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Abstract

We propose a theoretical framework for studying behavior cloning of complex ex-
pert demonstrations using generative modeling. Our framework invokes low-level
controllers - either learned or implicit in position-command control - to stabilize
imitation around expert demonstrations. We show that with (a) a suitable low-level
stability guarantee and (b) a powerful enough generative model as our imitation
learner, pure supervised behavior cloning can generate trajectories matching the
per-time step distribution of essentially arbitrary expert trajectories in an opti-
mal transport cost. Our analysis relies on a stochastic continuity property of the
learned policy we call “total variation continuity" (TVC). We then show that TVC
can be ensured with minimal degradation of accuracy by combining a popular
data-augmentation regimen with a novel algorithmic trick: adding augmentation
noise at execution time. We instantiate our guarantees for policies parameterized
by diffusion models and prove that if the learner accurately estimates the score of
the (noise-augmented) expert policy, then the distribution of imitator trajectories
is close to the demonstrator distribution in a natural optimal transport distance.
Our analysis constructs intricate couplings between noise-augmented trajectories,
a technique that may be of independent interest. We conclude by empirically val-
idating our algorithmic recommendations, and discussing implications for future
research directions for better behavior cloning with generative modeling.

1 Introduction

Training dynamic agents from datasets of expert examples, known as imitation learning, promises
to take advantage of the plentiful demonstrations available in the modern data environment, in an
analogous manner to the recent successes of language models conducting unsupervised learning on
enormous corpora of text [67, 70]. Imitation learning is especially exciting in robotics, where mass
stores of pre-recorded demonstrations on Youtube [1] or cheaply collected simulated trajectories
[42, 20] can be converted into learned robotic policies.

For imitation learning to be a viable path toward generalist robotic behavior, it needs to be able to
both represent and execute the complex behaviors exhibited in the demonstrated data. An approach
that has shown tremendous promise is generative behavior cloning: fitting generative models, such
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Figure 1: Consider demonstration trajectories exhibiting two modes: a “go left” and “go right” mode
around an obstacle depicted in red and purple, respectively. To avoid compounding error, we imi-
tate sequences of simple low-level feedback controllers we call “primitive controllers”, not simply
raw actions. Intuitively, primitive controllers provide “tubes" around each demonstration trajectory
where the system can be stabilized. Depicted in yellow, our data-noising procedure described below
“fills in the gaps” in the demonstration, switching between modes in a well-behaved manner, and
whilst allowing the primitive controllers to manage the stabilization.

as diffusion models [2, 19, 33], to expert demonstrations with pure supervised learning. In this paper,
we ask: When can generative behavior cloning imitate arbitrarily complex expert behavior?

In this paper, we are interested in how algorithmic choices interface with the dynamics of the agent’s
environment to render imitation possible. The key challenge separating imitation learning from
vanilla supervised learning is one of compounding error: when the learner executes the trained be-
havior in its environment, small mistakes can accumulate into larger ones; this in turn may bring
the agent to regions of state space not seen during training, leading to larger-still deviations from
intended trajectories. Without the strong requirement that the learner can interactively query the
expert at new states [40, 57], it is well understood that ensuring some form of stability in the imita-
tion learning procedure is indispensable [68, 27, 50]. While many natural notions of stability exist
for simple behaviors, how to enforce stability when imitating more complex behaviors remains an
open question. Multi-modal trajectories present a key example of this challenge: consider a robot
navigating around an obstacle; because there is no difference between navigating around the object
to the right and around to the left, the dataset of expert trajectories may include examples of both
options. This bifurcation of good trajectories can make it difficult for the agent to effectively choose
which direction to go, possibly even causing the robot to oscillate between directions and run into
the object. [19]. Moreover, human demonstrators correlate current actions with the past in order to
commit to either a right or left path, which makes even formulating the idea of an “expert policy”
a conceptually challenging one. Lastly, bifurcations are necessarily incompatible with previous no-
tions of stability derived from classical control theory [68, 27, 50]. In this work, we investigate
how these strong and often unrealistic assumptions on the expert policy can be replaced by
practical (and often realistic) assumptions on available algorithms.

1.1 Contributions.

As in previous work, we formalize behavior cloning in two stages: at train-time, we learn a map from
observations to distributions over actions, supervised by (state, action)-pairs from expert demonstra-
tions coming from Nexp independent expert trajectories, while at test-time, the learned map, or
policy, is executed on random initial states (distributed identically to initial training states). Follow-
ing the schematic of existing theoretical analyses of behavior cloning [68, 50, 27], we demonstrate
that a policy trained by minimizing a certain supervised learning objective on expert demonstrations
induces trajectories that approximate those of expert demonstrations. Our work considers a signif-
icantly more general setting than past theoretical literature, and one which reflects the strength of
generative models for imitation. One corollary of our key contributions is summarized in the follow-
ing informal statement. The main technical insights leading to the proof of the theorem are detailed
in the bullet points below it, and depicted in Figure 1.
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Theorem (informal). Consider a generative behavior cloner π̂ that learns to predict sequences of
expert actions on horizon H , along with low-level controllers that locally stabilize the trajectories.
Then, with a suitable data noising strategy, for all times h ≤ H ,

P[expert & imitator trajectories disagree at some time h by ≥ ε]
≤ OISS

(
Hε+ 1

ε2

∑
h Eexpert,h [W1(Pexpert actions,Pimitator actions)]

)
where Eexpert,h[W1(Pexpert actions,Pimitator actions)] denotes a 1-Wasserstein distance in an ap-
propriate metric between the conditional distribution over expert and imitator actions given the
observation at time step h, and where OISS hides constants depending polynomially on the stability
properties of the low-level controllers, defined formally in Section 3.1.

