This Supplementary Material accompanies paper: Characterizing the Optimal 0 — 1 Loss for Multi-
class Classification with a Test-time Attacker to NeurIPS 2023.

We first present proofs for lemmas from the main body in §A] We then explain fractional packing and
covering in §B] We present our algorithm for hyperedge finding in §C| §D|contains further details
about the experimental setup with all additional experimental results in

A Proofs

Proof of Lemma 1. This follows immediately from Lemma 2 with m = K. O

Proof of Lemma 2. Recall that the definition of the correct-classification probabilities is
gm,N(h)(z,y) = _inf min h(z,C
m ()(y) FEN(x) Ce([fj]):yec ()y

and the set of achievable correct-classification probabilities is

Ponva = |J [0 an(B)o).

heH veY

First, we will show Pp, v N 21, © {g € RV : ¢ >0, BS"q < 1}. The constraint h € Hsorts
0 < ¢y, n(h) < 1 holds because classification probabilities (&, C'),, must lie in the range [0, 1].

We will now demonstrate that the constraint Bgmq < 1 must also hold. Let e =
((z1,91), ..., (¢, y¢)) be a size-¢ hyperedge in £(=™). By construction of £(=™), there exists some

S ﬂle N(z;). Let S € ([fri]) be some superset of {y1,...,y,}, which exists because ¢ < m.
From the definition of g, x(h), we have that ¢, N (1) (2,,4:) < h(Z,S)y, foreach 1 <4 < /. Thus,

¢ ¢
> dm N (W)) < DB S)y, <D h(E,8); =1.
i=1 i=1 jey
This gives (B<™gq). < 1.
D{¢eRY:q>0, BSmg <1}

soft =

Now we will show P, v v

For any vector g in the polytope, we have a classifier i : X' X ([ﬁ]) — R that achieves at least those

correct classification probabilities. This mean that h has the following properties. First, h(zZ, L), > 0
and 35 s W(Z, L), = 1. Second, for all (z,y) € V, allZ € N(z),and all L € (151) such that
y € L, wehave h(Z, L), > qz,y)-

To get h, first define the function g : X' x (%)) — RI¥) 50 ¢(, L), = 0 fori ¢ L and g(2, L), =
max (0, sup{q(s,,y) : Ty € Vy, T € N(x,)}). Let L’ C L be the set of indices where g(7, L), > 0.
Then any list of vertices e = (z, : y € L', x, € V,,, & € N(x,)) forms a hyperedge of size |L'| < m.

Thus
Z g(z,L), = Z g(z,L), =sup Z Uz,,y) <supl=1.
yEe[K] yeL! ¢ yer ¢
To produce h, allocate the remaining probability (1 — v g(z, L),) to an arbitrary class. O

Proof of Lemma 3. The first part of this proof applies for any side-information size m. The
adversarial strategy for selecting C' is a specified by a conditional p.m.f. pc,(Cly). Thus

pyicWIC) = pcyy (Cly)py W)/ 32, pory (Cly)py (V).

The optimal loss of the classifier against a particular adversarial strategy is just a mixture of the
optimal losses for each class list:)~ pc, (Cly) Prp, (y)L*(P|(y € {4,7}), N, H).

If poyy (Cly) = peyy(Cly') for all y,y' € C, then py,c(y|C) = py(y)/ >, ccpy(y’) and the
adversary has not provided the classifier with extra information beyond the fact that y € C. Thus
PyiyPyc = Pl(y € C).

Now we can spcialize to the m = 2 case. Any stochastic matrix s with zeros on the diagonal specifies
an adversarial strategy for selecting C with pc, ({4, j}|¢) = s; ;. Furthermore, if s is also symmetric,

pc‘y({i,j}ﬁ) = pc‘y({i,j}U) and py‘c(i|{i,j}) = py‘c(j\{i,j}). Then the optimal classifier for
the side-information game uses the (12{) optimal classifiers for the two-class games and incurs loss
> PrlY =ila;js; ; where a; ; = L*(P|(y € {i,j}),H, N). Because the diagonal entries of a
are all zero, there is always a maximizing choice of s with a zero diagonal. Thus it is not necessary to
include that constraint on s when specifying the optimization. O

