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Abstract

In privacy under continual observation we study how to release differentially1

private estimates based on a dataset that evolves over time. The problem of2

releasing private prefix sums of x1, x2, x3, · · · ∈ {0, 1} (where the value of each3

xi is to be private) is particularly well-studied, and a generalized form is used in4

state-of-the-art methods for private stochastic gradient descent (SGD). The seminal5

binary mechanism privately releases the first t prefix sums with noise of variance6

polylogarithmic in t. Recently, Henzinger et al. and Denisov et al. showed that it7

is possible to improve on the binary mechanism in two ways: The variance of the8

noise can be reduced by a (large) constant factor, and also made more even across9

time steps. However, their algorithms for generating the noise distribution are10

not as efficient as one would like in terms of computation time and (in particular)11

space. We address the efficiency problem by presenting a simple alternative to the12

binary mechanism in which 1) generating the noise takes constant average time13

per value, 2) the variance is reduced by a factor about 4 compared to the binary14

mechanism, and 3) the noise distribution at each step is identical. Empirically, a15

simple Python implementation of our approach outperforms the running time of16

the approach of Henzinger et al., as well as an attempt to improve their algorithm17

using high-performance algorithms for multiplication with Toeplitz matrices.18

1 Introduction19

There are many actors in society that wish to publish aggregate statistics about individuals, be it for20

financial or social utility. Netflix might recommend movies based on other users’ preferences, and21

policy might be driven by information on average incomes across groups. Whatever utility one has in22

mind however, it should be balanced against the potential release of sensitive information. While23

it may seem anodyne to publish aggregate statistics about users, doing it without consideration to24

privacy may expose sensitive information of individuals (Dinur & Nissim, 2003). Differential privacy25

offers a framework for dealing with these problems in a mathematically rigorous way.26

A particular setting is when statistics are updated and released continually, for example a website27

releasing its number of visitors over time. Studying differential privacy in this setup is referred28

to as differential privacy under continual observation (Dwork et al., 2010; Dwork & Roth, 2013).29

A central problem in this domain is referred to as differentially private counting under continual30

observation (Chan et al., 2011; Dwork et al., 2010), continual counting for short. It covers the31

following problem: a binary stream x1, x2, x3, . . . is received one element at a time such that xt is32

received in round t. The objective is to continually output the number of 1s encountered up to each33

time step while maintaining differential privacy. The neighboring relation considered is that streams34

x and x′ are neighboring if they are identical except for a single index i where xi ̸= x′
i. It suffices to35

study the setting in which there is a known upper bound T on the number of prefix sums to release —36

algorithms for the case of unbounded streams then follow by a general reduction (Chan et al., 2011).37
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Table 1: Comparison between different ρ-zCDP mechanisms for continual counting.

MechanismM Var[M(t)] · 2ρ
log2

2 T Time/T Space Identically
distributed

Streaming
support

Matrix
type

Binary mech. 1 O(1) O(log T ) no yes sparse
Honaker < 1*** O(T ) O(T ) no no dense
Denisov et al. 0.0973 . . .+ o(1)∗∗ O(T ) O(T 2) no yes dense
Henzinger et al. 0.0973 . . .+ o(1) O(T )∗ O(T ) no yes Toeplitz
Our mech. 0.25 + o(1) O(1) O(log T ) yes yes sparse

The time usage given in Henzinger et al. (2023) is as stated in the table *, but it is possible to achieve
time O(log T ) by implementing the matrix-vector product using FFT, at the expense of not supporting
streaming. Leveraging FFT for continual observation is not a novel approach (Choquette-Choo et al.,
2022). There is no explicit bound on variance in Denisov et al. (2022), but the method finds an
optimal matrix decomposition so it should achieve same variance ** as Henzinger et al. (2023) up to
lower order terms. Similarly, detailed analysis of the variance *** is not provided in Honaker (2015),
but empirically variance is reduced by some constant (see experiments in Denisov et al. (2022)). All
sparse matrices have O(log T ) nonzero entries per row or column, and all dense matrices have Ω(T 2)
nonzero entries — a Toeplitz matrix can be seen as intermediate in the sense of having O(T ) unique
diagonals, allowing for efficient storage and multiplication.