We now detail the key ingredients of our results.

1. We imitate stochastic demonstrators that may exhibit both complex correlations between actions
in their trajectories (e.g. be non-Markovian) and multi-modal behavior. The natural object to
imitate in this setting is the conditional probability distribution of expert actions given recent
states, but marginalized over past states. We require said conditional action distribution to be
learnable by a generative model, but otherwise arbitrarily complex: in particular, the conditional
distribution of an expert actions given the state can be discontinuous (in any natural distance
metric) as a function of state, as in the bifurcation depicted in Figure 1(right).

2. We obtain rigorous, theoretical guarantees and without requiring either interactive data col-
lection (e.g. DAGGER [57, 40]), or access to gradients of the expert policy (as in TASIL[50]).
Instead, we replace these assumption with an oracle, described below, which synthesizes sta-
bilizing, low-level policies along training demonstrations—the green arrows in Figure 1(left).
This mirrors recent work on generative behavior cloning that find that providing state-commands
through inverse dynamics controllers [33, 2] or position-command controllers of end effectors
[19] leads to substantially improved performance.

3. We also apply a subtle-yet-significant modification to a popular data noising strategy, which we
show yields both theoretical and empirical beneifts. Data noising ensures a helpful property we
denote total variation continuity that interpolates between modes in probability space (without
naively averaging their trajectories in world space). This effectively “fills in the missing gaps” in
bifurcations, as indicated by yellow arrows in Figure 1.

Our main results, Theorems 1 and 2, are reductions from imitation of complex expert trajectories to
supervised generative learning of a specific conditional distribution. For concreteness, Theorem 3
instantiates the generative modeling with Denoising Diffusion Probabilistic Models (DDPMs) of
sufficient regularity and expressivity (as investigated empirically in [19, 48, 26]), and establishes
end-to-end guarantees for imitation of complex trajectories with sample complexity polynomial in
relevant problem parameters. Our analysis framework exposes that any sufficient powerful genera-
tive learner obtains similar guarantees. Finally, we empirically validate the benefits of our proposed
smoothing strategy in simulated robotic manipulation tasks. We now summarize the algorithmic
choices and analytic ideas that facilitate our reduction.

Abridged Related Work. Due to space, we defer a full comparison to past work to Appendix B.
DDPMs, proposed in [29, 60], along with their relatives have seen success in image generation
[62, 55], along with imitation learning (without data augmentation) [33, 19, 48], which is the starting
point of our work. Smoothing data augmentation is ubiquitous in modern imitation learning [40] and
our approach corresponds to that of [36] but with noise added at inference time. Despite the benefits
of adaptive data collection [58, 40], adaptive demonstrations are more expensive to collect. Previous
analyses of imitation learning without adaptive data collection have focused on classical control-
theoretic notions of stability, notably incremental stability, [68, 27, 50], which require continuity,
Markovianity, and often determinism, and preclude the bifurcations permitted in our setting.

2 Setting

Notation and Preliminaries. Appendix A gives a full review of notation. Bold lower-case (resp.
upper-case) denote vectors (resp. matrices). We abbreviate the concatenation of sequences via
z1:n = (z1, . . . , zn). Norms ∥ · ∥ are Euclidean for vectors and operator norms for matrices unless

3



otherwise noted. Rigorous probability-theoretic preliminaries are provided in Appendix F. In short,
all random variables take values in Polish spaces X (which include real vector spaces), the space
of Borel distributions on X is denoted ∆(X ). We rely heavily on couplings from optimal transport
theory: given measures X ∼ P and X ′ ∼ P′ on X and X ′ respectively, C (P,P′) denotes the space
of joint distributions µ ∈ ∆(X × X ′) called “couplings” such that (X,X ′) ∼ µ has marginals
X ∼ P and X ′ ∼ P. ∆(X | Y) denotes the space of conditional probability distributions Q : Y →
∆(X ), formally called probability kernels ; Appendix F rigorously justifies that, in our setting, all
conditional distributions can be expressed as kernels (which we do throughout the paper without
comment). Finally I∞(E) denotes the indicator taking value 1 if E is true and∞ otherwise.

Dynamics and Demonstrations. We consider a discrete-time, control system with states xt ∈ X :=
Rdx , and inputs ut ∈ U := Rdu , obeying the following nonlinear dynamics

xt+1 = f(xt,ut), t ≥ 1. (2.1)

Given length T ∈ N, we call sequences ρT = (x1:T+1,u1:T ) ∈ PT := X T+1 × UT trajectories.
For simplicity, we assume that (2.1) is deterministic and address stochastic dynamics in Appendix
N. Though the dynamics are Markov and deterministic, we consider a stochastic and possibly non-
Markovian demonstrator, which allows for the multi-modality described in the Section 1.

Definition 2.1 (Expert Distribution). Let Dexp ∈ ∆(PT ) denote an expert distribution over trajec-
tories to be imitated. Dx1

denotes the distribution of x1 under ρT = (x1:T+1,u1:T ) ∼ Dexp.

