
A More Details on Time Series Line Graph Image Creation1

Implementation. The time-series-to-image transformation can be implemented using the Matplotlib2

package1 with the following few lines of code.

1 def TS2Image(t, v, D, colors, image_height, image_width, grid_height, grid_width):
2 import matplotlib.pyplot as plt
3 plt.figure(figsize=(image_height/100, image_width/100), dpi=100)
4 for d in range(D): # enumerate the multiple variables
5 plt.subplot(grid_height, grid_width, d+1) # position in the grid
6 # plot line graph of variable d
7 plt.plot(t[d], v[d], color=colors[d], linestyle="-", marker="*")
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In addition to the designs mentioned in the main paper for plotting line graph images, we also explore4

the following aspects.5

Axis Limits of Line Graphs. The axis limits determine the plot area of the line graphs and the6

range of displayed timestamps and values. By default, we set the limits of the x-axis and y-axis as the7

ranges of all the observed timestamps and values across the dataset. However, we found that some8

extreme observed values for some variables can make the range of the y-axis very large, causing most9

plotted points of observations to cluster in a small area and resulting in flat line graphs. Common10

normalization and standardization methods will not solve this issue, as the relative magnitudes remain11

unchanged in the created images. We thus tried the following strategies to remove extreme values12

and narrow the range of the y-axis:13

• Interquartile Range (IQR): IQR is one of the most extensively used methods for outlier14

detection and removal. The interquartile range is calculated based on the first and third15

quartiles of all the observed values of each variable in the dataset and then used to calculate16

the upper and lower limits.17

• Standard Deviation (SD): The upper and lower boundaries are calculated by taking 3 standard18

deviations from the mean of observed values for each variable across the dataset. This19

method usually assumes the data is normally distributed.20

• Modified Z-score (MZ): A z-score measures how many standard deviations away a value is21

from the mean and is similar to the standard deviation method to detect outliers. However,22

z-scores can be influenced by extreme values, which modified z-scores can better handle.23

We set the upper and lower limits as the values whose modified z-scores are 3.5 and -3.5.24

We show examples of the created images with these strategies in Figure 1.25

Table 1: Ablation study on different strategies to decide the line graph limit. The default strategy is to
directly set the axis limit as the range of all observed values on the dataset. “IQR”, “SD”, and “MZS’
denote three strategies to remove extreme value, i.e., Interqurtile Range, Standard Deviation, and
Modified Z-score. The reported numbers are averaged on 5 data splits.

P19 P12 PAM
Strategies AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Default 89.4± 1.9 52.8± 3.8 85.6± 1.1 49.8± 2.5 96.1± 0.7 96.8± 1.1 96.5± 0.7 96.6± 0.9

IQR 88.2± 0.8 49.6± 1.7 84.5± 1.1 48.9± 2.6 95.9± 0.7 96.8± 0.7 96.1± 0.7 96.4± 0.7

SD 87.4± 1.6 51.2± 3.6 84.6± 1.7 47.1± 2.9 96.6± 0.9 97.1± 0.8 97.0± 0.6 97.0± 0.7

MZS 87.3± 1.0 50.8± 3.7 84.3± 1.4 47.1± 2.1 96.0± 1.1 96.8± 0.99 96.4± 0.9 96.6± 0.9

The performance comparison of models trained on images created with different strategies is shown26

in Table 1. We observe that the methods that remove extreme values hurt the performance, except for27

SD on the PAM dataset. Although these methods narrow the value range and highlight the dynamic28

patterns of line graphs, they discard the extreme values which might be informative themselves. This29

observation suggests that our approach may not require additional data preprocessing on the time30

series, further demonstrating its advantage in simplicity.31

1https://matplotlib.org/
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(a) P19 (b) P12 (c) PAM

Figure 1: The images created with different strategies for three samples from P19, P12, and PAM
dataset, respectively (sample “p000019” for P19, “132548” for P12, and “0” for PAM).
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Table 2: Ablation study on grid layouts and image
sizes on P19.