Aside from the natural interpretation of continual counting as the differentially private release of38

user statistics over time, mechanisms for continual counting (and more generally for releasing prefix39

sums) are used as a subroutine in many applications. Such a mechanism is for example used in40

Google’s privacy-preserving federated next word prediction model (McMahan & Thakurta, 2022;41

Kairouz et al., 2021), in non-interactive local learning (Smith et al., 2017), in stochastic convex42

optimization (Han et al., 2022) and in histogram estimation (Cardoso & Rogers, 2022; Chan et al.,43

2012; Huang et al., 2022; Upadhyay, 2019) among others.44

Given the broad adoption of continual counting as a primitive, designing algorithms for continual45

counting that improve constants in the error while scaling well in time and space is of practical46

interest.47

1.1 Our contributions48

In this paper we introduce the Smooth Binary Mechanism, a differentially private algoritm for the49

continual counting problem that improves upon the original binary mechanism by Chan et al. (2011);50

Dwork et al. (2010) in several respects, formalized in Theorem 1.1 and compared to in Table 1.51

Theorem 1.1 (Smooth Binary Mechanism). For any ρ > 0, T > 1, there is an efficient ρ-zCDP52

continual counting mechanismM, that on receiving a binary stream of length T satisfies53

Var[M(t)] =
1 + o(1)

8ρ
log2(T )

2

whereM(t) is the output prefix sum at time t, while only requiring O(log T ) space, O(T ) time to54

output all T prefix sums, and where the error is identically distributed for all 1 ≤ t ≤ T .55

Our mechanism retains the scalability in time and space of the binary mechanism while offering an56

improvement in variance by a factor of 4− o(1). Unlike existing mechanisms it has the same error57

distribution in every step, which could make downstream applications easier to analyze.58

Sketch of technical ideas. Our starting point is the binary mechanism which, in a nutshell, uses59

a complete binary tree with ≥ T + 1 leaves (first T leaves corresponding to x1, . . . , xT ) in which60

each node contains the sum of the leaves below, made private by adding random noise (e.g. from a61

Gaussian distribution). To estimate a prefix sum
∑t

i=1 xi we follow the path from the root to the leaf62

storing xt+1. Each time we go to a right child the sum stored in its sibling node is added to a counter.63

An observation, probably folklore, is that it suffices to store sums for nodes that are left children, so64

suppose we do not store any sum in nodes that are right children. The number of terms added when65

computing the prefix sum is the number of 1s in the binary representation bin(t) of t, which encodes66

the path to the leaf storing xt+1. The sensitivity of the tree with respect to xt, i.e., the number of67
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node counts that change by 1 if xt changes, is the number of 0s in bin(t− 1). Our idea is to only use68

leaves that have balanced binary representation, i.e. same number of 0s and 1s (assuming the height69

h of the tree is an even integer). To obtain T useful leaves we need to make the tree slightly deeper70

— it turns out that height h slightly more than log2(T ) suffices. This has the effect of making the71

sensitivity of every leaf h/2, and the noise in every prefix sum a sum of h/2 independent noise terms.72

Limitations. As shown in Table 1 and Section 4, the smooth binary mechanism, while improving73

on the original binary mechanism, cannot achieve as low variance as matrix-based mechanisms such74

as Henzinger et al. (2023). However, given that the scaling of such methods can keep them from75

being used in practice, our variant of the binary mechanism has practical utility in large-scale settings.76

1.2 Related work77

All good methods for continual counting that we are aware of can be seen as instantiations of the78

matrix mechanism (Li et al., 2015). These methods perform a linear transformation of the data, given79

by a matrix R, then add noise according to the sensitivity of Rx, and finally obtain the sequence of80

estimates by another linear transformation given by a matrix L. To obtain unbiased estimates, the81

product LRx needs to be equal to the vector of prefix sums, that is, LR must be the lower triangular82

all 1s matrix.83

Seminal works introducing the first variants of the binary mechanism are due to Chan, Shi, and84

Song (2011) and Dwork, Naor, Pitassi, and Rothblum (2010), but similar ideas were proposed85

independently in Hay, Rastogi, Miklau, and Suciu (2010) and Gehrke, Wang, and Xiao (2010).86

Honaker (2015) noticed that better estimators are possible by making use of all information in the tree87

associated with the binary tree method. Some parts of his method are incompatible with a streaming88

setting since they require all values x1, . . . , xT to be known, though a streaming variant has later89

been devised by Denisov et al. (2022).90

A number of recent papers have studied improved choices for the matrices L, R. Denisov, McMahan,91

Rush, Smith, and Thakurta (2022) showed that the problem of finding matrices leading to minimum92

largest variance on the estimates is a convex optimization problem, and that (at least for T up to93

2048) it is feasible to solve it. They further show that the smallest error can be obtained with lower94

triangular matrices, making it possible to support streaming settings where values of xi are revealed95

one at a time and a prefix sum estimate must be released immediately. To handle a larger number of96

time steps they consider a similar setting where a restriction to banded matrices makes the method97

scale better, empirically with good error, but no theoretical guarantees are provided.98

