
A Appendix411

The appendix is structured into three main parts.412

The first part (section A.1, A.2) provides additional details about SPS. Section A.1 focuses on413

implementation-related aspects, while section A.2 presents experimental results concerning the414

reconstruction and prediction loss.415

The second part (section A.3 to A.5) introduces an extended version of SPS called SPS+. Section A.3416

describes the capabilities of SPS+ in achieving content-style disentanglement along with interpretable417

learning. The related experiments are presented in section A.4 and section A.5.418

The third part (section A.6) presents two additional complex experiments conducted separately using419

SPS+ and SPS, respectively.420

A.1 SPS implementation details421

A.1.1 Architecture details422

Our models for both tasks share the following architecture. The encoder first uses a 2D-CNN with423

ReLU activation to shrink the input down to an 8× 8 middle layer, and then a linear layer to obtain z.424

If the encoder is in a VAE (instead of an AE), two linear layers characterises the posterior, one for425

the mean and the other for the log-variance. The prior model is a vanilla RNN of one layer with 256426

hidden units and one linear layer projection head. The decoder consists of a small fully-connected427

network followed by 2D transposed convolution layers mirroring the CNN in the encoder. Its output428

is then passed through a sigmoid function. We use no batch normalisation or dropout layers.429

Minor variations exist between the models for the two tasks. In the audio task, we use three430

convolution layers in the encoder, with three linear and three 2D transposed convolution layers in431

the decoder. In the vision task, as the data are more complex, we use four convolution layers in the432

encoder, with four linear and four 2D transposed convolution layers in the decoder.433

A.1.2 Training details434

For both tasks, we use the Adam optimiser with learning rate = 10−3. The training batch size is435

32 across all of our experiments. For all VAE-based models, including SPSVAE (ours/ablation) and436

β-VAE (baseline), we set β (i.e., λ3 in Equation (1)) to 0.01, with λ1 = 1 and λ2 = 2. All BCE and437

MSE loss functions are calculated in sum instead of mean. K = 4 for all SPS models except for438

those discussed in section 5 where we analyse the influence of different K.439

The RNN predicts zn+1:T given the first n embeddings z1:n. We choose n = 3 for the audio task and440

n = 5 for the vision task. We adopt scheduled sampling [Bengio et al., 2015] during the training441

stage, where we gradually reduce the guidance from teacher forcing. After around 50000 batch442

iterations, the RNN relies solely on the given z1:T and predicts auto-regressively.443

A.2 SPS reconstruction and prior prediction results444

We investigate the reconstruction and prediction capacities of our model and show that they are445

not harmed by adding symmetry constraints. For the music task, we compare our model, our446

model ablating symmetry constraints, and a β-VAE trained solely for the reconstruction of power447

spectrogram. Table 3 reports per-pixel BCE of the reconstructed sequences from the original input448

frames (Self-recon) and from the RNN predictions (Image-pred). We also include Lprior, the MSE449

loss on the RNN-predicted ẑ as defined in section 3.2. The results show that our models slightly450

surpasses the ablation and baseline models in all three metrics.451

Similarly, Table 4 displays the reconstruction and prediction losses on the test set for the video452

task. Results show that adding symmetry constraints does not significantly hurt the prediction losses.453

Frame-wise self-reconstruction is significantly lower for the SPS models, but only by a small margin.454

A.3 SPS+455

SPS can use physical symmetry to learn interpretable factors that evolve over time. We call those456

factors content representation. However, many problems can not be represented by content represen-457
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Table 3: Reconstruction and prediction results on the audio task.
Methods Self-recon ↓ Image-pred ↓ Lprior ↓
SPSVAE, K=4 (Ours) 0.0375±0.0012 0.0377±0.0007 0.0057±0.0015
SPSAE, K=4 (Ours) 0.0381±0.0012 0.0384±0.0009 0.0068±0.0031
SPSVAE, K=0 (Ablation) 0.0384±0.0014 0.0388±0.0013 0.0134±0.0101
SPSAE, K=0 (Ablation) 0.0386±0.0012 0.0391±0.0012 0.0075±0.0024
β-VAE 0.0406±0.0008 N/A N/A

Table 4: Reconstruction and prediction losses of the video task. Two outliers are removed from the
50 runs.