Primitive Controllers. Our approach is to imitate not just actions, but simple local control poli-
cies. In the body of this paper, we consider affine mappings X → U (redundantly) parameterized
as x 7→ ū + K̄(x − x̄); we call these primitive controllers, denoted with κ = (ū, x̄, K̄) ∈ K. We
describe the synthesis of these controllers in Appendix D , and extend our results to general families
of parameterized controllers in Appendix E. We argue in Appendix E that primitive controllers are
in fact standard practice, and implicit via robotic position control in many applications of diffusion
to robotic behavior cloning.

Chunking Policies and Indices. The expert distribution Dexp may involve non-Markovian se-
quences of actions. We imititate these sequences via chunking policies. Fix a chunk length
τchunk ∈ N and observation length τobs ≤ τchunk, and define time indices th = (h− 1)τchunk + 1.
For simplicity, we assume τchunk divides T , and set H = T/τchunk. Given a ρT ∈ PT , define the
trajectory-chunks and observation chunks

sh := (xth−1:th ,uth−1:th−1) ∈ S := Pτchunk (trajectory-chunks)
oh := (xth−τobs+1:th ,uth−τobs+1:th−1) ∈ O := Pτobs−1 (observation-chunks)

for h > 1, and s1 = o1 = x1 (for simplicity, we embed o1 into Pτobs−1 via zero-padding). We call
τchunk-length sequences of primitive controllers composite actions

ah = κth:th−1
∈ A := Kτchunk . (composite actions)

A chunking policy π = (πh) consists of functions πh mapping observation-chunks oh to distribu-
tions ∆(A) over composite actions and interacting with the dynamics (2.1) by ah = κth:th−1

∼
πh(oh), and executing ut = κt(xt). We let dA = τchunk(dx + du + dxdu) denote the dimension of
the space A of composite actions. The chunking scheme is represented in Figure 2, demonstrating
the rationale for using primitive controllers over open-loop actions. Remark C.1 describes our
rationale for studying states over generic observations, and considering time-dependent policies.

Desideratum. The quality of imitation of a deterministic policy is naturally measured in terms of
step-wise closeness of state and action [68, 50]. With stochastic policies, however, two rollouts of
even the same policy can visit different states. We propose measuring distributional closeness via
couplings introduced in the preliminaries above. We define the following losses, focusing on the
marginal distributions between trajectories.

Definition 2.2. Given ε > 0 and a (chunking) policy π, the (marginal distribution) imitation loss is

Lmarg,ε(π) := maxt∈[T ] infµ Pµ

[
max

{
∥xexp

t+1 − xπ
t+1∥, ∥u

exp
t − uπ

t ∥
}
> ε
]
, where the infimum

is over all couplings µ between the distribution of ρT under Dexp and that induced by the policy π
as described above, such that Pµ[x

exp
1 = xπ

1 ] = 1.
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Figure 2: Graphical comparison of an action-chunk based policy (left) as described in [19], versus the
primitive-controller chunking policy (right) proposed in this paper. The primitive controller paradigm allows
for stabilizing back to the original expert trajectory, whereas using generated actions in an open-loop fashion
may cause divergence from the expert in the presence of unstable system dynamics. We refer to composite
actions as the sequence of primitve controllers given on the right.

Under stronger conditions (whose necessity we establish), we can also imitate joint distributions
over actions (Appendix J). Observe that Lfin,ε ≤ Lmarg,ε, and that both losses are equivalent to
Wasserstein-type metrics on bounded domains. These losses are also equivalent to Lévy-Prokhorov
metrics [64] under re-scaling of the Euclidean metric (even for unbounded domains), and also corre-
spond to total variation analogues of shifted Renyi divergences [5, 6]. While empirically evaluating
these infima over couplings is challenging, Lmarg,ε upper bounds the difference in expectation be-
tween any bounded and Lipschitz control cost decomposing across time steps, states and inputs, and
Lfin,ε upper bounds differences in final-state costs; see Appendix J for discussion.

Diffusion Models. Our analysis provides imitiation guarantees when chunking policies πh select ah
via a sufficiently accurate generative model. Given their recent success, instantiate our analysis for
the popular Denoising Diffusion Probabilistic Models (DDPM) framework [18, 41] that allows the
learner to sample from a density q ∈ ∆(Rd) assuming that the score∇ log q is known to the learner.
More precisely, suppose the learner is given an observation oh and wishes to sample ah ∼ q(·|oh)
for some family of probability kernels q(·|·). A DDPM starts with some a0h sampled from a standard
Gaussian noise and iteratively “denoises” for each DDPM-time step 0 ≤ j < J :

ajh = aj−1h − α · sθ,h(aj−1h , oh, j) + 2 · N (0, α2I), (2.2)

where sθ,h(a
j
h, oh, j) estimates the true score s⋆,h(ah, oh, αj), formally defined for any continuous

argument t ≤ Jα to be s⋆,h(a, oh, t) := ∇a log q
⋆
h,[t](a | oh), where q⋆h,[t](·|oh) is the distribution

of e−ta(0)h +
√
1− e−2tγ with a

(0)
h is sampled from the target distribution we which to sample

from, and γ ∼ N (0, I) is a standard Gaussian. We denote by DDPM(sθ, oh) the law of aJh sampled
according to the DDPM using sθ(·, oh, ·) as a score estimator. Preliminaries on DPPMs are detailed
in Appendix L.

