
Supplementary Material for
The Drunkard’s Odometry:

Estimating Camera Motion in Deforming Scenes

David Recasens
University of Zaragoza

Martin R. Oswald
ETH Zurich, University of Amsterdam

Marc Pollefeys
ETH Zurich, Microsoft

Javier Civera
University of Zaragoza

Abstract

This supplementary document provides additional details about the dataset, the
method, the evaluation and further experimental results.

Contents
A Drunkard’s Dataset Details . 1
B Drunkard’s Odometry Flow. 2
C Drunkard’s Odometry Ablations. 3
D Inference speed comparison of the baselines . 4
E Architecture Details . 4

A Drunkard’s Dataset Details

Table A.1 details the number of frames for each individual scene of the Drunkard’s Dataset1, and
the total one. The number of frames is equal across all difficulty levels (hence the 4×) in the table.
Aggregating all the levels, the Drunkard’s Dataset has more than 400K high-resolution frames. In
order to enhance its suitability with different computing setups and to reduce its overall size, the
dataset is made available in two different image resolutions, 1024 × 1024 and 320 × 320 pixels.
Other resolutions can be easily regenerated using the provided scripts. The Drunkard’s Dataset is
built by animating the 3D meshes of the Habitat-Matterport 3D dataset [1] (that is MIT licensed)
and we use the same scene numbering. Scene 17 was skipped since it did not contain an appropriate
3D model to create an exploratory camera trajectory in it. The Blender files are also made public
with scripts to replicate the rendering, so additionally anyone can create their custom datasets with
different deformations, resolution, camera parameters or trajectory for example.

Regarding the deformations applied to the 3D meshes in Blender to obtain the dynamic non-rigidity
of the scene and the perturbations to the camera trajectory, the Table A.2 collects those whose values
vary between the four different levels of difficulty. The three mesh deformations were all applied to
three different empty planes that are flying randomly throughout the 3D space around the mesh. In
consequence, at a certain timestamp, the higher the proximity of a plane to a surface, the higher the
amplitude of the rendered deformation. The camera perturbations are Gaussian noise that adds to
the rotation and translation of the manually recorded steady camera trajectory. All these mesh and

1https://davidrecasens.github.io/TheDrunkard’sOdometry/

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
1

https://davidrecasens.github.io/TheDrunkard'sOdometry/

Scene # Frames Scene # Frames Scene # Frames

0 4 × 3.816 7 4 × 2.341 14 4 × 23.863
1 4 × 1.523 8 4 × 3.033 15 4 × 7.984
2 4 × 1.240 9 4 × 8.098 16 4 × 5.389
3 4 × 3.308 10 4 × 2.632 18 4 × 10.989
4 4 × 4.545 11 4 × 4.168 19 4 × 9.739
5 4 × 1.655 12 4 × 4.168
6 4 × 1.515 13 4 × 3.296 Total 4 × 104.302

Table A.1: Drunkard’s dataset overview. The datasets consists of more than 400K frames distributed
over 20 scenes and 4 difficulty levels. The table lists the number of frames for every scene and the
total for one of the four (4×) difficulty levels.

camera parameters increase in amplitude as difficulty grows. All the Blender project files for every
scene and level of difficulty are publicly available on the website, so anyone can render customized
versions of the Drunkard’s Dataset and see the full details of the implementation.

Difficulty level

Parameter 0 1 2 3

Cast factor 0 0.01 0.03 0.05
Wave height 0 0.05 0.1 0.15Mesh

Simple deform angle [º] 0 0.5 1 1.5

Noise strength rotation 0 0.6 1.2 2Camera Noise strength traslation 0 0.3 0.6 1

Table A.2: Blender’s 3D mesh deformation and camera trajectory perturbation parameters
along the four levels of difficulty of the Drunkard’s Dataset.

B Drunkard’s Odometry Flow

Table B.1 shows 2D and 3D flow evaluation metrics for Drunkard’s Odometry and its inspirational
work RAFT-3D [2] (which is BSD 3-clause licensed) in all the four levels of the same four test scenes
of the Drunkard’s Dataset. As already said in the main paper, RAFT-3D exclusively predicts 3D
scene flow, while we additionally estimate the camera pose. We evaluate both methods in terms of
flow metrics in order to validate our implementation.