Grid Layout Image Size AUROC AUPRC

4× 9 256× 576 87.4± 1.9 48.1± 4.5

5× 7 320× 448 87.9± 1.9 49.6± 2.7

6× 6 384× 384 89.4± 1.9 52.8± 3.8

6× 6 224× 224 88.7± 1.4 52.3± 0.6

Table 3: Ablation study on grid layouts and image
sizes on P12.

Grid Layout Image Size AUROC AUPRC

4× 9 256× 576 84.0± 1.4 47.9± 2.6

5× 8 320× 512 84.1± 1.6 47.2± 2.3

6× 6 384× 384 85.6± 1.1 49.8± 2.5

6× 6 224× 224 85.2± 2.1 48.8± 3.7

Table 4: Ablation study on grid layouts and image sizes on PAM.

Grid Layout Image Size Accuracy Precision Recall F1 score

2× 9 128× 576 95.9± 1.4 96.5± 1.0 95.9± 1.2 96.0± 0.5

3× 6 192× 384 96.1± 0.8 96.7± 0.5 95.9± 0.9 96.2± 0.7

4× 5 256× 320 96.1± 0.7 96.8± 1.1 96.5± 0.7 96.6± 0.9

4× 5 224× 224 95.9± 0.6 96.7± 0.8 95.9± 0.6 96.3± 0.7

Grid Layout and Image Size. We conducted experiments to study the impact of grid layouts and32

image sizes on the performance of our approach. For a fair comparison of different grid layouts,33

we fixed the size of each grid cell as 64 × 64 and altered the grid layouts. The results on the P19,34

P12, and PAM datasets are listed in Table 2, Table 3, and Table 4, respectively. We observed that the35

square grid layouts consistently produced good results on all three datasets. We conjecture that this36

is because the square layout ensures that the distance between any two line graphs is shortest. We37

also tested the performance with the standard image size of 224× 224 and found that the differences38

were marginal, indicating the robustness of our approach to various image sizes.39

B More Experimental Details40

B.1 Datasets41

We used the datasets processed by [7], whose details are given below.42

P19: PhysioNet Sepsis Early Prediction Challenge 2019. 2 The P19 dataset [5] consists of clinical43

data for 38,803 patients, and aims to predict whether sepsis will occur within the next 6 hours. The44

dataset includes 34 irregularly sampled sensors with 8 vital signs and 26 laboratory values for each45

patient, as well as 6 demographic features. To process the static features, we use templates outlined46

in Table 5, and utilize a pre-trained Roberta-base model to extract textual features. These textual47

features are then combined with visual features obtained from the vision transformer to perform48

binary classification. The dataset is highly imbalanced with only 4% of samples being positive, and49

has a missing ratio of 94.9%.50

P12: PhysioNet Mortality Prediction Challenge 2012. 3 P12 dataset [2] includes clinical data51

from 11,988 ICU patients, with 36 irregularly sampled sensor observations and 6 static demographic52

features provided for each patient. The goal is to predict patient mortality, which is a binary53

classification task. The dataset is highly imbalanced, with around 86% of samples being negative.54

The missing ratio of the dataset is 88.4%.55

PAM: PAMAP2 Physical Activity Monitoring. 4 The PAM dataset originally contains data of 1856

physical activities with 9 subjects wearing 3 inertial measurement units. However, to make it suitable57

for irregular time series classification, [7] excluded the ninth subject due to its short length of sensor58

readouts, and 10 out of the 18 activities that had less than 500 samples were also excluded. As a59

result, the task is an 8-way classification with 5,333 samples, each with 600 continuous observations.60

To simulate the irregular time series setting, 60% of the observations are randomly removed. No61

static features are provided, and the 8 categories are approximately balanced. The missing ratio is62

60.0%.63

2https://physionet.org/content/challenge-2019/1.0.0/
3https://physionet.org/content/challenge-2012/1.0.0/
4https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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Table 5: Templates for transforming static features to natural language sentences.
Dataset Static features Template Example

P19

Age, Gender, Unit1 (medi-
cal ICU), Unit2 (surgery
ICU), HospAdmTime;
ICULOS (ICU length-of-
stay)

A patient is {Age} years old,
{Gender}, went to {Unit1&Unit2}
{HospAdmTime} hours after hospi-
tal admit, had stayed there for {ICU-
LOS} hours.