Fichtenberger, Henzinger, and Upadhyay (2022) gave an explicit decomposition into lower triangular99

matrices, and analyzed its error in the ℓ∞ metric. The matrices employed are Toeplitz (banded)100

matrices. Henzinger, Upadhyay, and Upadhyay (2023) analyzed the same decomposition with respect101

to mean squared error of the noise, and showed that it obtains the best possible error among matrix102

decompositions where L and R are square matrices, up to a factor 1 + o(1) where the o(1) term103

vanishes when T goes to infinity.104

A breakdown of how our mechanism compares to existing ones is shown in Table 1. While not105

achieving as small an error as the matrix mechanism of Henzinger et al. (2023), its runtime and small106

memory footprint allows for better scaling for longer streams. For concreteness we consider privacy107

under ρ-zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016), but all results can be108

expressed in terms of other notions of differential privacy.109

2 Preliminaries110

Binary representation of numbers. We will use the notation bin(n) to refer to the binary repre-111

sentation of a number n ∈ [2h], where h > 0 is an integer, and let bin(n) be padded with leading to112

h digits. For example, bin(2) = 0b010 for a tree of height h = 3. When indexing such a number we113

let index i refer to the ith least significant bit, e.g. bin(2)1 = 1. We will also refer to prefixes and114

suffixes of binary strings, and we use the convention that a prefix of a binary string includes its most115

significant bits.116
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Partial sums (p-sums). To clear up the notation we use the concept of p-sums Σ[i, j] where117

Σ[i, j] =
∑j

t=i xt. We will furthermore use the concept of noisy p-sums118

Σ̂[i, j] = Σ[i, j] +X[i, j], X[i, j] ∼ F

where F is a suitable distribution for the DP paradigm, e.g. Laplacian or Gaussian. For convenience119

we also define x̂t = Σ̂[t, t], i.e. x̂t is the single stream element with noise added.120

2.1 Continual observation of bit stream121

Given an integer T > 1 we consider a finite length binary stream x = (x1, x2, . . . , xT ), where122

xt ∈ {0, 1}, 1 ≤ t ≤ T , denotes the bit appearing in the stream at time t.123

Definition 2.1 (Continual Counting Query). Given a stream x ∈ {0, 1}T , the count for the stream is124

a mapping c : {1, . . . , T} → Z such that c(t) =
∑t

i=1 xi.125

Definition 2.2 (Counting Mechanism). A counting mechanismM takes a stream x ∈ {0, 1}T and126

produces a (possibly random) vectorMx ∈ RT where (Mx)t is a function of the first t elements of127

the stream. For convenience we will writeM(t) for (Mx)t when there is little chance for ambiguity.128

To analyze a counting mechanism from the perspective of differential privacy, we also need a notion129

of neigboring streams.130

Definition 2.3 (Neighboring Streams). Streams x, x′ ∈ {0, 1}T are said to be neighboring, denoted131

x ∼ x′, if |{i |xi ̸= x′
i}| = 1.132

Intuitively, for a counting mechanism to be useful at a given time t, we want it to minimize |M(t)−133

c(t)|. We consider unbiased mechanisms that return the true counts in expectation and we focus on134

minimizing Var[M(t)− c(t)].135

2.2 Differential privacy136

For a mechanism to be considered differentially private, we require that the outputs for any two137

neighboring inputs are are indistinguishable. We will state our results in terms of ρ-zCDP:138

Definition 2.4 (Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)). For ρ > 0, a139

randomized algorithm A : Xn → Y is ρ-zCDP if for any D ∼ D′, Dα(A(D)||A(D′)) ≤ ρα for all140

α > 1, where Dα(A(D)||A(D′)) is the α-Rényi divergence between A(D) and A(D′).141

In the scenario where we are looking to release a real-valued function f(D) taking values in Rd, we142

can achieve zCDP by adding Gaussian noise calibrated to the ℓ2-sensitivity of f .143

Lemma 2.5 (Gaussian Mechanism (Bun & Steinke, 2016)). Let f : Xn → Rd be a function144

with global ℓ2-sensitivity ∆ := maxD∼D′ ∥f(D)− f(D′)∥2. For a given data set D ∈ Xn, the145

mechanism that releases f(D) +N (0, ∆2

2ρ ) satisfies ρ-zCDP.146

It is known that ρ-zCDP implies (ρ+ 2
√
ρ ln(1/δ), δ)-differential privacy for every δ > 0 (Bun &147

Steinke, 2016).148

Lastly, when comparing counting mechanisms based on Gaussian noise, we note that it is sufficient149

to look at the variance. For a single outputM(t), the variance Var[M(t)] is the only relevant metric,150

as it completely describes the output distribution. For a series of outputsMx, and related norms151