Method Self-recon ↓ Image-pred ↓ Lprior ↓
SPSVAE, K=4 (Ours) 0.64382 ± 9e-05 0.6456 ± 4e-04 0.14 ± 0.05
SPSAE, K=4 (Ours) 0.64386 ± 7e-05 0.6458 ± 3e-04 0.17 ± 0.07
SPSVAE, K=0 (Ablation) 0.64372 ± 4e-05 0.6459 ± 2e-04 0.19 ± 0.10
SPSAE, K=0 (Ablation) 0.64367 ± 5e-05 0.6456 ± 1e-04 0.11 ± 0.03
β-VAE 0.64345 ± 5e-05 N/A N/A

tation alone. For example, the bouncing balls can have different colours and the pitch scales can be458

generated by different instruments. If the colour of a ball or the timbre of a sound scale are constant459

within a trajectory, those latent spaces are hard to constrain by physical symmetry. We call such460

invariant factors style representation. In order to deal with these problems, we combine SPS with a461

simple content-style disentanglement technique: SPS+, a more general framework of SPS. We use462

random pooling to constrain the style factors, and use physical symmetry to constrain the content463

representation in the same way as SPS in Section 3.1464

A.3.1 Model465

Figure 9 shows the design of SPS+, which belongs to the family of disentangled sequential autoen-466

coders [Bai et al., 2021; Hsu et al., 2017; Vowels et al., 2021; Yingzhen and Mandt, 2018; Zhu et467

al., 2020]. During the training process, the temporal data input x1:T is first fed into the encoder E to468

obtain the corresponding representation z1:T . z1:T is then split into two parts: the style factor z1:T,s469

and the content factor z1:T,c. The style factor z1:T,s is passed through the random-pooling module470

P , where one element zτ,s is randomly picked. The content factor z1:T,c is fed into three branches,471

then combined with zτ,s to reconstruct. For random pooling in the training stage, one style vector is472

randomly selected from all time steps (i.e., 15 for the music task and 20 for the vision task) of the473

sequence to represent zs. In the testing stage, only the first 5 (vision task) or 3 (music task) frames474

are given, and zs will be selected from them.475

A.3.2 Training objective476

The following loss functions in SPS+ slightly vary from those in SPS. For SPS+, Lprior and Lsym477

work on the content part of latent variables only. Other loss functions are exactly the same as those478

defined in section 3.2479

Lprior = ℓ2(ẑ2:T,c, z2:T,c), (8)

Lsym = ℓ2(z̃2:T,c, ẑ2:T,c) + ℓ2(z̃2:T,c, z2:T,c). (9)

ℓ2(z̃2:T,c, z2:T,c) =
1

K

K∑
k=1

ℓ2(S
−1
k (R(Sk(z1:T−1,c))), z2:T,c), (10)
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Figure 9: An overview of our model. x1:T is fed into the encoder E to obtain the corresponding
representation z1:T , which is then split into two parts: the style factor z1:T,s and the content factor
z1:T,c. The style factor is passed through the random-pooling layer P , where an element zτ,s is
randomly selected. The content factor is fed into three different branches and combined with zτ,s to
reconstruct three outputs respectively: x′1:T , x̂2:T+1 and x̃2:T+1. Here, R is the prior model and S is
the symmetric operation. The inductive bias of physical symmetry enforces R to be equivaraint w.r.t.
to S, so z̃ and ẑ should be close to each other and so are x̃ and x̂.

ℓ2(z̃2:T,c, ẑ2:T,c) =
1

K

K∑
k=1

ℓ2(S
−1
k (R(Sk(z1:T−1,c))), ẑ2:T,c), (11)

480

LBCE(x̃2:T , x2:T ) =
1

K

K∑
k=1

LBCE(D(S−1
k (R(Sk(z1:T−1,c))), zτ,s), x2:T ). (12)

A.4 SPS+ on learning pitch & timber factors from audios of multiple instruments481

A.4.1 Dataset and setups482

We synthesise a dataset that contains around 2400 audio clips played by multiple instruments.483

Similar to the dataset in section 4.1.1, each clip contains 15 notes in major scales with the first 8484

notes ascending and the last 8 notes descending. Each note has the same volume and duration. The485

interval between every two notes is equal. We vary the starting pitch such that every MIDI pitch in the486

range C2 to C7 is present in the dataset. For each note sequence, we synthesise it using 53 different487

instruments, yielding 2376 audio clips. Specifically, two soundfonts are used to render those audio488

clips respectively: FluidR3_GM [Wen, 2013] for the train set and GeneralUser GS v1.471 [Chris,489