3 Conditional sampling with stabilization suffices for behavior cloning

We show that trajectories of the form given in Definition 2.1 can be efficiently imitated if (a) we
are given a synthesis oracle, described below, that produces low-level control policies that locally
stabilize chunks of the trajectory with primitive controllers and (b) we can learn to generate certain
appropriate distributions over composite actions, i.e. sequences of primitive controllers. All the
following results apply to affine primitive controllers introduced in Section 2 and assume that the
system dynamics are second-order smooth and locally stabilizable. In Appendix E, we show that
our results still hold with general families of parametric primitive controllers, provided that these
controllers induce the same local stability guarantee.

The synthesis oracle. We say primitive controller (cf. Section 2) κ1:T ∈ KT is consistent with
a trajectory ρ = (x1:T+1,u1:T ) ∈ PT if x̄t = xt and ūt = ut for all t ∈ [T ]; note that this
implies that κt(xt) = ut for all t. A synthesis oracle synth maps PT → KT such that, for
all ρT ∈ PT , κ1:T = synth(ρT ) is consistent with ρT . For our theory, we assume access to a
synthesis oracle at training time, and assume the ability to estimate conditional distributions over
joint sequences of primitive controllers; Appendix K explains how this can be implemented by
solving Ricatti equations if dynamics are known (e.g. in a simulator), smooth, and stabilizable. In
our experimental environment, control inputs are desired robot configurations, which the simulated
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robot executes by applying feedback gains. As discussed in Appendix E, learned or hand-coded
low-level controllers are popular in practical implementations of generative behavior cloning. We
discuss the merits of studying imitation learning with a synthesis oracle in depth in Appendix C.3.

Notions of distance. While restricting ourselves to affine primitive controllers, our approximation
error of generative behavior cloner is measured in terms of optimal transport distances that use the
following “maximum distance.” Given two composite actions a = (ū1:τchunk , x̄1:τchunk , K̄1:τchunk)
and a′ = (ū′1:τchunk

, x̄′1:τchunk
, K̄′1:τchunk), we define

dmax(a, a
′) := max

1≤k≤τchunk
(∥ūk − ū′k∥+ ∥x̄k − x̄′k∥+ ∥K̄k − K̄′k∥). (3.1)

Distances between policies are defined via natural optimal transport costs. Given two policies π =
(πh), π

′ = (π′h) and observation chunk oh, we define an induced optimal transport cost

∆ε(πh(oh), π
′
h(oh)) := inf

µ
P(ah,a′h)∼µ [dmax(ah, a

′
h) > ε] ,

where the infµ denotes the infinum over all couplings between ah ∼ πh(oh) and a′h ∼ π′h(oh). ∆ε

corresponds to a relaxed Lévy-Prokhorov metric [64], and can always be bounded, via Markov’s
inequality, by ∆ε(πh, π

′
h | oh) ≤ 1

εW1,dmax(πh(oh), π
′
h(oh)), where W1,dmax(πh(oh), π

′
h(oh))

denotes the 1-Wasserstein distance between ah ∼ πh(oh) and a′h ∼ π′h(oh).

3.1 Incremental Stability and the Synthesis Oracle.

We assume that synthesis oracle above produces incrementally stabilizing control gains, in the sense
first proposed by [9]. Incremental stability has emerged as a natural desirable property for imitation
limitation [50, 68, 27], because it forces the expert to be robust to small perturbations of their policy.
We now supply a formal definition. Given a primitive controller κ : Rdx → Rdu , define the closed
loop dynamic map fcl,κ(x, δu) := f(x, κ(x) + δu). Thus, composite action a is consistent with a
trajectory chunk s = (x1:τchunk+1,u1:τ ) if xt+1 = fcl,κt(x,0) for 1 ≤ t ≤ τchunk.1

Definition 3.1 (Time-Varying Incremental Stability). Let γ(·) be a class K function, β(·, ·) be
class KL function, and let a = (κ1, κ2, . . . , κτ ) denote a sequence of primitive controllers (i.e.
a composite action when τ = τchunk). Given a sequence of input perturbations δu1:τ ∈ (Rdu)τ

and initial condition ξ ∈ Rdx , let xai+1(δu1:τ , ξ) = fcl,κi(x
a
i (δu1:τ , ξ), δui), with xa1 = ξ. We

say that composite action a is time-varying incrementally input-to-state stable (t-ISS) with moduli
γ(·),β(·, ·) if for all ξ, ξ′ ∈ Rdx , 0 ≤ i ≤ τ , ∥xai (01:τ , ξ) − xai (δu1:τ , ξ

′)∥ ≤ β(∥ξ − ξ′∥, τ) +
γ (max1≤s≤i−1 ∥δus∥). Given parameters cγ, cξ > 0 we say that a is local-t-ISS at ξ0 if the above
holds only for all ξ, ξ′, δu1:τ such that ∥ξ − ξ0∥, ∥ξ

′ − ξ0∥ ≤ cξ and maxt ∥δut∥ ≤ cγ.