∥Mx∥p, we note that a mechanism with lower variance will be more concentrated in each coordinate152

and have lower pth moment, allowing for tighter bounds on the norm.153

2.3 Differentially private continual counting154

We next describe two approaches to continual counting.155

Binary mechanism. The binary mechanism (Chan et al., 2011; Dwork et al., 2010; Gehrke et al.,156

2010; Hay et al., 2010) can be considered the canonical mechanism for continual counting. In this157

section we present a variant of it where only left subtrees are used. The mechanism derives its name158
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from the fact that a binary tree is built from the input stream. Each element from the stream is159

assigned a leaf in the binary tree, and each non-leaf node in the tree represents a p-sum of all elements160

in descendant leaves. All values are stored noisily in nodes, and nodes are added together to produce161

a given prefix sum. Such a binary tree is illustrated in Figure 1(a).

Σ̂[1, 8]

Σ̂[1, 4]

Σ̂[1, 2]

x̂1 x̂2

Σ̂[3, 4]

x̂3 x̂4

Σ̂[5, 8]

Σ̂[5, 6]

x̂5 x̂6

Σ̂[7, 8]

x̂7 0

(a) Binary mechanism tree for T = 7.

Σ̂[1, 8]
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Σ̂[1, 2]

x̂1 x̂2

Σ̂[3, 4]

x̂3 x̂4

Σ̂[5, 8]

Σ̂[5, 6]

x̂5 x̂6

Σ̂[7, 8]

x̂7 0

0b
00
0

0b
00
1

0b
01
0

0b
01
1

0b
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0

0b
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1

0b
11
0

0b
11
1

M(6) = Σ̂[1, 4] + Σ̂[5, 6]

(b) Computation ofM(6) using Algorithm 1.

Figure 1: Binary trees for a sequence of length T = 7. In Figure 1(b) each leaf is labeled by
bin(t−1), and it illustrates how the prefix sum up to t = 6 can be computed from bin(t). Blue nodes
describe the path taken by Algorithm 1, and the sum of red nodes form the desired outputM(6).

162

A more detailed exposition of the binary mechanism is given in the appendix and Section 3.1. Here163

we settle for stating that the ρ-zCDP binary mechanism achieves Var[M(t)] = O(log(T )2) and is164

known to be computationally efficient: to release all prefix sums up to a given time t ≤ T requires165

only O(log(T )) space and O(t) time.166

Matrix mechanism. The binary mechanism belongs to a more general class of mechanisms called167

matrix mechanisms (Li et al., 2015). Computing a prefix sum is a linear operation on the input stream168

x ∈ RT , and computing all prefix sums up to a given time T can therefore be represented by a169

matrix A ∈ RT×T , where c(t) = (Ax)t. A is here a lower-triangular matrix of all 1s. The matrix170

mechanism characterizes solutions to the continual counting problem by factorizing A as A = LR171

with corresponding mechanismMx = L(Rx+ z), z ∼ Fn where n is the dimension of Rx.172

Intuitively Rx represents linear combinations of the stream, which are made private by adding noise173

z, and which lastly are aggregated by the linear transformation L. To achieve ρ-zCDP for this174

mechanism, we let z ∼ N (0, ∆2

2ρ )
n where ∆ = maxi ∥Rei∥2, ei being the ith unit vector. It follows175

that the corresponding output noise becomes Lz where (Lz)i ∼ N (0, ∆2

2ρ ∥Li∥22)176

3 Our mechanism177

To introduce our variant of the binary mechanism, we need to return to the original mechanism.178

3.1 Closer analysis of the binary mechanism179

As has been pointed out in earlier work (Denisov et al., 2022; Henzinger et al., 2023), a naive180

implementation of the binary mechanism will lead to variance that is non-uniform with respect to181

time: the number of 1s in the bitwise representation of t determines the variance. To underline this,182

consider the pseudo-code in Algorithm 1 for computing a prefix sum given a binary mechanism tree183

structure. The code assumes that the tree has ≥ t+ 1 leaves, a detail that only matters when t is a184

power of 2 and allows us to never use the root node. To illustrate a simple case, see Figure 1(b).185

We can make the following observations:186

• bin(t− 1) encodes a path from the root to the leaf where xt is stored.187

• To compute prefix sums using Algorithm 1, we only need to store values in “left children”.188

Combining these observations, we get the following result:189

Proposition 3.1. The squared ℓ2-sensitivity ∆2 of xt is equal to the number of 0s in bin(t− 1).190

To see this, note that the number of 0s in bin(t− 1) is equal to the number of left-children that are191

passed through to reach the given node. Changing the value of xt impacts all its ancestors, and since192
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Algorithm 1 Prefix Sum for Binary Mechanism