2017] for the test set. The pitch ranges for different instruments vary, so we limit each instrument to490

its common pitch range (See Table 14).491

We assume zc ∈ R and zs ∈ R2, and use random S ∈ G ∼= (R,+) to augment zc with K=4.492

A.4.2 Results on pitch-timbre disentanglement493

We evaluate the content-style disentanglement using factor-wise data augmentation following [Yang et494

al., 2019]. Namely, we change (i.e., augment) the instrument (i.e., style) of notes while keeping their495

pitch the same, and then measure the effects on the encoded zc and zs. We compare the normalised496

zc and zs, ensuring they have the same dynamic range. Ideally, the change of zs should be much497

more significant than zc. Here, we compare four approaches: 1) our model (SPS+), 2) our model498

without splitting for zs (SPS with z ∈ R3 and S ∈ G ∼= (R,+)) as an ablation, 3) GMVAE [Luo et499

al., 2019], a domain-specific pitch-timbre disentanglement model trained with explicit pitch labels,500

and 4) TS-DSAE [Luo et al., 2022], a recent unsupervised pitch-timbre disentanglement model based501

on Disentangled Sequential Autoencoder (DSAE).502

Figure 10 presents the changes in normalised zc and zs measured by L2 distance when we change503

the instrument of an anchor note whose pitch is D3 and synthesised by accordion. Table 5 provides504

a more quantitative version by aggregating all possible instrument combinations and all different505
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Figure 10: Comparisons for ∆zc and ∆zs for different instruments against accordion, with pitch kept
constant at MIDI pitch D3. ∆zc and ∆zs are changes in normalised zc and zs, so that higher black
bars relative to white bars means better results. All results are evaluated on the test set.

Table 5: Mean ratios of changes in normalised zc and zs under timbre augmentation across all
possible instrument combinations under different constant pitches in the test set.

Methods ||∆zc||2/||∆zs||2 ↓
SPSVAE+ (Ours) 0.49
SPSVAE (Ablation) 2.20
GMVAE (Baseline) 0.67
TS-DSAE (Baseline) 0.65

pitch pairs. Both results show that SPS+ produces a smaller relative change in zc under timbre506

augmentation, demonstrating a successful pitch-timbre disentanglement outperforming both the507

ablation and baseline. Note that for the ablation model, zc varies heavily under timbre augmentation,508

seemingly containing timbre information. This result indicates that the design of an invariant style509

factor over the temporal flow is necessary to achieve good disentanglement.510

We further quantify the results in the form of augmentation-based queries following [Yang et al., 2019],511

regarding the intended split in z as ground truth and the dimensions with the largest variances from512

factor-wise augmentation after normalisation as predictions. For example, under timbre augmentation513

under a given pitch for our model, if z1 and z3 are the two dimensions of z that produce the largest514

variances after normalisation, we count one false positive (z1), one false negative (z2), and one true515

positive (z3). The precision would be 0.67. Tables 6 shows the precision scores of the four approaches516

against their corresponding random selection. The results are in line with our observation in the517

previous evaluation, with our model more likely to produce the largest changes in dimensions in zc518

under content augmentation and that in zs under style augmentation.519

Table 6: Results on augmentation-based queries on the audio task. Precision, recall and F1 are
the same since the number of predicted and ground-truth positives are identical. Note that random
precisions for different approaches can be different as zc and zs are split differently.

Methods Timbre augmentation Pitch augmentation

Precision ↑ Random Precision ↑ Random

SPSVAE+ (Ours) 0.98 0.67 0.82 0.33
SPSVAE (Ablation) 0.50 0.67 0.02 0.33
GMVAE (Baseline) 0.93 0.50 0.83 0.50
TS-DSAE (Baseline) 0.81 0.50 0.68 0.50
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Figure 11: A visualisation of the mapping between the 1D content factor and the true pitch. In the
upper row, models encode notes in the test set to zpitch. The x axis shows the true pitch and the y axis
shows the learned pitch factor. In the lower row, the x axis traverses the zpitch space. The models
decode zpitch to audio clips. We apply YIN to the audio clips to detect the pitch, which is shown by
the y axis. In both rows, a linear, noiseless mapping is ideal, and our method performs the best.