A patient is 65 years old,
female, went to the med-
ical ICU 10 hours after
hospital admit, had stayed
there for 20 hours.

P12
RecordID, Age, Gender,
Height (cm), ICUType,
Weight (kg)

A patient is {Age} years old, {Gen-
der}, {Height} cm, {Weight} kg,
stayed in {ICUType}.

A patient is 48 years old,
male, 171 cm, 78 kg,
stayed in surgical ICU.

Table 6: Ablation studies on different methods to encode static features.

P19 P12
Methods AUROC AUPRC AUROC AUPRC

Raindrop 87.0± 2.3 51.8± 5.5 82.8± 1.7 44.0± 3.0

Swin 89.4± 1.8 50.2± 3.0 84.3± 0.6 49.3± 3.7

Swin-MLP 88.6± 1.3 51.4± 3.7 84.6± 0.9 48.7± 3.2

Swin-Roberta 89.4± 1.9 52.8± 3.8 85.6± 1.1 49.8± 2.5

B.2 Experiments on Static Features64

Time series data is often associated with information from other modalities, such as the textual65

clinical notes in electronic health records (EHRs) in the healthcare domain. Our approach is naturally66

suitable for incorporating such information since we convert time series data to images, and thus67

various vision-language and multi-modal techniques can be utilized to incorporate the visual (time68

series) information and information from other modalities. For example, the CLIP [4] learns a shared69

hidden feature space where the paired image and text stay close. Under our framework, such a shared70

space can also be learned for the paired visual time series images and textual clinical notes, which is71

our future direction. It also paves the way for the application of multi-modal models such as GPT-72

4 [3] to handle the visualized time series data and the clinical notes simultaneously. In our current73

experiments, we used a text encoder, Roberta-base, to encode textual demographic information in the74

P19 and P12 datasets. We also experimented with normalizing the original categorical features and75

encoding them using an MLP as in previous work, and compare with the strong baseline, Raindrop.76

The results are shown in Table 6. We observe that even without using static features, our method has77

already outperformed Raindrop. In addition, utilizing Roberta to encode and incorporate the textual78

feature is more effective than applying MLP over categorical features.79

Table 7: The statistics and hyperparameter settings of the evaluated regular multivariate time series
datasets.

Datasets Variables Classes Length Train size Grid layout Image size Learning rate Epochs

EC 3 4 1,751 261 2× 2 256× 256 1e-4 20
UW 3 8 315 120 2× 2 256× 256 1e-4 100
SCP1 6 2 896 268 2× 3 256× 384 1e-4 100
SCP2 7 2 1,152 200 3× 3 384× 384 5e-5 100
JV 12 9 29 270 4× 4 384× 384 1e-4 100
SAD 13 10 93 6599 4× 4 384× 384 1e-5 20
HB 61 2 405 204 4× 4 384× 384 1e-4 100
FD 144 2 62 5890 12× 12 384× 384 5e-4 100
PS 963 7 144 267 32× 32 384× 384 5e-4 100
EW 6 5 17984 128 2× 3 256× 384 2e-5 100

B.3 Experiment on Regular Time Series80

We selected ten representative multivariate time series datasets from the UEA Time Series Classifica-81

tion Archive [1] with diverse characteristics, including the number of classes, variables, and time82

series length. The datasets we chose are EthanolConcentration (EC), Handwriting (HW), UWaveGes-83

tureLibrary (UW), SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2), JapaneseVowels (JV),84