1: Input: binary tree of height h storing Σ̂[a, b] for b ≤ t, time t ≤ 2h − 1
2: output← 0
3: s← bin(t) {padded to h bits by adding zeros}
4: a← 1; b← 2h

5: for i = h− 1 to 0 do
6: d = ⌊a+b

2
⌋

7: if si = 1 then
8: output← output+ Σ̂[a, d]
9: a← d+ 1

10: else
11: b← d
12: end if
13: end for
14: return output

only left-children are used for prefix sums, the result immediately follows. This does not address the193

volatility of variance with respect to time. However, studying Algorithm 1 gives the reason:194

Proposition 3.2. Var[M(t)] is proportional to the number of 1s in bin(t).195

The result follows from the fact that the number of terms added together for a given prefix sum c(t) is196

equal to the number of 1s in bin(t), since Line 8 is executed for each such 1. In this view, each node197

that is used for the prefix sum at time t can be identified as a prefix string of bin(t) that ends with a 1.198

We will return to Proposition 3.1 and Proposition 3.2 when constructing our smooth mechanism, but199

for now we settle for stating that combined they give the exact variance at each time step for the binary200

mechanism. Following Li et al. (2015), to make the mechanism private we have to accommodate for201

the worst sensitivity across all leaves, which yields Theorem 3.3.202

Theorem 3.3 (Exact Variance for Binary Mechanism (Chan et al., 2011; Dwork et al., 2010)). For203

any ρ > 0, T > 1, the ρ-zCDP binary mechanismM based on Algorithm 1 achieves variance204

Var[M(t)] =
⌈log(T + 1)⌉

2ρ
∥bin(t)∥1

for all 1 ≤ t ≤ T , where ∥bin(t)∥1 is equal to the number of 1s in bin(t).205

3.2 A smooth binary mechanism206

Based on the analysis, a naive idea to improve the binary mechanism would be to only consider leaves207

with “favorable” time indices. To make this a bit more precise, we ask the following question: could208

there be a better mechanism in which we store elements in only a subset of the leaves in the original209

binary tree, and then use Algorithm 1 to compute the prefix sums? We give an affirmative answer.210

Consider a full binary tree of height h where we let the leaves be indexed by i (1-indexed). Given211

a sequence of elements x ∈ {0, 1}T (we assume a great enough height h to accommodate for all212

elements) and an integer 0 ≤ k ≤ h, we conceptually do the following for each leaf with index i:213

• If bin(i− 1) has k 0s, store the next element of the stream in the leaf.214

• Otherwise store a token 0 in the leaf.215

More rigorously stated, we are introducing an injective mapping from time to leaf-indices m :216

{1, . . . , T + 1} → [2h + 1], such that m(t) is the (t − 1)st smallest h-bit integer with k 0s in its217

binary representation. xt gets stored in the leaf with index m(t), and to computeM(t), we would218

add p-sums based on bin(m(t+ 1)). The resulting algorithm works analogously to Algorithm 1 but219

the details differ slightly. See Algorithm 2 in the appendix for the full specification.220

It follows that the maximum sensitivity is proportional to k, and that any prefix sum will be a sum of221

h− k nodes. Importantly, the latter fact removes the dependence on t for the variance.222

Choosing a k. The optimal choice of k depends on the differential privacy paradigm. Here we only223

consider ρ-zCDP. Since each element will appear in at most k p-sums, the corresponding ℓ2-sensitivity224
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becomes ∆ =
√
k. Furthermore, since each prefix sum is computed as a sum of h − k nodes, the225

variance for a given prefix sum becomes Var[M(t)] = (h − k) · k
2ρ , which for k = h/2 gives a226

leading constant of 1/4 compared to the maximum variance of the binary mechanism. This choice of227

k is valid if the tree has an even height h, and it maximizes the number of available leaves.228

A penalty in height. The analysis above assumes that we have a tree of sufficient height. If we229

before had a tree of height ⌈log(T + 1)⌉, we now need a tree of height h ≥ ⌈log(T + 1)⌉ to have230

enough leaves with the right ratio of 1s in their index. To account for this, we let h be the smallest231

even integer such that h ≥ ⌈log(T )⌉+ a log log T , where a is a constant. For our new tree to support232

as many prefix sums, we need that
(

h
h/2

)
≥ T + 1. This holds for a > 1/2 and sufficiently large T ,233

but we show it for a = 1 next. Using Stirling’s approximation in the first step, we can establish that234 (
h

h/2

)
≥ 1√

2h
2h ≥ 2log T+log log T

√
2
√
⌈log T ⌉+ log log T

=
log T√

2
√
⌈log T ⌉+ log log T

T ,

which is at least T + 1 for T ≥ 13.235

Resulting variance. This height penalty makes Var[M(t)] no longer scale as log(T + 1)2, but236