Table 7: Reconstruction and prediction results on the audio task.

Methods Self-recon ↓ Image-pred ↓ Lprior ↓
SPSVAE+, K=4 (Ours) 0.0356 0.0359 0.0418
SPSVAE+, K=0 (Ablation) 0.0360 0.0363 0.0486
β-VAE (Baseline) 0.0359 N/A N/A

A.4.3 Results on interpretable pitch space520

Figure 11 shows that the pitch factor learned by SPS+ has a linear relation with the true pitch. Here,521

we use zpitch as the synonym of zc to denote the content factor. The plot shows the mappings of two522

tasks and four models. In the embedding task (the first row), x-axis is the true pitch and y-axis is523

embedded zpitch. In the synthesis task (the second row), x-axis is zpitch and y-axis is the detected524

pitch (by YIN algorithm, a standard pitch-estimation method by [De Cheveigné and Kawahara, 2002])525

of decoded (synthesised) notes. The fours models involved are: 1) our model, 2) our model without526

symmetry (K=0), 3) a β-VAE trained to encode single-note spectrograms from a single instrument527

(banjo) to 1D embeddings, and 4) SPICE [Gfeller et al., 2020], a SOTA unsupervised pitch estimator528

with strong domain knowledge on how pitch linearity is reflected in log-frequency spectrograms. As529

the figure shows, without explicit knowledge of pitch, our model learns a more interpretable pitch530

factor than β-VAE, and the result is comparable to SPICE.531

Figure 12 shows a more quantitative analysis, using R2 as the metric to evaluate the linearity of532

the pitch against zpitch mapping. Although SPICE produces rather linear mappings in Figure 11, it533

suffers from octave errors towards extreme pitches, hurting its R2 performance.534

A.4.4 Reconstruction and prior prediction535

We investigate the reconstruction and prediction capacities of our model and show that they are not536

harmed by adding symmetry constraints. We compare our model, our model ablating symmetry537

constraints, and a β-VAE trained solely for only image reconstruction. Table 7 reports per-pixel538

BCE of the reconstructed sequences from the original input frames (Self-recon) and from the RNN539

predictions (Image-pred). We also include Lprior, the MSE loss on the RNN-predicted ẑ as redefined540

in section A.3.2. The results show that our model surpasses the ablation and baseline models in all541

three indexes.542
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Figure 12: We use R2 to evaluate mapping linearity. A larger R2 indicates a more interpretable latent
space. Results are evaluated on the test set.

A.5 SPS+ on learning space & colour factors from videos of colourful bouncing balls543

A.5.1 Dataset and setups544

We run physical simulations of a bouncing ball in a 3D space and generate 4096 trajectories, yielding545

a dataset of videos. Similar to the dataset in section 4.2.1, the simulated ball is affected by gravity and546

bouncing force (elastic force). A fixed camera records a 20-frame video of each 4-second simulation547

to obtain one trajectory (see Figure 13). The ball’s size, gravity, and proportion of energy loss per548

bounce are constant across all trajectories. In this dataset, the color of the ball varies by trajectory,549

rather than a single color. For each trajectory, the ball’s colours are uniformly randomly sampled550

from a continuous colour space.551

Figure 13: Two example trajectories from the bouncing ball dataset.

We set zc ∈ R3 with the same representation augmentation as in section 4.2 (S ∈ G ∼= (R2,+)×552

SO(2), K=4). Two of its dimensions are intended to span the horizontal plane and the third553

unaugmented latent dimension is intended to encode the vertical height. We set zs ∈ R2 which is554

intended to represent the ball’s colour space.555

A.5.2 Result on space-colour disentanglement556

Similar to section A.4.2, we evaluate the space-colour disentanglement by augmenting the colour557

(i.e., style) of the bouncing balls while keeping their locations, and then measure the effects on the558

normalised zc and zs. Again, a good disentanglement should lead to a change in zs much more559

significant than zc. Here, we compare two approaches: 1) our model (SPS+) and 2) our model560

ablating splitting for zs (SPS with z ∈ R5 and S ∈ G ∼= (R2,+)× SO(2)). Note that the ablation561

model does not differently constrain z2 (corresponding to the y-axis) than zs. To ensure a meaningful562

comparison, under colour augmentation, we consider z2 to be a part of zs of the ablation model and a563

part of zc of the complete model.564

Figure 14 presents the changes in normalised zc and zs measured by L2 distance when we change565

the colour of an anchor ball whose location is (0, 1, 5) and rendered using white colour. Table 9566
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Table 8: Results on augmentation-based queries on the visual task. Since the ablation model does not
differently constrain z2 (corresponding to the y-axis) than zs, we consider zc and zs differently for
the two approaches. Under colour augmentation, we consider z2 to be a part of zs for the ablation
model and a part of zc for the complete model. Under location augmentation, we consider z2 to be a
part of zc for both models.