Both methods are trained from scratch during 10 epochs on the same Drunkard’s Dataset scenes
(all except the test ones) and with the same deformation (difficulty level 1). The base evaluations
metrics are the 2D and 3D End-Point-Error (EPE). EPE is computed as the mean Euclidean distance
between the estimated and ground truth flow (flow and flow, respectively) in all valid pixels of the
N test images

EPE =

∑N
i=1∥flow − flow∥2

N
, (1)

In the 2D case, flow is the optical flow that we denote in the main paper as O. In the 3D case, flow
is the 3D scene flow flow3D that comes from back-projecting every pixel j ∈ I1 with coordinates uj

and its corresponding in camera 2 uj′, associated by the optical flow O, to the 3D space using their
sensor depth values

flow3D = Pj′ −Pj = π−1 (uj′, z̄j′)− π−1 (uj , z̄j) . (2)

We exclude invalid pixels which have excessively large optical flow module values (> 250), infinite
depths (as they define holes in the 3D mesh), as well as pixels for which correspondences fall outside
the image boundaries.

2

The δ metrics are the percentage of the total pixels in the test scenes that have an EPE value under
a certain threshold, being 1 pixel for the 2D case and 1 cm for the 3D case. In the 3D metrics,
|∆EPE| [%] stands for the absolute difference in percentage between the 3D EPE of RAFT-3D and
of Drunkard’s Odometry.

2D Metrics 3D Metrics

Scene Level Method δ < 1 px [%]↓ EPE [px]↓ δ < 1 cm [%]↓ EPE [mm]↓ |∆EPE| [%]

RAFT-3D 93.1 0.43 96.1 2.770 Drunkard’s Odometry 91.5 0.56 95.0 3.67 32.7

RAFT-3D 91.8 0.48 95.4 3.061 Drunkard’s Odometry 89.5 0.63 94.1 4.11 33.8

RAFT-3D 87.2 0.69 93.1 3.922 Drunkard’s Odometry 83.7 0.88 90.9 5.27 34.3

RAFT-3D 79.1 1.29 89.2 5.52

0

3 Drunkard’s Odometry 74.2 1.54 85.7 7.32 32.5

RAFT-3D 83.3 1.62 86.8 9.580 Drunkard’s Odometry 79.3 2.09 83.6 12.27 28.0

RAFT-3D 83.4 1.36 86.8 9.201 Drunkard’s Odometry 79.2 1.80 83.2 12.11 31.6

RAFT-3D 81.6 1.42 84.8 9.762 Drunkard’s Odometry 76.6 1.87 80.3 12.82 31.5

RAFT-3D 77.4 1.77 81.6 11.13

4

3 Drunkard’s Odometry 71.0 2.30 75.7 14.74 32.43

RAFT-3D 85.7 1.16 89.1 8.820 Drunkard’s Odometry 82.3 1.53 86.1 11.27 27.7

RAFT-3D 85.4 1.15 87.6 9.081 Drunkard’s Odometry 81.7 1.49 84.9 11.37 25.1

RAFT-3D 82.1 1.29 84.9 10.262 Drunkard’s Odometry 77.1 1.65 80.3 12.94 26.1

RAFT-3D 75.7 1.76 79.9 12.09

5

3 Drunkard’s Odometry 69.19 2.19 74.2 15.74 30.21

Table B.1: 2D and 3D flow metrics in each of the four levels of difficulty of the three test scenes of
the Drunkard’s Dataset for RAFT-3D and our Drunkard’s Odometry.

From EPE and δ metrics in Table B.1 we conclude that our Drunkard’s Odometry, even focused
on camera pose and not on flow as RAFT-3D, performs close to RAFT-3D on these metrics. As
RAFT-3D estimates only flow, it is not as affected as our Drunkard’s Odometry by the different
levels of deformation. The stability of the |∆EPE| [%] values for the four difficulty levels at each
scene shows that the 3D flow estimation of our Drunkard’s Odometry is stable. This gives evidence
about the capability of our method to simultaneously estimate accurate scene flow T and camera
poses Tc independently of the deformations, as the total flow T includes the flow caused by scene
deformations Td and the one caused by camera motion Tc.