Proof of Lemma 4. If w = 0, then the lower bound is zero and holds trivially. Otherwise, ﬁw

forms a probability distribution over the vertices. Let X € V™ be a sequence of i.i.d. random vertices
with this distribution. From this sequence, we define a random independent set as follows. Include v
in the set if it appears in the sequence X before any of its neighbors in G. If v and v’ are adjacent,
at most one of them can be included, so this procedure does in fact construct an independent set.
The probability that X; = v is ;7. and the probability that X; is v or is adjacent to v is %.
The first time that the latter event occurs, v is either included in the set or ruled out. If w; > 0, the
probability that v is included in the set is ((Afﬁ and otherwise it is zero. Thus the quantity P(S

in Lemma 4 is the expected size of the random independent set and G must contain some independent
set at least that large. O

B Fractional packing and covering

In this section, we record some standard definition in fractional graph and hypergraph theory [8].

Let G = (V,&) be hypergraph and let B € R®*Y be its edge-vertex incidence matrix. That is,
B.,=1ifv € eand B, , = 0 otherwise. Let p € RY be a vector of nonnegative vertex weights.
Let O be the vector of all zeros and let 1 be the vector of all ones (of whichever dimensions are
required).

A fractional vertex packing in G is a vector ¢ € RY in the polytope
q>0 Bg<1.
The minimum weight fractional vertex packing linear program is

minp’q st. ¢>0 Bqg < 1.

A fractional hyperedge covering in G for weights p is a vector 2 € RY in the polytope
q>0 BTz >p.
The minimum weight fractional hyperedge covering linear program is

min1?z st. 2>0, BTz>p.

z
These linear programs form a dual pair.
The independent set polytope for G is the convex hull of the independent set indicator vectors.

Let G’ be a graph on the vertex set V. A clique in G’ is a subset of vertices in which every pair are
adjacent. Let C be the set of cliques of G’ and let C' € R€*V be the clique vertex incidence matrix.
(In fact this construction can be interpreted as another hypergraph on V.) A fractional clique cover in
G' for vertex weights p is a vector z € R€ in the polytope

>0 CTz>p.

Somewhat confusingly, the dual concept is called a fractional independent set in G’. This is a vector
q € RY in the polytope
¢gq>0 Cg¢g<Ll

C Hyperedge Finding

One challenge in computing lower bounds for 0 — 1 loss in the multi-class setting is that we need
to find hyperedges in the conflict hypergraph. In this section, we will consider an ¢, adversary:
N(z) = {2’ € X|||2' — z||]2 < €} and describe an algorithm for finding hyperedges within the
conflict graph.

We first note that for an n-way hyperedge to exist between n inputs {xz; }?* ;, {z;}; must all lie on
the interior of an n — 1-dimensional hypersphere of radius e.

Given input 21, ..., x, where z; € R9, we first show that distance between any two points in the
affine subspace spanned by the inputs can be represented by a distance matrix whose entries are the
squared distance between inputs. This allows us to compute the circumradius using the distance
information only, not requiring a coordinate system in high dimension. Then we find the circumradius
using the properties that the center of the circumsphere is in the affine subspace spanned by the inputs
and has equal distance to all inputs.

We construct matrix X € R?X" whose i*" column is input ;. Let D € R™*™ be the matrix of
squared distances between the inputs, i.e., D; ; = ||z; — x|

We first notice that D can be represented by X and a vector in R™ whose ‘" entry is the squared
norm of z;. Let A € R™ be such vector such that A; = ||z;]|?> = (X? X); ;. Then given that D; ; is
the squared distance between z; and x;, we have

Dy = llill® + llz;|1? = 2(wi,),
which implies that

D=A1T +1AT —2XTX.

Let o, B € R”™ be vectors of affine weights: 17w = 173 = 1. Then X v and X /3 are two points in the

affine subspace spanned by the columns of X. The distance between X o and X 3 is w

shown as below:
—(a=B)TD(a-8) —(a—-pB)TA1T +1AT —2XTX)(a - B)
2 2
—(04+0-2(a—B)T'XTX(a— B))
2

>

[Xa — X8>

Now we compute the circumradius using the squared distance matrix D. The circumcenter is in
the affine subspace spanned by the inputs so we let X« to be the circumcenter where 17 = 1.