Incremental stability implies that as the inital conditions ∥ξ−ξ′∥ → 0 and max0≤s≤i−1 ∥δut∥ → 0,
the trajectories induced by taking rolling out a from ξ, and rolling out a from ξ′ with additive in-
put perturbations δu1:τ tend to zero in norm. This behavior needs only hold for initial conditions
in a small neighborhood of a nominal state ξ0. Importantly, the perturbations δu1:τ are fixed per-
tubrations of inputs, applied to the closed loop behavior under the controllers. Our notion of in-
cremental stability are similar too, but sublty different similar notions of past work. We provide an
extended comparisons in Appendix E.2. Our main assumption is that the synthesis oracle described
above produced primitive controllers which are consistent with, and incrementally stabilizing for,
the demonstrated trajectories. Figure 1 demonstrates the effect of stabilizing primitive controllers.
Assumption 3.1. We assume that our synthesis oracle enjoys the following property. Let ρT =
(x1:T+1,u1:T ) ∼ Dexp, and let κ1:T = synth(ρT ), partitioned into composite actions a1:H , with
κt(x) = K̄t(x − x̄t) + ūt. We assume that, with probability one, κ1:T is consistent with ρT

2,
and that, for each 1 ≤ h ≤ H , ah = (κth:th+τchunk−1) is local t-ISS at xth with moduli γ,β and
parameters cβ, cξ > 0. We further assume that γ and β take the form

γ(u) = c̄γ · u, β(u, k) = c̄βe
−(k−1)Lβ · u, c̄γ, c̄β > 0, Lβ ∈ (0, 1].

1Below, we recall definitions of classes of comparison functions in nonlinear control [38] as follows: we
say a univariate function γ : R≥0 → R≥0 is class K if it is strictly increasing and satisfies γ(0) = 0. We
say a bivariate function β : R≥0 × Z≥0 → R≥0 is class KL if x 7→ β(x, t) is class K for each t ≥ 0, and
t 7→ β(x, t) is nonincreasing in t.

2Note that this implies x̄t = xt and ūt = ut.
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Figure 3: Graphical representation of total variation continuity (TVC) using the running “left mode/right
mode” example. Panel (a) depicts a policy π which is TVC, and thus interpolates between left and right
modes probabilistically. Importantly, the TVC property applies to the distribution over composite actions, i.e.
sequences of primitive controllers, as, in Definition 3.3; this ensures, for example, that following the left mode
from slightly to the right of the obstacle (purple dotted line) still stabilizes to the idealized left mode trajectory
(red). In panel (b), we consider a policy which for TVC applies to the sequences of raw control inputs (which
is not what occurs in Definition 3.3). This can lead to naive mode-switching that collides with the gray obstacle.

Lastly, we assume that for the expert trajectories and the primitive controllers drawn as above, it
holds that satisfy max{∥xt∥, ∥ut∥} ≤ Rdyn and ∥K̄t∥ ≤ RK with probability one.

In Appendix K, we show that Assumption 3.1 holds whenever (a) the dynamics of our system are
smooth (but not necessarily linear!) (b) the affine gains are chosen to stabilize the Jacobian lin-
earizations of the system around the nominal trajectory.
Definition 3.2 (Problem constants). Throughout, we refer to constants c1, c2, c3, c4, c5 > 0, which
are polynomial in the terms in Assumption 3.1, and which are defined formally in Appendix K.

3.2 Simplified guarantees under total variation continuity

This section presents our main theoretical result: if one learns a chunking policy π̂ that can compute
the conditional distribution of composite actions at time steps given observation-chunks, then a
stochastically smoothed version of this policy, π̂σ , has low imitation error. Define, for any length
τ ∈ N, the trajectory distance between trajectories ρ = (x1:τ+1,u1:τ ),ρ

′ = (x′1:τ+1,u
′
1:τ ) ∈Pτ

dtraj(ρ,ρ
′) := max

1≤k≤τ+1
∥xk − x′k∥ ∨ max

1≤k≤τ
∥uk − u′k∥. (3.2)

In particular, we define dtraj(oh, o
′
h) and dtraj(sh, s

′
h) by viewing these as trajectories of length

τobs − 1 and τchunk, respectively. Lastly, we define a per-timestep restriction of the expert dis-
tribution. In this section, we consider the case where the learner policy satisfies a total variation
continuity (TVC) condition, defined below.
Definition 3.3 (TVC of Chunking Policies). We say that a chunking policy π = (πh) is total vari-
ation continuous with modulus γTVC : R≥0 → R≥0, written γTVC-TVC, if, for all h ∈ [H] and any
observation-chunks oh, o′h ∈Pτobs−1, TV(πh(oh), πh(o′h)) ≤ γTVC(dtraj(oh, o

′
h)).

We depict the TVC property using our running left-right obstacle example in Figure 3. We stress that,
in Definition 3.3, the TV bound on TV(πh(oh), πh(o

′
h)) applies to the composite actions consisting

of primitive controllers ah = κth:th+τchunk−1 ∼ πh(oh); it does not upper bound the TV distance
between raw control inputs. Indeed, ensuring TVC of the latter can lead to the failure modes depicted
in Figure 3(b). Next, we extract an expert “policy” from the expert demonstrations.
Definition 3.4 (Expert “policy” with synthesized controllers). For h ∈ [H], we let Dexp,h denote
the joint distribution of (ah, oh), induced by drawing a trajectory ρT = (x1:T+1,u1:T ) ∼ Dexp

from the expert distribution, κ1:T = synth(ρT ) be the associated primitive controllers, let-
ting oh = (xth−τobs+1:th ,uth−τobs+1:th−1) be the associated observation-chunk at time h, and
ah = κth:th+1−1 the associated composite action. We let π⋆

h(·) : O → ∆(A) denote the condition
distribution of ah | oh under Dexp,h.

