively. We628

take the softmax of the clause weights, W ∈ RM×C , and softly choose M clauses out of C clauses629

to compose the logic program:630

W∗ = softmax 1(W). (16)

where softmax 1 is a softmax function over dimension 1. The clause weights W∗ ∈ RM×C and631

the output of the clause function C(t) ∈ RC×B×G are expanded (via copy) to the same shape632

W̃∗, C̃(t) ∈ RM×C×B×G. The tensor H(t) ∈ RM×B×G is computes as633

H(t) = sum1(W̃
∗ ⊙ C̃), (17)

where ⊙ is element-wise multiplication. Each value H(t)
i,j,k represents the weight of k-th ground atom634

using i-th clause weights for the j-th example in the batch. Finally, we compute tensor R(t) ∈ RB×G635

corresponding to the fact that logic program is a set of clauses:636

R(t) = softorγ0(H
(t)). (18)

With r the 1-step forward-chaining reasoning function:637

r(V(t); I,W) = R(t), (19)

we compute the T -step reasoning using:638

V(t+1) = softorγ1
(

stack1
(
V(t), r(V(t); I,W)

))
, (20)

where I ∈ NC×G×S×L is a precomputed index tensor, and W ∈ RM×C is clause weights. After T -639

step reasoning, the probabilities over action atoms GA are extracted from V(T) as VA ∈ [0, 1]B×GA .640

2done with pytorch.org/docs/torch.gather

19