Methods Colour augmentation Location augmentation

Precision ↑ Random Precision ↑ Random

SPSVAE+ (Ours) 0.99 0.40 0.88 0.40
SPSVAE (Ablation) 0.64 0.60 0.36 0.40

Table 9: Mean ratios of changes in normalised zc and zs under colour augmentation across sampled
colour combinations keeping locations constant. Results are evaluated on the test set.

Methods ||∆zc||2/||∆zs||2 ↓
SPSVAE+ (Ours) 0.54
SPSVAE (Ablation) 1.62

provides a more quantitative version by aggregating sampled colour combinations and location pairs.567

Both results show that our model produces a smaller relative change in zc under timbre augmentation,568

demonstrating a successful pitch-timbre disentanglement outperforming the ablation model. Note569

that for the ablation model, zc varies heavily under colour augmentation. Table 8 shows the precision570

scores of the SPS+ and its ablation against their corresponding random selection for the ball task.571

These results agree with section A.4.2 and again indicate that the design of an invariant style factor572

helps with disentanglement.573
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Figure 14: Comparisons of normalised ∆zc and ∆zs for different colours against white, with the
ball’s location kept constant at (0, 1, 5). Higher black bars (relative white bars) means better a result.
(Results are evaluated on the test set.)

Figure 15 evaluates the learned colour factor of our model. Each pixel shows the colour of the ball574

synthesised by the decoder using different z coordinates. The ball colour is detected using naive575

saturation maxima. In the central subplot, the location factor z1:3 stays at zeros while the colour576

factor z4:5 is controlled by the subplot’s x, y axes. As shown in the central subplot, our model (a)577

learns a natural 2D colour space. The surrounding subplots keep the colour factor z4:5 unchanged,578

and the location factor z1,3 is controlled by the subplot’s x, y axes. A black cross marks the point579

where the entire z1:5 is equal to the corresponding black cross in the central subplot. As is shown580

by the surrounding subplots, varying the location factor does not affect the colour produced by our581

model (a), so the disentanglement is successful. The luminosity changes because the scene is lit by a582

point light source, making the ball location affect the surface shadow. On the other hand, β-VAE (b)583

learns an uninterpretable colour factor.584
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Figure 15: The colour map of the synthesised ball experiment through latent space traversal. Each
pixel represents the detected colour from one synthesised image of the ball. Each subplot varies two
dimensions of z, showing how the synthesised colour responds to the controlled z.
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Figure 16: Row i shows the generated images when changing zi and keeping z̸=i = 0, where the x
axis varies zi from −2σ to +2σ. In (a), changing z2 controls the ball’s height, and changing z1, z3
moves the ball parallel to the ground plane.

A.5.3 Results on interpretable 3D representation585

Figure 16 illustrates the interpretability of learned content factor using latent space traversal. Each586

row varies only one dimension of the learned 3D content factor, keeping the other two dimensions at587

zero. Figure 16(a) shows the results of our model. We clearly observe that: i) increasing z1 (the first588

dimension of zc ) mostly moves the ball from left to right, increasing z2 moves the ball from bottom589

to top, and increasing z3 mostly moves the ball from far to near. Figure 16(b) is the ablation model590

without physical symmetry, and (c) shows the result of our baseline model β-VAE, which is trained to591

reconstruct static images of a single colour (green). Neither (b) nor (c) learns an interpretable latent592

space.593

Table 10: Linear fits between the true location and the learned location factor. We run the encoder on
the test set to obtain data pairs in the form of (location factor, true coordinates). We then run a linear
fit on the data pairs to evaluate factor interpretability.