SpokenArabicDigits (SAD), Heartbeat (HB), FaceDetection (FD), PEMS-SF (PS), and EigenWorms85
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(EW). Notably, the PS dataset has an exceptionally high number of variables (963), while the EW86

dataset has extremely long time series (17984). These two datasets allow us to assess the effectiveness87

of our approach when dealing with large numbers of variables and long time series. We applied88

different image sizes according to the grid layouts for these datasets. The hyperparameter settings89

are provided in Table 7, and we applied cutout data augmentation methods to SCP1, SCP2, and JV90

datasets due to the small size of their training sets.91

B.4 Self-supervised Learning92

We preliminary explored masked image modeling self-supervised pre-training on the time series line93

graph images. We randomly mask columns of patches with a width of 32 on each line graph within a94

grid cell. The masking ratio is set as 50%. We finetuned the Swin Transformer model for 10 epochs95

with batch size 48. The learning rate is 2e-5. Following [6], we use a linear layer to reconstruct the96

pixel values and employ an ℓ1 loss on the masked pixels:97

L =
1

Ω(pM)
∥p̂M − pM∥1 , (1)

where pM and p̂M are the masked and reconstructed pixels, respectively; Ω(·) denotes the number of98

elements.99

B.5 Full Experimental Results100

We presented the full experimental results in the leave-sensors-out settings in Table 8, and the full101

results of ablation studies on backbone vision models are presented in Table 9.102

Table 8: Full results in the leave-sensors-out settings on PAM dataset. The “missing ratio” denotes
the ratio of masked variables.

Missing
ratio Methods PAM (Leave-fixed-sensors-out) PAM (Leave-random-sensors-out)

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10%

Transformer 60.3± 2.4 57.8± 9.3 59.8± 5.4 57.2± 8.0 60.9± 12.8 58.4± 18.4 59.1± 16.2 56.9± 18.9

Trans-mean 60.4± 11.2 61.8± 14.9 60.2± 13.8 58.0± 15.2 62.4± 3.5 59.6± 7.2 63.7± 8.1 62.7± 6.4

GRU-D 65.4± 1.7 72.6± 2.6 64.3± 5.3 63.6± 0.4 68.4± 3.7 74.2± 3.0 70.8± 4.2 72.0± 3.7

SeFT 58.9± 2.3 62.5± 1.8 59.6± 2.6 59.6± 2.6 40.0± 1.9 40.8± 3.2 41.0± 0.7 39.9± 1.5

mTAND 58.8± 2.7 59.5± 5.3 64.4± 2.9 61.8± 4.1 53.4± 2.0 54.8± 2.7 57.0± 1.9 55.9± 2.2

Raindrop 77.2± 2.1 82.3± 1.1 78.4± 1.9 75.2± 3.1 76.7± 1.8 79.9± 1.7 77.9± 2.3 78.6± 1.8

ViTST 92.7± 0.9 94.2± 0.9 93.2± 0.4 93.6± 0.6 88.4± 1.4 92.3± 0.5 88.6± 1.9 89.8± 1.5

20%

Transformer 63.1± 7.6 71.1± 7.1 62.2± 8.2 63.2± 8.7 62.3± 11.5 65.9± 12.7 61.4± 13.9 61.8± 15.6

Trans-mean 61.2± 3.0 74.2± 1.8 63.5± 4.4 64.1± 4.1 56.8± 4.1 59.4± 3.4 53.2± 3.9 55.3± 3.5

GRU-D 64.6± 1.8 73.3± 3.6 63.5± 4.6 64.8± 3.6 64.8± 0.4 69.8± 0.8 65.8± 0.5 67.2± 0.0

SeFT 35.7± 0.5 42.1± 4.8 38.1± 1.3 35.0± 2.2 34.2± 2.8 34.9± 5.2 34.6± 2.1 33.3± 2.7

mTAND 33.2± 5.0 36.9± 3.7 37.7± 3.7 37.3± 3.4 45.6± 1.6 49.2± 2.1 49.0± 1.6 49.0± 1.0

Raindrop 66.5± 4.0 72.0± 3.9 67.9± 5.8 65.1± 7.0 71.3± 2.5 75.8± 2.2 72.5± 2.0 73.4± 2.1

ViTST 88.4± 1.0 90.4± 1.4 89.3± 0.8 89.7± 1.0 85.1± 1.2 91.1± 1.0 85.6± 1.0 87.0± 1.0