Let e € R™ be the i*" standard basis vector. The distance between the circumcenter and z; is
—(a—eNT D(a—e®)
5 .

| X — Xe®]|2. From previous computation, we know that || X o — Xe® |2 =
Since the circumcenter has equal distance to all inputs, we have

(a—eMNTD(a—eM)=... = (a — ™) D(a — ™). (1)

Note that the quadratic term in « is identical in each of these expressions. In addition, e De() = (
for all 7. So equation|[I]simplifies to the linear system
eDTDa=¢ = Da=cl
= a=cD!1
for some constant ¢. Since 1T« = 1, we have
1=1Ta=c1"D™"1

1
= -=1"p™1
C

assuming that D is invertible. The square of the circumradius, 72, which is the squared distance
between the circumcenter and x1, is

[Xa— XeM|?
—(a—eMTD(a —eM)
N 2
o' Da

—eWTDa —

A21Tp-11
2

=C —

2
B 1
T 21TD-11°

Therefore, assuming matrix D is invertible, the circumradius is \/ﬁ.
det D

: _ —1 _ .detD 2 _
ade.Smcea—cD 1,wehavea—cade1.Asr =

constant c is non-negative. Therefore, o < ﬁigjt. g 1.

The inverse of D can be computed as

£
27

When all entries of o are non-negative, the circumcenter is a convex combination of the all inputs
and the circumsphere is the minimum sphere in R"~! that contains all inputs. Otherwise, the
circumsphere of {x;|a; > 0} is the minimum sphere contains all inputs.

After finding the radius of the minimum sphere that contains all inputs, we compare the radius with
the budget e. If the radius is no larger than ¢, then there is a hyperedge of degree n among the inputs.

D Experimental Setup

In this section, we describe our experimental setup. Our code for computing bounds is also available
athttps://github.com/inspire-group/multiclass_robust_1bl

Datasets: We compute lower bounds for MNIST [6], CIFAR-10, and CIFAR-100 [5]]. Since we do
not know the true distribution of these datasets, we compute lower bounds based on the empirical
distribution of the training set for each dataset.

Attacker: We will consider an ¢ adversary: N(z) = {2’ € X|||a’ — z||2 < €}. This has been used
in most prior work [3,[7,(9].

LP solver: For solving the LP in Equation (4), we primarily use the Mosek LP solver [2]. When the
Mosek solver did not converge, we default to using CVXOpt’s LP solver [L1]].

Computing infrastructure. In order to compute lower bounds, we perform computations across 10
2.4 GHz Intel Broadwell CPUs. For adversarial training, we train on a single A100 GPU.

Training Details For MNIST, we use 40-step optimization to find adversarial examples during
training and use step size 5 and train all models for 20 epochs. For CIFAR-10 and CIFAR-100, we
use 10 step optimization to find adversarial examples and step size < and train models for 100 epochs.
For MNIST TRADES training, we use 8 = 1 and for CIFAR-10 and CIFAR-100, we use 3 = 6.
Additionally, for CIFAR-10 and CIFAR-100, we optimize the model using SGD with learning rate

and learning rate scheduling from [4]. For MNIST, we use learning rate 0.01.

Architectures used: For CIFAR-10 and CIFAR-100, we report results from training a WRN-28-10
architecture. For MNIST, we train a small CNN architecture consisting of 2 convolutional layers,
each followed by batch normalization, ReLU, and 2 by 2 max pooling. The first convolutional layer
uses a 5 by 5 convolutional kernel and has 20 output channels. The second convolutional layer also
uses a 5 by 5 kernel and has 50 output channels. After the set of 2 convolutional layers with batch
normalization, ReLU, and pooling, the network has a fully connected layer with 500 output channels
followed by a fully connected classifier (10 output channels). In §E.8] we consider the impact of
architecture on closing the gap to the optimal loss.

https://github.com/inspire-group/multiclass_robust_lb

E Additional Experimental Results

In this Section, we provide additional experimental results to complement those from the main body
of the paper. We organize it as follows:

) We analyze a toy problem on 2D Gaussian data to get a better understanding of the
impact of hyperedges on the optimal loss computation.

e §E.2} We investigate why higher degree hyperedges dp not have a large impact on lower
bounds at lower values of e.

e §E.3F We show the runtime explosion at higher values of e that makes it challenging for us
to report optimal loss values.

e §E.4} Classwise L2 distance statistics and heatmaps for pairwise losses used to compute
class-only lower bounds in main paper.

o §E.5 We provide results with standard PGD-based adversarial training, and show it is
outperformed by Trades.

e §E.6 We provide results on the CIFAR-100 dataset.

e §E.7t We show lower bounds for a different set of 3 classes than the one considered in the
main body. Main takeaways remain the same.

e §E.8} We ablate across larger neural networks to check if increasing capacity reduces the
gap to optimal.

e §E.9} We attempt dropping examples from the training set that even the optimal clasifier
cannot classify correctly in order to improve convergence.