The conditional distributions π⋆
h(·) are estimated when training a generative model to predict ah

from observations oh. Note that π⋆
h(·) (and Dexp,h) is defined in terms of both expert demonstration
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from Dexp and the associated synthesized primitive controllers. In Lemma J.6, we show that when
the synthesis oracle κ1:T = synth(ρT ) produces primitive controllers consistent with the trajecto-
ries, than π⋆ = (π⋆

h) produces the same marginals over states as Dexp; that is, Lmarg,ε(π
⋆) = 0.

Theorem 1. Suppose Assumption 3.1 holds, and suppose that 0 ≤ ε < c2, and τchunk ≥ c3.
Then, for any non-decreasing non-negative γTVC(·) and γTVC-TVC chunking policy π̂, it holds
that Lmarg,ε(π̂) ≤ HγTVC(ε) +

∑H
h=1 Eoh∼Dexp,h

∆(ε/c1) (π
⋆
h(oh), π̂h(oh)), which is at most

HγTVC(ε) +
c1
ε

∑H
h=1 Eoh∼Dexp,h

[W1,dmax
(π⋆

h(oh), π̂h(oh))].

The above result reduces the marginal imitation error of π̂ to the sum over optimal transport errors
between π̂ and a | oh chosen by the expert demonstrators. Thus, if these are small, the local
stabilization properties of the primitive controllers guaranteed by Assumption 3.1 ensure that errors
compound at most linearly in problem horizon. The key ideas of the proof are given Appendix D, via
a general template for imitation learning of general stochastic policies. This template is instantiated
with a details in Appendix J.

3.3 A general guarantee via data noising.

To circumvent assuming that the learner’s policy is TVC, we study estimating the conditionals un-
der a popular data augmentation technique [36], where the learner is trained to imitate the condi-
tional sequence of a | õh, where õh ∼ N (oh, σ

2I) adds σ2-variance Gaussian noise to the true
observation-chunk. To understand this better, consider the following smoothed policy:

Definition 3.5 (The smoothed policy). Let π̂ = (π̂h) be a chunking policy. We define the smoothed
policy π̂σ = (π̂σ,h) by letting π̂σ,h(· | oh) be distributed as π̂h(· | õh), where õh ∼ N (oh, σ

2I).

Appendix J.7.2 show’s that Pinsker’s inequality implies noising automatically enforces TVC This
suggests that we can use some form of data noising to enforce the TVC property in Definition 3.3.
Let’s now consider a related problem: trying to estimate the optimal distribution over composite
actions conditioned on a noised observation. This gives rise to a deconvolution of the expert policy,
which can be thought as an inverse operation of data noising.

Definition 3.6 (Noised Data Distribution and Deconvolution Policy). Let Dexp,h be as in Defini-
tion 3.4. Define Dexp,σ,h as the distribution over (õh, ah) generated by (oh, ah) ∼ Dexp,h and
õh ∼ N (oh, σ

2I). We define the deconvolution policy π⋆
dec,σ,h(õh) as the conditional distribution

of ah | õh under Dexp,σ,h.

Analogously to π⋆, the policy π⋆
dec,σ,h is what a generative model trained to generate ah from noised

observations õh of oh ∼ Dexp learns to generate. Our next theorem states that, if our π̂ approximates
the idealized conditional distributation of composite actions given noised observations, then π̂σ , the
smoothed policy, imitates the expert distribution with provable bounds on its imitation error:

Theorem 2 (Reduction to conditional sampling under nosing). Suppose Assumption 3.1 holds. Let
c1, . . . , c5 > 0, defined in Definition 3.2, and let ΘIss(x) denote a term which is upper and lower
bounded by a x times a polynomial in those constants and their inverses. Then, for ε ≤ ΘIss(1), if
we choose σ = ε/ΘIss(

√
dx + log(1/ε)) and let τchunk ≤ c3 and τchunk − τobs ≥ 1

Lβ
log(c1/ε),

Lmarg,ε(π̂σ) ≤ ΘIss

(
εH
√
τobs · (

√
dx + log( 1ε )

)
+
∑H

h=1 Eõh∼Dexp,σ,h

[
∆(ε2)

(
π⋆
dec,σ,h (õh) , π̂h (õh)

)]
,

which is upper bounded by at most ΘIss

(
εH
√
τobs · (

√
dx + log(1/ε)

)
+

1
ε2

∑H
h=1 Eoh∼Dexp,σ,h

[
W1,dmax

(
π⋆
dec,σ,h(õh), π̂h(õh)

)]
.

To reiterate, Theorem 2 guarantees imitation of the distribution of marginals and final states ofDexp

by replacing the explicit TVC assumption with noising, and the resulting guarantee applies to the
smoothed policy π̂σ which adds smoothing noise back in. Appendix J gives a number of additional
results. In Appendix I, we show that the proof framework, outlined in Appendix D, which under lies
the proofs of Theorems 1 and 2, is essentially sharp in the worst case. Moreover, in Appendix C.3,
we discuss the merits and drawbacks of our use of the synthesis oracle, and how it circumvents some
of the challenges encountered in behavior cloning in past work. The key intuition behind the proof
of Theorem 2 is depicted in Figure 4, and full proof sketch is deferred to Appendix C.2
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Trajectory

Noised State

(a) (b)

Figure 4: Multi-modal demonstrations traverse an ob-
stacle left or right, exhibiting a pure bifurcation. We
consider perturbing expert data on the right mode (blue
circle) to a noised datum (gray circle). We show that
generative behavior cloners learn to deconvolve this
noise, creating a virtual “replica” sample (red circle)
following the left mode, such that the replica and orig-
inal are i.i.d. given the noised one. When the red cir-
cle’s primitive controllers are rolled from from the blue
circle, this leads to a trajectory (yellow circle) which
interpolates across the bifurcations. Marginalizing over
this process, the yellow trajectories probabilistically in-
terpolate between red and blue modes, and (approxi-
mately) match the per-time-step marginal over expert
distributions.