30%

Transformer 31.6± 10.0 26.4± 9.7 24.0± 10.0 19.0± 12.8 52.0± 11.9 55.2± 15.3 50.1± 13.3 48.4± 18.2

Trans-mean 42.5± 8.6 45.3± 9.6 37.0± 7.9 33.9± 8.2 65.1± 1.9 63.8± 1.2 67.9± 1.8 64.9± 1.7

GRU-D 45.1± 2.9 51.7± 6.2 42.1± 6.6 47.2± 3.9 58.0± 2.0 63.2± 1.7 58.2± 3.1 59.3± 3.5

SeFT 32.7± 2.3 27.9± 2.4 34.5± 3.0 28.0± 1.4 31.7± 1.5 31.0± 2.7 32.0± 1.2 28.0± 1.6

mTAND 27.5± 4.5 31.2± 7.3 30.6± 4.0 30.8± 5.6 34.7± 5.5 43.4± 4.0 36.3± 4.7 39.5± 4.4

Raindrop 52.4± 2.8 60.9± 3.8 51.3± 7.1 48.4± 1.8 60.3± 3.5 68.1± 3.1 60.3± 3.6 61.9± 3.9

ViTST 84.1± 1.3 86.5± 0.4 83.1± 0.8 84.9± 1.0 80.6± 1.2 89.5± 1.3 80.9± 1.1 82.6± 1.1

40%

Transformer 23.0± 3.5 7.4± 6.0 14.5± 2.6 6.9± 2.6 43.8± 14.0 44.6± 23.0 40.5± 15.9 40.2± 20.1

Trans-mean 25.7± 2.5 9.1± 2.3 18.5± 1.4 9.9± 1.1 48.7± 2.7 55.8± 2.6 54.2± 3.0 55.1± 2.9

GRU-D 46.4± 2.5 64.5± 6.8 42.6± 7.4 44.3± 7.9 47.7± 1.4 63.4± 1.6 44.5± 0.5 47.5± 0.0

SeFT 26.3± 0.9 29.9± 4.5 27.3± 1.6 22.3± 1.9 26.8± 2.6 2.41± 3.4 28.0± 1.2 23.3± 3.0

mTAND 19.4± 4.5 15.1± 4.4 20.2± 3.8 17.0± 3.4 23.7± 1.0 33.9± 6.5 26.4± 1.6 29.3± 1.9

Raindrop 52.5± 3.7 53.4± 5.6 48.6± 1.9 44.7± 3.4 57.0± 3.1 65.4± 2.7 56.7± 3.1 58.9± 2.5

ViTST 76.5± 1.9 83.5± 0.9 76.7± 2.4 78.3± 2.1 73.7± 2.2 86.4± 1.1 74.0± 2.2 75.8± 1.8

50%

Transformer 21.4± 1.8 2.7± 0.2 12.5± 0.4 4.4± 0.3 43.2± 2.5 52.0± 2.5 36.9± 3.1 41.9± 3.2

Trans-mean 21.3± 1.6 2.8± 0.4 12.5± 0.7 4.6± 0.2 46.4± 1.4 59.1± 3.2 43.1± 2.2 46.5± 3.1

GRU-D 37.3± 2.7 29.6± 5.9 32.8± 4.6 26.6± 5.9 49.7± 1.2 52.4± 0.3 42.5± 1.7 47.5± 1.2

SeFT 24.7± 1.7 15.9± 2.7 25.3± 2.6 18.2± 2.4 26.4± 1.4 23.0± 2.9 27.5± 0.4 23.5± 1.8

mTAND 16.9± 3.1 12.6± 5.5 17.0± 1.6 13.9± 4.0 20.9± 3.1 35.1± 6.1 23.0± 3.2 27.7± 3.9

Raindrop 46.6± 2.6 44.5± 2.6 42.4± 3.9 38.0± 4.0 47.2± 4.4 59.4± 3.9 44.8± 5.3 47.6± 5.2