. We compute lower bounds on the test set for MNIST 3-class classification

E.1 Results for Gaussian data

Figure 1: A sample 3-class Gaussian problem (each color pertains to a class) and a corresponding
classifier for this problem shown in black. The classifier classifies a sample incorrectly when it lies
over the edge of the e margin (shown by the red lines) nearest the corresponding Gaussian center.

We begin with a 3-way classification problem on 2D Gaussian data. To generate our Gaussian dataset,
we sample 1000 points per class from 3 spherical Gaussians with means at distance 3 away from
from the origin (a sample is shown in Figure[I). We compute multiclass lower bounds via the LP
in Lemma on robust accuracy at various ¢» budget € and display these values in Figure[2|as L*(3).
Additionally, we compare to a deterministic 3 way classifier. This classifier is the best performing out
of the 2 strategies: 1) constantly predict a single class (thus achieving % loss) or 2) is the classifier
in black in Figure [T| which classifies incorrectly when a sample lies over the edge of the nearest e
margin of the classifier.

We observe that at smaller values of ¢, the loss achieved by the 3-way classifier matches optimal
loss (L*(3)); however, after e = 2.5 for 02 =0.05 and € = 2.3 for 02 = 0.5, we find the classifier
no longer achieves optimal loss. This suggests that there is a more optimal classification strategy
at these larger values of e. In Figures [3|and [we visualize the distribution of correct classification
probabilities obtained through solving the LP with and without considering hyperedges. These figures
are generated by taking a fresh sample of 1000 points from each class and coloring the point based on
the correct classification probability ¢,, assigned to its nearest neighbor that was used in the conflict

0.8/ —o— L*(2) 0.8/ —o— L*(2)
—m— L7(3) —=— L"(3)
0 0.6 —4— Classifier loss 0.6 —a— Classifier loss
w0 %]
o o
0.4 ~0.4
o
0.2 0.2
0.0 0.0
20 21 22 23 24 25 26 27 28 15161.718192.021222324252.6
& 3
2 2 _
(a) 02 =0.05 (b)e? =0.5

Figure 2: Lower bounds on error for the Gaussian 3-class problem (02 = 0.05 and 0? = 0.5)
computed using only constraints from edges (L*(2)) and up to degree 3 hyperedges (L*(3)) in
comparison to the performance of the deterministic 3-way classifier depicted in Figure

hypergraph when computing the lower bound. We observe from Figure 3] for all classes, the data are
mostly assigned classification probabilities around 0.5. In Figure[d] we can see that when we consider
hyperedges, we some of these 0.5 assignments are reassigned values close to % and % Interestingly,
we notice that when we do not consider hyperedges, our solver finds an asymmetric solution to the
problem (strategies for class 0, 1, and 2 differ) while when considering hyperedges this solution

becomes symmetric.

1.0

0.0

(a) Class 0 (b) Class 1 (c) Class 2

Figure 3: Distribution of optimal classification probabilities across samples from each class of the
Gaussian obtained as a solution when computing L*(2).

1.0

0.0

(a) Class 0 (b) Class 1 (c) Class 2

Figure 4: Distribution of optimal classification probabilities across samples from each class of the
Gaussian obtained as a solution when computing L*(3).

E.2 TImpact of hyperedges

In Figure 5] we show the count of edges, degree 3 hyperedges, and degree 4 hyperedges found in
the conflict hypergraphs of the MNIST, CIFAR-10, and CIFAR-100 train sets. We note that we did

not observe any increase in loss when considering degree 4 hyperedges at the € with a data point for
number of degree 4 hyperedges in Figure[5] We find that the relative number of edges and hyperedges
is not reflective of whether we expect to see an increase in loss after considering hyperedges. For
example in CIFAR-10, at € = 4.0, we there are about 100 times more hyperedges than edges, but
we see no noticeable increase in the 0 — 1 loss lower bound when incorporating these hyperedge
constraints.