4 HINT: Instantiating Data Noising with DDPMs

We now instantiate Theorem 2 by showing that one can learn a policy π̂ for which the error terms
in Theorems 1 and 2 are small by fitting a DDPM to noise-smoothed data. Our proposed algo-

Algorithm 1 Hierarchical Imitation via Noising at Inference Time (HINT)
[h]

1: Initialize Synthesis oracle synth, sample sizesNexp, Naug ∈ N, σ ≥ 0, DDPM step size α > 0,
DDPM horizon J , function class {sθ}θ∈Θ, gain magnitude R > 0, empty data buffer D← ∅.
% For no smoothing, set σ = 0 and Naug = 1

2: for n = 1, 2, . . . Nexp do
3: Sample ρT = (x1:T+1, u1:T ) ∼ Dexp and set κ1:T = synth(ρ)

% Segment o1:H from ρT and a1:H from κ1:T

4: for i = 1, 2, . . . , Naug and h = 1, 2, . . . ,H do
5: Sample õh ∼ N (oh, σ

2I), jh ∼ Unif([J ]) and γh ∼ N (0, (jhα)
2I).

6: D← D.append ({(ah, õh, jh,γh, h)})
7: Fit θ ∈ argminθ∈Θ LDDPM(θ,D), and let π̂ = (π̂h) be given by π̂(· | oh) = DDPM(sθ,h, oh).
8: return π̂σ = (π̂σ,h), by smoothing π̂ as per Definition 3.5.

rithm, HINT (Algorithm 1) combines DDPM-learning of chunked policies as in [19] with a popular
form of data-augmentation [36]. We collect Nexp expert trajectories, synthesize gains, and segment
trajectories into observation-chunks oh and composite actions ah as described in Section 2. We
perturb each oh to form Naug chunks õh, as well as horizon indices j ∈ [J ] and inference noises
γ ∼ N (0, (αjh)

2I), and add these tuples (ah, õh, jh,γh, h) to our data D. We end the training
phase by minimizing the standard DDPM loss [62]:

LDDPM(θ,D) =
∑

(ah ,̃sh,jh,γh,h)∈D

∣∣∣∣∣∣γh − sθ,h

(
e−αjah +

√
1− e−2αjγh, õh, jh

)∣∣∣∣∣∣2 . (4.1)

Our algorithm differs subtly from past work in Line 8: motivated by Theorem 2, we add smoothing
noise back in at test time. Here, the notation DDPM(sθ,h, ·)◦N (oh, σ

2I) means, given oh, we perturb
it to õh ∼ N (oh, σ

2I), and sample ah ∼ DDPM(sθ,h, õh). We now state an informal guarantee for
HINT, deferring a formal statement to Appendix C.5.
Theorem (Informal Theorem). Suppose that the system dynamics are smooth and that Assump-
tion 3.1 holds for the linearized system. Then there is a choice of the parameters in HINT that is
polynomial in all problem parameters such that forNexp, polynomially large in problem parameters,
Lmarg,ε(π̂σ) ≤ Θ

(
εH
√
τobs(

√
dx + log(1/ε))

)
with high probability.

4.1 Experimental Results

In this section, we demonstrate the benefits of diffusing low level controllers, and of our approach
to data noising. We explain the environments in greater detail, along with all training and compu-
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Figure 5: Performance of diffusing chunks of actions ūth−1:th−1 ("No Gains") versus jointly dif-
fusing actions uth−1:th−1, reference states x̄th−1:th−1 and gains Kth−1:th−1 for a 2-D quadrotor
system with thrust-and-torque-based control. Different noise levels σ and number of trajectories N
are shown. Mean and standard deviation are shown across 5 training seeds.
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Figure 6: Performance of baseline π̂ and noise-injected π̂◦Wσ HINT policy for different σ. We use 4
training seeds with 50 and 22 test trajectories per seed for PushT and Can and Square Environments
respectively. Mean and standard deviation of the test performance on the 3 best checkpoints across
the 4 seeds are plotted. The σ values correspond to noise in the normalized [−1, 1] range.

tational details in Appendix O. 3 Figure 5 compares the performance of diffusing (chunks of) raw
control inputs to diffusing (chunks of) gain matrices for a canonical model of a 2-d quadrotor. We
find that diffusing gain matrices yields dramatic improvements in performance, in particular allow-
ing a single imitated trajectory to outperform learning raw control inputs from 10 demonstrations.

Next, empirically evaluate the effect on policy performance of our proposal to inject noise back into
the dynamics at inference time. We consider three challenging robotic manipulation tasks studied
in prior work: PushT block-pushing [19]; Robomimic Can Pick-and-Place and Square Nut Assem-
bly [42] (we direct the reader to Chi et al. [19] for an extensive empirical investigation into the
performance of diffusion policies in the un-noised σ = 0 regime). We display the results of our
experiments in Figure 6. Observe that the performance degredation of the replica policy from the
unnoised σ = 0 variant is minimal across all environments and even leads to a slight but noticeable
improvement in the small-noise regime for PushT (and low-data Can Pick and Place). In the pres-
ence of non-negligible noise HINT significantly outperforms the conventional policy π̂ (obtained by
noising observations at training but not test time), as predicted by our theory.