(log(T ) + a log log(T ))2. Nevertheless, we can state the following:237

Lemma 3.4. For any ρ > 0, T ≥ 13, the ρ-zCDP smooth binary mechanismM achieves variance238

Var[M(t)] =
1 + o(1)

8ρ
log(T )2

where 1 ≤ t ≤ T , and the o(1) term is 2 log log(T )
log(T ) +

( log log(T )
log(T )

)2
.239

which is an improvement over the original binary mechanism by a factor of 1/4 with regard to the240

leading term. This improvement is shown empirically in Section 4.241

Constant average time per output. When outputting T prefix sums continuously while reading a242

stream, we only have to store the noise of the nodes, not the p-sums themselves. To make this more243

explicit, let St describe the set of nodes (p-sum indices) that the smooth mechanism adds together to244

produce the output at time t. To produceM(t+ 1) givenM(t), we effectively do:245

M(t+ 1) =M(t) + xt+1 +
∑

(i,j)∈St+1\St

X[i, j]−
∑

(i,j)∈St\St+1

X[i, j] .

To quantify the cost, we need to deduce how many nodes are replaced from t to t+ 1, which means246

reasoning about St and St+1. Recalling that each element in St can be identified by a prefix string of247

bin(m(t+1)) terminating with a 1, consider Figure 2. Based on the pattern shown in Figure 2, where248

the leaf indices only differ in their least significant bits, we get that |St+1 \ St| = |St \ St+1| = n,249

where n is the number of 1s in the least significant block of 1s. We formalize this observation next to250

give a bound on the average cost when outputting a sequence of prefix sums.251

Lemma 3.5. Assuming the cost of replacing a node in a prefix sum is 1, then the cost to release all252 (
2k
k

)
− 1 prefix sums in the tree of height 2k using the smooth binary mechanism is at most 2

(
2k
k

)
.253

Proof. As argued before, to computeM(t+ 1) givenM(t) we need to replace a number of nodes254

equal to the size n of the least significant block of 1s in bin(m(t+ 1)). We can therefore directly255

· · · 0 1 · · · 1 0 · · · 0 · · · 1 0 · · · 0 1 · · · 1

n n− 1

bin(m(t+ 1)) = bin(m(t+ 2)) =;

Figure 2: The least significant bits of two leaf indices in a full binary tree that are neighboring with
respect to time when used in the smooth binary mechanism. If the first cluster of 1s in bin(m(t+1)),
counted from the least significant bit, has n 1s then n nodes in total will be replaced from t to t+ 1.
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compute the total cost by enumerating all valid indices with different block sizes as256

cost = −k +

k∑
n=1

2k−n−1∑
i=k−n

n

(
i

k − n

)
= −k +

k∑
n=1

n

(
2k − n

k − n+ 1

)

= −k +

k∑
i=1

i∑
j=1

(
k − 1 + j

k − 1

)
= −2k +

k∑
i=1

(
k + i

k

)
=

(
2k + 1

k + 1

)
− (2k + 1) ≤ 2

(
2k

k

)
where the initial −k term comes from excluding the last balanced leaf index in the tree.257

In particular, this implies that the average cost when releasing all prefix sums in a full tree is ≤ 2.258

For T that does not use all leaves of a tree, comparing to the closest T ′ where T ≤ T ′ =
(
2k
k

)
− 1259

also implies an average cost of ≤ 4 for arbitrary T . For a single output the cost is O(log(T )). It is260

not hard to check that computing bin(m(t+ 1)) from bin(m(t)) can be done in constant time using261

standard arithmetic and bitwise operations on machine words (see our supplied code for details).262

Logarithmic space. The argument for the binary mechanism only needing O(log(T )) space263

extends to our smooth variant. We state this next in Lemma 3.6, and supply a proof in the appendix.264

Lemma 3.6. The smooth binary mechanism computing prefix sums runs in O(log(T )) space.265

Finishing the proof for Theorem 1.1. The last, and more subtle, property of our mechanism266

is that the noise at each time step not only has constant variance, but it is identically distributed.267

When working with the Gaussian mechanism, as we do in this paper, this is not surprising: a sum268

of Gaussians is still Gaussian. But there is nothing precluding our revised binary mechanism from269

being used with different noise distributions, e.g. Laplacian for the purpose of achieving ε-DP. By270

fixing the number of 1s in each leaf index, we are in fact fixing the number of noise terms that get271

added together for each count, and by extension the final error distribution at each t. Combining272