C Drunkard’s Odometry Ablations

We tried several configurations of our Drunkard’s Odometry to find the best training setup, which was
possible thanks to our generated dataset. Figure C.1 shows the Relative Position Error (RPE) metric
for translation and rotation (without trajectory alignment as the training dataloader samples random
adjacent pair of frames) in the three Drunkard’s Dataset test scenes at level of difficulty 1 for different
variations of the Drunkard’s Odometry. All the methods were trained during 10 epochs from scratch,
but varying training parameters. Specifically, we played with the learning rate (l.r., 10−5, 10−4 and
2× 10−4), inverting the order of the input image pair randomly (with 50% probability), and different
loss hyperparameters. We also trained models deactivating the intermediate optical flow Ok,pre loss
term with w1, changing the influence of the pre-estimate of the camera pose Tpre

pose w4, cancelling all

3

supervision from optical flow and depth ground truth leaving only the pose loss, and modifying the
relative weight wrot between translation and rotation in the pose loss (that by default is 1).

∥logSE(3)

(
Tpre

c T̄−1
c

)
∥1 = ∥logSE(3)

(
Tpre

c T̄−1
c

)
∥tra
1 + wrot∥logSE(3)

(
Tpre

c T̄−1
c

)
∥rot
1 . (3)

We observed that our model can be trained at a faster learning rate (2× 10−4) than RAFT-3D (10−4),
possible due to the additional supervision. Our models need optical flow and depth supervision, in
addition to pose, for convergence (without all these, the training diverges eventually). Inverting the
order of the input image pair during training, as a data augmentation technique, has a significant
impact in reducing the translation pose estimation error (notice how the translation curve keeps
pointing down even in the last training stages, which does not happen without such augmentation).

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of training steps

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

RP
E

[c
m

]

Ours l.r. 10-4
Ours l.r. 10-4, Rot.w 100
Ours l.r. 10-4, w4 400
Ours l.r. 10-5
Ours l.r. 2x10-4
Ours l.r. 2x10-4, Inv. images
Ours l.r. 2x10-4, Inv. images, Only pose loss
Ours l.r. 2x10-4, Inv. images, w1 0
Ours l.r. 2x10-4, Inv. images, w4 0

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of training steps

0.2

0.4

0.6

0.8

1.0

RP
E

[º
]

Ours l.r. 10-4
Ours l.r. 10-4, Rot.w 100
Ours l.r. 10-4, w4 400
Ours l.r. 10-5
Ours l.r. 2x10-4
Ours l.r. 2x10-4, Inv. images
Ours l.r. 2x10-4, Inv. images, Only pose loss
Ours l.r. 2x10-4, Inv. images, w1 0
Ours l.r. 2x10-4, Inv. images, w4 0

Figure C.1: Ablations and hyperparameter influence on model training. We show the relative
position errors (RPE) in the three Drunkard’s Dataset test scenes for difficulty level 1 and for different
model variations of our Drunkard’s Odometry during training. With “l.r.” we denote different learning
rates. If applied, data augmentation with inverted images is shown as “inv. images” and different loss
term weights are shown as “w1”, “w4”, “Rot. w” followed by their values.

D Inference speed comparison of the baselines

In Table D.1 are the approximate inference times per frame for all the evaluated baselines previously.
These values come from rounding the total time taken for estimating the full trajectory of Scene 5
of the Drunkard’s Dataset with resolution of 320× 320 pixels at level of difficulty 0 divided by the
total number of frames (1.655). Our Drunkard’s Odometry is the most efficient of all, in addition to
being the most accurate. Note that, even if our Drunkard’s Odometry is based on iterative refined
optical flow like DROID-SLAM, in our case we do not perform global Bundle Adjustment, which
is what gives us the computational advantage. Further note that Scene 5 is the shortest one among
the three tested (0, 4 and 5). For longer sequences, the gap between Drunkard’s Odometry versus
DROID-SLAM and Colmap would be higher.