ViTST 70.0± 2.7 79.9± 2.2 70.5± 3.1 72.2± 3.0 70.9± 1.2 83.6± 2.4 71.5± 1.4 73.3± 2.1
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Table 9: Full results of our approach with different backbone vision models and the compared
baselines. Bold indicates the best performer, while underline represents the second best.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 80.7± 3.8 42.7± 7.7 83.3± 0.7 47.9± 3.6 83.5± 1.5 84.8± 1.5 86.0± 1.2 85.0± 1.3

Trans-mean 83.7± 1.8 45.8± 3.2 82.6± 2.0 46.3± 4.0 83.7± 2.3 84.9± 2.6 86.4± 2.1 85.1± 2.4

GRU-D 83.9± 1.7 46.9± 2.1 81.9± 2.1 46.1± 4.7 83.3± 1.6 84.6± 1.2 85.2± 1.6 84.8± 1.2

SeFT 81.2± 2.3 41.9± 3.1 73.9± 2.5 31.1± 4.1 67.1± 2.2 70.0± 2.4 68.2± 1.5 68.5± 1.8

mTAND 84.4± 1.3 50.6± 2.0 84.2± 0.8 48.2± 3.4 74.6± 4.3 74.3± 4.0 79.5± 2.8 76.8± 3.4

IP-Net 84.6± 1.3 38.1± 3.7 82.6± 1.4 47.6± 3.1 74.3± 3.8 75.6± 2.1 77.9± 2.2 76.6± 2.8

DGM2-O 86.7± 3.4 44.7± 11.7 84.4± 1.6 47.3± 3.6 82.4± 2.3 85.2± 1.2 83.9± 2.3 84.3± 1.8

MTGNN 81.9± 6.2 39.9± 8.9 74.4± 6.7 35.5± 6.0 83.4± 1.9 85.2± 1.7 86.1± 1.9 85.9± 2.4

Raindrop 87.0± 2.3 51.8± 5.5 82.8± 1.7 44.0± 3.0 88.5± 1.5 89.9± 1.5 89.9± 0.6 89.8± 1.0

ResNet 76.3± 3.3 34.7± 4.1 72.9± 1.0 28.8± 2.4 73.1± 0.9 82.4± 5.6 69.7± 0.9 71.4± 1.8

ViT 87.9± 2.5 51.6± 3.7 84.8± 1.3 48.1± 3.8 93.4± 0.7 94.7± 0.9 94.1± 0.7 94.3± 0.7

Swin 89.4± 1.9 52.8± 3.8 85.6± 1.1 49.8± 2.5 96.1± 0.7 96.8± 1.1 96.5± 0.7 96.6± 0.9

Swin-scratch 74.6± 2.5 29.9± 4.6 66.9± 1.6 26.5± 2.6 84.5± 0.5 86.6± 0.6 87.1± 1.2 86.6± 0.6

References103

[1] Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E.104

The uea multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075,105

2018.106

[2] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus,107

J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. Physiobank, physiotoolkit, and physionet:108

components of a new research resource for complex physiologic signals. circulation, 101(23):109

e215–e220, 2000.110

[3] OpenAI. Gpt-4 technical report, 2023.111

[4] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,112

A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language113

supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.114

[5] Reyna, M. A., Josef, C., Seyedi, S., Jeter, R., Shashikumar, S. P., Westover, M. B., Sharma,115

A., Nemati, S., and Clifford, G. D. Early prediction of sepsis from clinical data: the phys-116

ionet/computing in cardiology challenge 2019. In 2019 Computing in Cardiology (CinC), pp.117

Page–1. IEEE, 2019.118

[6] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., and Hu, H. Simmim: A simple119

framework for masked image modeling. In Proceedings of the IEEE/CVF Conference on120

Computer Vision and Pattern Recognition, pp. 9653–9663, 2022.121

[7] Zhang, X., Zeman, M., Tsiligkaridis, T., and Zitnik, M. Graph-guided network for irregularly122

sampled multivariate time series. In International Conference on Learning Representations,123

2022.124

6


	More Details on Time Series Line Graph Image Creation
	More Experimental Details
	Datasets
	Experiments on Static Features
	Experiment on Regular Time Series
	Self-supervised Learning
	Full Experimental Results