Lemmas 3.4, 3.5 and 3.6 together with the last observation, we arrive at Theorem 1.1.273

4 Comparison of mechanisms274

In this section we review how the smooth binary mechanism compares to the original binary mecha-275

nism, and the matrix mechanism of Henzinger et al. (2023). We do not compare to Denisov et al.276

(2022) since their method is similar to that of Henzinger et al. (2023) in terms of error, and less277

efficient in terms of time and space usage.278

Variance comparison. To demonstrate how the variance behaves over time for our smooth binary279

mechanism, see Figure 3. Given a fix T , the tree-based mechanisms compute the required tree height280

to support all elements, and the matrix mechanism a sufficiently large matrix. The volatility of the281

error in the regular binary mechanism is contrasted by the stable noise distribution of our smooth282

binary mechanism, as demonstrated in Figure 3(a). In terms of achieving the lowest variance, the283

matrix mechanism in Henzinger et al. (2023) is superior, as expected. This result is replicated in284

Figure 3(b) where our mechanism offers a substantial improvement in terms of maximum variance285

over the original binary mechanism, but does not improve on Henzinger et al. (2023).286

Computational efficiency comparison. While our mechanism does not achieve as low noise as287

the mechanism of Henzinger et al. (2023), it scales well in time and space, and with respect to the288

dimensionality of the stream elements. This is empirically demonstrated in Figure 4. Since the matrix289

used in Henzinger et al. (2023) is a Toeplitz matrix, the scipy method “matmul toeplitz” (based on290

FFT and running in time O(dT log T ) to produce a d-dimensional output) was used to speed up the291

matrix multiplication generating the noise in Figure 4(a). However, note that using a single matrix292

multiplication to produce {M(1), . . . ,M(T )} means that we are not in the “streaming” setting.293

Even then, their matrix-based mechanism does not scale as well as ours.294

The discrepancy in the computation time scaling can largely be attributed to space: the needed space295

for tree-based methods scales logarithmically with T , and linearly with T for matrix-multiplication296

based methods. This is demonstrated in Figure 4(b). As to the difference in computation time between297

the tree-based methods, the smooth binary mechanism generates twice as much fresh noise per time298

step on average, which likely is the dominating time sink in this setup.299
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Figure 3: Comparison of variance between the mechanism in Henzinger et al. (2023), the standard
binary mechanism and our mechanism. Figure 3(a) shows Var[M(t)] for 1 ≤ t ≤ T for T = 250,
whereas Figure 3(b) shows the maximum variance that each mechanism would attain for a given
upper bound on time. At the last time step in Figure 3(b), our mechanism reduces the variance by a
factor of 3.27 versus the binary mechanism. Note: the variance for the standard binary mechanism
shown in these plots is slightly lower than what was shown in the submitted version.

102 103 104

number of d-dimensional vectors

0

1

2

3

4

5

m
s/

ou
tp

ut

Henzinger et al. w/ matmul toeplitz
Binary Mechanism
Our Mechanism

(a) Average computational time per output.

100 101 102 103 104 105 106

upper bound on time

100

101

102

103

104

105

106
m

ax
#

of
flo

at
s

ne
ed

ed
to

be
st

or
ed Henzinger et al.

Binary Mechanism
Our Mechanism

(b) Maximum space needed vs upper bounds on time.

Figure 4: Comparison of computational efficiency between the mechanism in Henzinger et al. (2023),
the binary mechanism and our mechanism. Figure 4(a) shows the computation time spent per d-
dimensional input. The simulation was run 5 times for each method, meaning each method has 5 data
points in the plot per time step. The computation was performed for elements of dimension d = 104,
was run on a Macbook Pro 2021 with Apple M1 Pro chip and 16 GB memory using Python 3.9.6,
scipy version 1.9.2, and numpy version 1.23.3. Figure 4(b) shows the maximum number of floats that
has to be stored in memory when outputting all prefix sums up to a given time, assuming binary input.

5 Conclusion and discussion300

We presented an improved “smooth” binary mechanism that retains the low time complexity and301

space usage while improving the additive error and achieving stable noise at each time step. Our302

mechanism was derived by performing a careful analysis of the original binary mechanism, and303

specifically the influence of the binary representation of leaf indices in the induced binary tree. Our304

empirical results demonstrate the stability of the noise and its improved variance compared to the305

binary mechanism. The matrix mechanism of Henzinger et al. (2023) offers better variance, but is306

difficult to scale to a large number of time steps, especially if we need high-dimensional noise.307