—e— Edges Degree 3 hyperedges —— Degree 4 hyperedges

MNIST CIFAR-10 CIFAR-100

107 |
= 107
6
. ///‘ = 2"’ ///”/A
> 3
o o
(%) ()

108 104
10°
100 102

15 2.0 2.5 3.0 35 20 25 3.0 35 4.0 45 5.0 20 25 3.0 35 40 45 5.0
& & &

count

(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 5: Number of edges, degree 3 hyperedges, and degree 4 hyperedges found in the conflict
hypergraphs of MNIST, CIFAR-10, and CIFAR-100 train sets. The red vertical line indicates the € at
which we noticed an increase in the 0 — 1 loss lower bound when considering degree 3 hyperedges.

To understand why including more information about hyperedges does not influence the computed
lower bound much, we examine the distribution of ¢, obtained from solutions to the LP with (L*(3))
and without degree 3 hyperedges (L*(2)). Fig. E] contains a histogram of the distributions of g,
for MNIST. For small ¢, there is no change in the distribution of g, the distribution of g, is almost
identical between L*(2) and L*(3). At larger values of €, in L*(2), a significant fraction of vertices
are assigned ¢, near 0.5. While these shift with the addition of hyperedges, very few of them were in
triangles of G=2 that were replaced by a hyperedge in G=3. This leads to the loss value changing
minimally.

Similar to Figure [6] we plot the distribution of vertex weights g,, obtained through solving the LP
for L*(2) and L*(3) for CIFAR-10 in Figure[7] Similar to trends for MNIST, we find that the gap
between L*(2) and L*(3) only occurs when the frequency of 0.5 weights is higher.

L*(2) L7(3)

Distribution of g, for e=2.5 Distribution of g, for €=3.0 Distribution of g, for e=3.5

1.0

1.0

1.0
0.8 0.8 0.8
> > >
Y0.6 0.6 Y0.6
[o [
& & &
90.4 904 90.4
0.2 0.2 0.2
0.0 0.0 H» — e W L 0= = 0.0
7 000 025 0.50 0.75 1.00 7 0.00 025 0.50 0.75 1.00 7 000 025 0.50 0.75 1.00
qv qv av
(@)e=25 (b)e=3.0 (c)e=35

Figure 6: Distribution of optimal classification probabilities ¢ obtained by solving the LP with up to
degree 2 hyperedges (m = 2) and up to degree 3 hyperedges (m = 3) on the MNIST training set.

E.3 Computational complexity of computing lower bounds

Our experiments of L*(3) and L*(4) at higher € are limited due to computation constraints. Figure
we see that the time taken to compute the L*(3) grows rapidly with e. We also report timings for all
bounds for CIFAR-10 at € = 4 in Table[l] In future work, we are seeking algorithmic optimization to
achieve more results at high e.

L*(2) L*(3)

Distribution of g, for €=3.5 Distribution of g, for e=4.0 Distribution of g, for e=4.5

o
©
o
©
o
o

frequency
o
=
frequency
o o
B =
frequency
<
IS

I
>
o
N

0.2 0.2
0.0 ODO_IO o 0.0 A 0.0 m — o
. 25 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
av av av
(a)e =3.5 (b)e =4.0 (c)e=4.5

Figure 7: Distribution of optimal classification probabilities ¢ obtained by solving the LP with up to
degree 2 hyperedges (L*(2)) and up to degree 3 hyperedges (L*(3)) on the CIFAR-10 training set.

—— L7(2) L*(3)
MNIST CIFAR-10
10° 104
10°
B0 L2102
[[
é 10t g 108
10°
— . el
2.0 255 30 35 470 2.0 255 3.0 35 470 475 5.0 5.5 6.0
€ €
(a) MNIST (b) CIFAR-10

Figure 8: Time taken to compute L*(2) and L*(3) for MNIST and CIFAR-10.

E.4 Classwise statistics and pairwise losses

In order to have a better understanding of the difficulty of the classification task under the presence of
an ¢, bounded adversary, we report the average ¢ to the nearest neighbor of another class for each
class in the MNIST and CIFAR-10 datasets in Table 2]

Another way of understanding the relative difficulty of classifying between classes is by computing
the optimal loss for all 1v1 binary classification tasks. We note that these values are used in Section
4.2 to compute a lower bound on the optimal loss in the 10-class case from maximum weight coupling
over optimal losses for 1v1 binary classification problems. In Figure 0] we show the heat maps
for optimal losses for each pair of 1v1 classification problems for ¢ = 3 on MNIST and € = 4 on
CIFAR-10. We find that for both datasets only a few pairs of classes have high losses. Specifically,
for MNIST, we find that the class pairs 4-9 and 7-9 have significantly higher loss than all other pairs
of classes. For CIFAR-10, we find that 2-4 has the highest loss compared to other pairs, and 2-6 and
6-4 are also quite high.