Method x axis MSE ↓ y axis MSE ↓ z axis MSE ↓ MSE ↓
SPSVAE+, K=4 (Ours) 0.11 0.06 0.09 0.09
SPSVAE+, K=0 (Ablation) 0.35 0.72 0.68 0.58
β-VAE (Baseline) 0.37 0.76 0.73 0.62
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Table 11: Reconstruction and prediction results on the video task with variable colours.

Method Self-recon ↓ Image-pred ↓ Lprior ↓
SPSVAE+, K=4 (Ours) 0.6457 0.6464 0.0957
SPSVAE+, K=0 (Ablation) 0.6456 0.6464 0.1320
β-VAE (Baseline) 0.6455 N/A N/A

Table 12: R2 aggregated across all instruments in the test set. A larger R2 indicates a more
interpretable latent space.

Method Self-recon ↓ Image-pred ↓ Lprior ↓ Embedding R2 ↑ Synthesis R2 ↑
SPSVAE+, K=4 (Ours) 0.0384 0.0396 0.7828 0.89 0.47
SPSVAE+, K=0 (Ablation) 0.0388 0.0400 0.9909 0.83 0.25
β-VAE (Baseline) 0.0324 N/A N/A 0.19 0.29

Table 10 quantitatively evaluates the linearity of the learned location factor. We fit a linear regression594

from zc to the true 3D location over the test set and then compute the Mean Square Errors (MSEs).595

A smaller MSE indicates a better fit. All three methods (as used in Figure 16) are evaluated on a596

single-colour (green) test set. Results show that our model achieves the best linearity in the learned597

latent factors, which aligns with our observations in Figure 16.598

A.5.4 Reconstruction and prior prediction599

Similar to section A.4.4, we show that our model suffers little decrease in reconstruction and prediction600

performance while surpassing the ablation model in terms of Lprior by table 11.601

A.6 More complicated tasks602

The main part of this paper focuses on simple, straight-forward experiments. Still, we supplement our603

findings by reporting our current implementation’s performance on more complicated tasks involving604

natural melody and real-world video data.605

A.6.1 Learning interpretable pitch factors from natural melodies606

We report the performance of SPS+ on learning interpretable pitch factors from monophonic melodies607

under a more realistic setup. We utilize the melodies from the Nottingham Dataset [Foxley, 2011], a608

collection of 1200 American and British folk songs. For simplicity, we quantise the MIDI melodies by609

eighth notes, replace rests with sustains and break down sustains into individual notes. We synthesise610

each non-overlapping 4-bar segment with the accordion soundfonts in FluidR3 GM [Wen, 2013],611

resulting in around 5000 audio clips, each of 64 steps.612

This task is more realistic than the audio task described in A.4 since we use a large set of natural613

melodies instead of one specified melody line. The task is also more challenging as the prior model614

has to predict long and more complex melodies. To account for this challenge, we use a GRU [Cho615

et al., 2014] with 2 layers of 512 hidden units as the prior model. We perform early-stopping after616

around 9000 iterations based on spectrogram reconstruction loss on the training set. The model and617

training setup is otherwise the same as in A.4.618

Following A.4.3, We evaluate our approach on notes synthesised with all instruments in GeneralUser619

GS v1.471 [Chris, 2017] in the MIDI pitch range of C4 to C6, where most of the melodies in Foxley620

[2011] take place. Note that this is a challenging zero-shot scenario since the model is trained on only621

one instrument. We compare our model, our model ablating the symmetry loss and a β-VAE baseline.622

We visualise the embedded zpitch and synthesised pitches for different instruments in Figure 17.623

Following 12, R2 results are shown in Figure 18 and Table 12. Even when tested on unseen timbres,624

our model can learn linear and interpretable pitch factors and demonstrates better embedding and625

synthesis performance compared with the ablation model, which outperforms the β-VAE baseline.626
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Figure 17: A visualisation of the mapping between the embedded 1D content factor and the true pitch
for the model trained on Nottingham dataset.
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Figure 18: R2 for select instruments in the test set. A larger R2 indicates a more linear and
interpretable latent space.