We note that the smooth binary mechanism can be extended to ε-DP. The optimal fraction of 1s in the308

leaves of the binary tree would no longer be 1/2. An interesting problem is to find mechanisms that309

have lower variance and attractive computational properties. It is possible that the dependence on T310

can be improved by leaving the matrix mechanism framework, but in absence of such a result the311

best we can hope is to match the variance obtained by Henzinger et al. (2023).312
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A A more detailed introduction to the binary mechanism391

To introduce the binary mechanism, it will be useful to first consider intuitive but sub-optimal392

candidate solutions to the problem. This step-wise introduction is inspired by Chan et al. (2011).393

First naive approach. A first naive solution to the private continual release problem would be to394

directly add noise to the output. Formalized, a mechanismM that releases the corresponding noisy395

p-sum for each time step t:396

M(t) = Σ̂[1, t] .

The problem with this approach is that if you flip the value of an element xt then for every t′ ≥ t,397

Σ̂[1, t′] is impacted. This implies a sensitivity scaling with T , and consequently a high level of noise398

needed to preserve privacy. To achieve ρ-zCDP you would thus need to add noise scaling with T , and399

therefore we would have Var[M(t)] = T
2ρ .400

Second naive approach. Based on this observation, a different approach would be to instead add401

noise to the input, i.e. store xt as Σ̂[t, t] and constructM as402

M(t) =

t∑
i=1

Σ̂[i, i] .

This makes the sensitivity of any element xt constant, as any element xt impacts a single noisy p-sum403

Σ̂[t, t]. Unfortunately we are instead forced to add up a number of noisy p-sums that increase linearly404

in T . For ρ-zCDP, we thus get Var[M(t)] = t
2ρ .405

The binary mechanism. The binary mechanism (Chan et al., 2011; Dwork et al., 2010; Gehrke406

et al., 2010; Hay et al., 2010) represents a compromise between these two approaches of adding noise407

to the input and adding noise to the output. It is a compromise because it achieves a logarithmic408

sensitivity and adds a logarithmic number of noise terms to produce an output, thus achieving a409

variance of O(log(T )2) rather than O(T ).410

The intuition behind the binary mechanism is that it partitions the input stream into overlapping411

p-sums which guarantee that no element is part of more than ⌈log(T + 1)⌉ p-sums, and that every412

prefix sum can be expressed as a sum of at most ⌈log(T + 1)⌉ p-sums. The dependence on T + 1413

rather than T is a consequence of only using left subtrees.414

We briefly sketch the argument for the variance next. To make the mechanism differentially private415

every p-sum stored in the tree is stored noisily. Focusing on ρ-zCDP, we get that the ℓ2-sensitivity416

is
√
⌈log(T + 1)⌉, and consequently that adding Gaussian noise with variance ⌈log(T+1)⌉

2ρ suffices417

to make the output satisfy ρ-zCDP. Since every final prefix sum is a sum of at most ⌈log(T + 1)⌉418

p-sums, the resulting error becomes Gaussian with variance at most ⌈log(T+1)⌉2
2ρ .419

B Algorithm for prefix sum using smooth binary mechanism420

For completion, the smooth binary mechanism variant of Algorithm 1 is given below as Algorithm 2.421

Recall that m(t) denotes the (1-based) index of the leaf where xt is stored. The only change between422

this variant and the one for the binary mechanism is that the size of the tree is decided by the423

time-to-leaf-index mapping m(t) rather than t, and that the string s on Line 3 is bin(m(t+1)) rather424

than bin(t).425

C Proof of Lemma 3.6426

The proof of Lemma 3.6 was omitted from the main text, it is given next.427

Proof. The critical observation to make is that once a given p-sum is removed from a prefix sum,428

then it will never re-appear. Let its associated prefix string at time t be s of length l. If we look at the429

same l bit positions in bin(m(t)) as t increases and interpret it as a number, then it is monotonously430
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Algorithm 2 Prefix Sum for Smooth Binary Mechanism

1: Input: binary tree of height h storing Σ̂[a, b] for b ≤ m(t), time t where m(t+ 1) ≤ 2h

2: output← 0
3: s← bin(m(t+ 1)) {padded to h bits by adding zeros}
4: a← 1; b← 2h

5: for i = h− 1 to 0 do
6: d = ⌊a+b

2 ⌋
7: if si = 1 then
8: output← output+ Σ̂[a, d]
9: a← d+ 1

10: else
11: b← d
12: end if
13: end for
14: return output

increasing with t. This implies that once a given prefix-string s in bin(m(t)) disappears at t′ > t431

then it will not be encountered again. We can therefore free up the memory used for storing any432

p-sum the moment it is no longer used. Because of this, it suffices to only store the p-sums in the433

active prefix sum at any time, of which there are at most O(log(T )), proving the statement.434
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