E.5 Additional adversarial training results

In Figure[T0] we also add the loss achieved by PGD adversarial training. We find that this approach
generally performs worse on MNIST compared to TRADES and is also unable to fit to CIFAR-10
data at the € values tested.

E.6 Truncated hypergraph lower bounds for CIFAR-100

We provide results for truncated hypergraph lower bounds for the CIFAR-100 train set. We observe
that similar to MNIST and CIFAR-10, including more hyperedge constraints does not influence the
computed lower bound.

Loss bound | Runtime (s)

7 (2) 188.24
L*(3) 10413.91
L*(4) >86400
L*(2) 327.92
Lew 192.27

Table 1: Runtimes for computing different bounds for CIFAR-10 dataset at e = 4. We note that the
L?,(2) reports the time for computing all pairwise losses sequentially and can be sped up by running
these computations in parallel. We also note that L*(4) computation did not terminate within a day.

0 1 2 3 4 5 6 7 8 9

MNIST | 7.07 | 433 | 694 | 629 | 5.72 | 6.29 | 6.42 | 552 | 6.29 | 5.15
CIFAR-10 | 8.96 | 10.84 | 8.48 | 9.93 | 822 | 10.04 | 872 | 10.05 | 9.23 | 10.91
Table 2: Average {5 distance to nearest neighbor in another class for each class in MNIST and
CIFAR-10 datasets.

E.7 Computed bounds for a different set of 3-classes

In Figure we plot 3-class lower bounds via truncated hypergraphs (L*(2) and L*(3)) for a
different set of 3 classes as shown in the main body. These classes generally have less similarity than
the classes shown in the main body of the paper causing the loss bound to increase more slowly as
epsilon increases. However, we find that patterns observed for the 3 classes present in the main body
of the paper are also present here: the gap between L*(2) and L*(3) is only visible at large values of
0-1 loss (ie. loss of 0.4).

E.8 Impact of architecture size

Previously, we saw that adversarial training with larger values of € generally fails to converge (leading
to losses matching random guessing across 3 classes). We now investigate whether increasing model
capacity can resolve this convergence issue. In Figure we plot the training losses of 3 WRN
architectures commonly used in adversarial ML research across attack strength e for the 3-class
CIFAR-10 (classes 0, 2, 8) problem. All models are trained with TRADES adversarial training.
Interestingly, we find that the benefit of larger architecture size only appears for the smallest value of
epsilon plotted (e = 1) at which the optimal classifier can theoretically obtain O loss. At larger values
of epsilon, the improvement in using larger architecture generally disappears.

E.9 Impact of dropping "hard" examples

From our experiments involving adversarial training, we found that training with large values of
€ generally fails to converge. A potential way of trying to improve convergence using the results
from our LP is to drop examples with optimal classification probability less than 1 and train with
the remaining examples. Since even the optimal classifier cannot classify these examples correctly,
these examples can be considered "hard" to learn. We find that in practice this does not lead to lower
training loss; specifically, training without "hard" examples leads to a loss of 0.64 for CIFAR-10 with
€ = 3 while training with "hard" examples leads to a loss 0.57. We note that this loss is computed
over the entire training dataset (including "hard" examples) for both settings.

E.10 Lower bounds on test set

In the main text, we computer lower bounds on the train set as this would measure how well existing
training algorithms are able to fit to the training data. In Table |3} we compute lower bounds on the
test set (which contains 1000 samples per class) for MNIST 3-class classification between classes 1,
4, and 7. We find that the computed loss is similar to what is computed on a subset of the train set
which contains the same number of samples per class.

MNIST pairwise loss when £=3

0-

.
-l

Class

N~ o u > oW

CIFAR-10 pairwise loss when =4

0.200

0.175

. . 0.150

0.125

. . 0.100
. . 0.075
-0.050

-0.025

-0.000

Class

(b) CIFAR-10 (e = 4)

Figure 9: Heat maps for optimal loss for each pair of 1v1 classification problems.