A.6.2 Learning an intepretable location factor from KITTI-Masks627

In this task, we evaluate our method’s capability on a real-world dataset, KITTI-Masks [Klindt et al.,628

2021]. The dataset provides three labels for each image: X and Y for the mask’s 2D coordinate, and629

AR for the pixel-wise area of the mask. Based on the provided labels, we use simple geometrical630

relation to estimate the person-to-camera distance d, computed as d = 1/ tan(α
√
AR), where α is a631

constant describing the typical camera’s Field of View (FoV).632

We use a 3-dimensional latent code for all models. For SPS, all 3 dimensions are content factors zc633

and no style factor zs is used. We apply group assumption (R3,+) to augment representations with634

K = 1. To measure the interpretability, we fit a linear regression from zc to the ground truth labels635

and calculate MSEs in the same way as in section A.5.3. The results are shown in Table 13. Linear636

proj. MSE 1 measures the errors of linear regression from zc to the original dataset labels. Linear637

proj. MSE 2 measures the errors of linear regression from zc to the person’s 3-D location, estimated638

from the labels.639
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Table 13: Results of KITTI-Masks task, averaging on 30 random initialisations for each method.

Methods Self-recon ↓ Image-pred ↓ Linear proj. MSE 1 ↓ Linear proj. MSE 2 ↓
SPSVAE, K=4 (Ours) 0.030±0.001 0.084±0.006 0.215±0.067 0.203±0.065
SPSVAE, K=0 (Ablation) 0.030±0.001 0.093±0.010 0.235±0.077 0.243±0.088
β-VAE (Baseline) 0.028±0.001 N/A 0.403±0.194 0.399±0.204

As is shown in Table 13, MSE 2 is smaller than MSE 1 for SPS, indicating that SPS learns more640

fundamental factors (person’s location) rather than superficial features (pixel-wise location and area).641

For the baseline methods, MSE 2 is almost equal to MSE 1, and both of them are higher than those of642

SPS. In summary, our experiment shows that SPS learns more interpretable representations than the643

baseline (as well as the ablation method) on KITTI-Masks dataset.644
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Figure 19: Latent space traversal on different models. Row i shows the generated images when
changing zi and keeping z̸=i = 0. For our model, the range of z1 from -2 to 2 corresponds to the
human location from near-right to far-left, z2 from near-left to far-right, and z3 from near to far.
We can see that other methods produce more non-linear trajectories, for example in (c), the human
location hardly changes when z1 < 0, but it changes dramatically when z1 > 0.

Figure 19 shows the generated images, which illustrates that the factors learned by SPS are more645

linear than those learned by other methods in the human location attribute. For the experiment, We646

choose all sequences with length ≥ 12 from KITTI-Masks as our dataset; we use 1058 sequences for647

training and 320 sequences for evaluation; In the inference stage, only the first 4 frames are given. All648

three methods are trained 30 times with different random initializations. Table 13 shows the average649

results evaluated on the same test set with 30 different seeds.650

A.7 Reproducibility statement and compute requirement651

The source code for training and testing the models, as well as generating the figures and tables,652

is publicly available at https://github.com/double-blind-75098/Learning-basic-interpretable-factors-653

from-temporal-signals-via-physical-symmetry.654

The GTX1080Ti graphics card is capable of effectively executing all the tasks presented in this paper.655
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Instrument MIDI Note
(from)

MIDI Note
(to)

Accordion 58 96
Acoustic Bass 48 96
Banjo 36 96
Baritone Saxophone 36 72
Bassoon 36 84
Celesta 36 96
Church Bells 36 96
Clarinet 41 84
Clavichord 36 84
Dulcimer 36 84
Electric Bass 40 84
Electric Guitar 36 96
Electric Organ 36 96
Electric Piano 36 96
English Horn 36 85
Flute 48 96
Fretless Bass 36 84
Glockenspiel 36 96
Guitar 36 96
Harmonica 36 96
Harp 36 96
Harpsichord 36 96
Horn 36 96
Kalimba 36 96
Koto 36 96
Mandolin 36 96
Marimba 36 96
Oboe 36 96
Ocarina 36 96
Organ 36 96
Pan Flute 36 96
Piano 36 96
Piccolo 48 96
Recorder 36 96
Reed Organ 36 96
Sampler 36 96
Saxophone 36 84
Shakuhachi 36 96
Shamisen 36 96
Shehnai 36 96
Sitar 36 96
Soprano Saxophone 36 96
Steel Drum 36 96
Timpani 36 96
Trombone 36 96
Trumpet 36 96
Tuba 36 72
Vibraphone 36 96
Viola 36 96
Violin 36 96
Violoncello 36 96
Whistle 48 96
Xylophone 36 96

Table 14: Pitch range (in MIDI note) for each instrument in our dataset.
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