Method Time/frame [ms]

Colmap 1.650
DROID-SLAM 200
EDaM 700
Drunkard’s Odometry 170

Table D.1: Inference time per frame for all the baselines.

E Architecture Details

The architectural details for the feature encoder, the context encoder, the pose network and the update
block of our network are shown in Figures E.1 and E.2. The figures show network blocks (in gray)

4

and input, intermediate and output variables (in blue, green and red respectively). The pose network
is a modification of the one used in ManyDepth [3] (Copyright © Niantic, Inc. 2021. See project
website for more license details), so the initial guess of the relative camera pose given by the pose
network is in Lie algebra (tpre

c) and it is exponential mapped back to SE(3) (Tpre
c) to initialize Tc

and T before the iterative block. In the update block, the input pose twist tkc is cloned to every pixel
value of a tensor with the same resolution as the other input variables (H/8 ×W/8) to be able to
stack them together.

RGB1 3xHxW

RGB2 3xHxW

Conv7x7 (64) stride=2

ResUnit3x3 (64) stride=1

ResUnit3x3 (64) stride=1

ResUnit3x3 (96) stride=2

ResUnit3x3 (96) stride=1

ResUnit3x3 (128) stride=2

ResUnit3x3 (128) stride=1

Conv1x1 (128)

128xH/8xW/8

Feature encoder

(a) Feature encoder

RGB1 3xHxW

ResNet50 (1024)

Conv3x3 (512) stride=1

128xH/8xW/8

C
ontext encoder

Conv3x3 (512) stride=1

(b) Context encoder

RGB1 3xHxW

RGB2 3xHxW

ResNet18 (512)

Conv1x1 (256) stride=1

Pose 6

Pose netw
ork

Conv3x3 (256) stride=1

Conv3x3 (256) stride=1

Conv3x3 (6) stride=1

(c) Pose network

Figure E.1: Network details for the feature encoder, the context encoder and the pose network.

Correlation features 196xH/8xW/8

Conv3x3 (256) stride=1

Conv3x3 (256) stride=1

Conv1x1 (384) stride=1

384xH/8xW/8

2D Flow 2xH/8xW/8

Inverse depth 2 residual 1xH/8xW/8

3D Flow twist 6xH/8xW/8

Pose twist 6xH/8xW/8

Conv7x7 (128) stride=1

Conv1x1 (384) stride=1

384xH/8xW/8

Embeddings 16xH/8xW/8

Conv3x3 (384) stride=1

384xH/8xW/8

Context features 384xH/8xW/8 Hidden 128xH/8xW/8

GRU3x3 (128)

Hidden 128xH/8xW/8

Conv3x3 (256) stride=1

Conv1x1 (3) stride=1

2D Flow + Inverse depth 2 updates
3xH/8xW/8

Conv3x3 (256) stride=1

Conv1x1 (576) stride=1

Mask 576xH/8xW/8

Conv3x3 (256) stride=1

Conv1x1 (3) stride=1

Confidence 3xH/8xW/8

Conv3x3 (256) stride=1

Conv1x1 (6) stride=1

Pose twist
updates 6

Conv3x3 (256) stride=1

Conv1x1 (16) stride=1

16xH/8xW/8

Conv3x3 (256) stride=1

Conv1x1 (2) stride=1

2xH/8xW/8

Embeddings 128xH/8xW/8

Figure E.2: Network details for the update block.

References
[1] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. Turner, E. Undersander,

W. Galuba, A. Westbury, A. X. Chang, et al., “Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d
environments for embodied ai,” arXiv preprint arXiv:2109.08238, 2021. 1

[2] Z. Teed and J. Deng, “Raft-3d: Scene flow using rigid-motion embeddings,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8375–8384, 2021. 2

[3] J. Watson, O. Mac Aodha, V. Prisacariu, G. Brostow, and M. Firman, “The temporal opportunist: Self-
supervised multi-frame monocular depth,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1164–1174, 2021. 5

5