0.30
ol
1- 0.25
N
3- 0.20
al
3 =l
O5-
6- 0.10
" N |
8- -0.05
o H N
6 1 2 3 4 5 6 7 8 9 1000
Class
(a) MNIST (e = 3)
0.8
» 0.6 i:
wn
o
—~0.4 .
& —Q—L*(Z)
—m— L7(3)
0.2 —&— TRADES-AT
—— PGD-AT
005" 25 30 35 40 45 50

&

(a) MNIST (1,7, 9)

0.8

0.6

loss

~0.4
o

0.2

0.0

o

L"(2)
L"(3)
TRADES-AT
PGD-AT

—a=
—
——

—_——

3.0 35 40 45 50 55 6.0 65 7.0

£

(b) CIFAR-10 (0, 2, 8)

Figure 10: Lower bounds on error for MNIST and CIFAR-10 3-class problems (1000 samples per
class) computed using only constraints from edges (L*(2)) and up to degree 3 hyperedges (L*(3)) in
comparison to TRADES adversarial training (TRADES-AT) and PGD adversarial training (PGD-AT)

£

*©°2.0 2.5 3.0 3.5 4.0 45 5.0 55 6.0 6.5

Figure 11: Lower bounds for optimal 0-1 loss the for CIFAR-100 train set

loss.
0.8
—— L7(2)
0.61 —m— L*(3)
g —— L(4)
=0.4
i
o
0.2
0.0
MNIST Class 2, 5, 8
0.6 —— L7(2)
—m— L*(3)
7 0.4
k]
=
©0.2
00507725 30 35 40 45 50
&

(a) MNIST (2, 5, 8)

CIFAR-10Class 1, 4, 9

—— L7(2)
—m— L7(3)

0.0

3.0 35 40 45 50 55 6.0 65 7.0
&

(b) CIFAR-10 (1, 4, 9)

Figure 12: Lower bounds on error for MNIST and CIFAR-10 3-class problems (1000 samples per
class) computed using only constraints from edges (L*(2)) and up to degree 3 hyperedges (L*(3))

10

—— L"(3)

08 WRN-28-10
—&— WRN-34-10
—— WRN-70-16

0.2 ~

0.0

10 15 20 25 3.0 35 40 45 5.0
&

Figure 13: Impact of architecture size on training loss for 3-class CIFAR (0, 2, 8) at different strengths
€ for models trained with TRADES adversarial training.

. train set
€ train set (1000 samples per class) test set
2 0.0045 0.0020 0.0025
2.5 | 0.0260 0.0193 0.0149
3 0.1098 0.0877 0.0773
3.5 | 0.2587 0.2283 0.2181
4 0.4083 0.3987

Table 3: Optimal losses L*(3) for MNIST 3 class problem (classes 1, 4, 7) computed across the train
set, the first 1000 samples of each class in the train set, and computed across the test set.

11

References

[1] M. S. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: Python software for convex optimization,
2013.

[2] M. ApS. MOSEK Optimizer API for Python 10.0.22, 2019.

[3] A.N. Bhagoji, D. Cullina, and P. Mittal. Lower bounds on adversarial robustness from optimal
transport. In Advances in Neural Information Processing Systems, pages 74967508, 2019.

[4] S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli. Uncovering the limits of adversarial training
against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

[5] A.Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.
[6] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. 1998.

[71 M. S. Pydi and V. Jog. Adversarial risk via optimal transport and optimal couplings. In
Proceedings of the 37th International Conference on Machine Learning, pages 7814-7823, 2020.

[8] E. R. Scheinerman and D. H. Ullman. Fractional Graph Theory: A Rational Approach to the
Theory of Graphs. Wiley, Sept. 1997. Google-Books-ID: KujuAAAAMAAJ.

[9] N. G. Trillos, M. Jacobs, and J. Kim. The multimarginal optimal transport formulation of
adversarial multiclass classification. Journal of Machine Learning Research, 24(45):1-56, 2023.

12

	Proofs
	Fractional packing and covering
	Hyperedge Finding
	Experimental Setup
	Additional Experimental Results
	Results for Gaussian data
	Impact of hyperedges
	Computational complexity of computing lower bounds
	Classwise statistics and pairwise losses
	Additional adversarial training results
	Truncated hypergraph lower bounds for CIFAR-100
	Computed bounds for a different set of 3-classes
	Impact of architecture size
	Impact of dropping "hard" examples
	Lower bounds on test set