5 Discussion
This work considerably loosened assumptions placed on the expert distribution by introducing a
synthesis oracle responsible for stabilization. How best to achieve low-level stabilization remains
an open question. We hope that this work encourages further empirical research into improving the
stability of imitation learning, either via the hierarchical route proposed in this paper or via new
innovations.

3Code for PushT, Robomimic experiments can be found at https://github.com/pfrommerd/
diffusion_policy_pt. Quadrotor experiments are in https://github.com/pfrommerd/stanza/
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Part I

General Results and Discussion
A Notation and Organization of Appendix

In this appendix, we collect the notation we use throughout the paper, as well as providing a high
level organization of the appendices.

A.1 Notation Summary

In this section, we summarize some of the notation used throughout the work, divided by subject.

Measure Theory We always let X denote a Polish space, B(X ) the Borel-algebra on X , and
∆(X ) the set of borel probability measures on X . For a random variable X on X , we let PX denote
the law of X . For random variables X,Y , we let C (PX ,PY ) denote the set of couplings of these
measures and for laws P1,P2. We write P1⊗P2 for the product measure. We will generally reserve
P to denote measure, Q and W for probability kernels, and µ for a joint measure on several random
variables.

When P1,P2 ∈ ∆(X ) are laws on the sampe space, we let TV(P1,P2) denote the total variation
distance. We write P1 ≪ P2 if P1 is absolutely continuous with respect to P2. Given a Polish
space X and element x ∈ X , we let δx ∈ ∆(X ) denote the dirac-delta measure supported on the set
{x} ∈ B(X ) (note that, in a Polish space, the singleton {x} set is closed, and therefore Borel).

Norms and linear algebra notation. We use bold lower case vector z to denote vectors, and
bold upper case Z to denote matrices. We let z1:K = (z1, . . . ,Z) and Z1:K = (Z1, . . . ,ZK) denote
concatenations. The norms ∥ ·∥ denote Euclidean norms on vectors and operator norms on matrices.
We identify the spaces Pk with Euclidean vectors in the standard sence. Given a Euclidean vector
z ∈ Rd, N (z, σ2I) denote the multivariate normal distribution on Rd with covariance σ2I.

Control notation. We let xt ∈ Rdx denote control states, ut ∈ Rdu denote control inputs, and
ρτ ∈Pτ denotes trajectories (x1:τ+1,u1:τ ). T denotes the time horizon of imitation, so ρT ∼PT .
Our dynamics are xt+1 = f(xt,ut); for our main results (Section 3), we suppose f(x,u) =
x+ ηfη(x,u), parametrizing dynamics in the form of an Euler discretization with step η > 0.

Recall that primitive controllers κ take the form κ(x) = K̄(x − x̄) + ū, where terms with (̄·),
K̄, x̄, ū, denote parameters of the primitive controller. The space of these is K.

We also recall the chunk-length τchunk and observation length τobs satisfying 0 ≤ τobs ≤ τchunk.
We recall the definition of the trajectory-chunk sh and observation-chunk in oh in Section 2, which
introduced the indexing h, such that th = (h − 1)τchunk + 1. Recall also the composite actions
ah = (κth:th+1−1) ∈ A = Kτchunk as the concatenation of τchunk primitive controllers.

Abstractions in the composite MDP. The composite MDP is a deterministic MDP with
composite-states s ∈ S and composite-actions a ∈ A, and (possibly time-varying) determinis-
tic transition dynamics Fh : S × A → S for 1 ≤ h ≤ H . The goal is to imitate a policy
π⋆ = (π⋆

h)1≤h≤H , in terms of imitation gaps Γjoint,ε and Γmarg,ε defined in Definition D.1. We
refer the reader to Appendix D for the relevant terminology, and to Appendix D.2 for its instantia-
tion in our original control setting.
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A.2 Organization of the Appendix

We now describe the organization of our many appendices. In Appendix E, we generalize some of
our results to accomodate general incrementally stabilizing primitive controllers. In Appendix E.2,
we expand on our abbreviated discussion of related work in the body as well as provide a more
detailed comparison of our notion of stability Definition D.5 with those found in prior work.

After the preliminaries on organization, notation, and related work, we divide our appendices into
three parts.

Part I: General Results and Discussion In this section, we describe major results and discus-
sion omitted from the main body in the interest of space. This present appendix contains notation
and organization. Subsequently, Appendix B provides a comprehensive discussion of related work.
Appendix C provides discussion for Theorem 1, a proof sketch of Theorem 2, and the requisite
assumptions and formal statement of our guarantee for HINT. Appendix D provides a detailed
overview of the analysis, and Appendix E extends our results from affine primitive controllers to
general ones.

Part II: The Composite MDP. In the first part of the Appendix, we expand on and provide rigor-
ous proofs of statements and results pertaining to the composite MDP as considered in Appendix D.
We begin by providing a detailed background in Appendix F on the requisite measure theory we
use to make our arguments rigorous. In particular, we provide definitions of probability kernels and
couplings, as well as measurability properties of optimal transport couplings. In Appendix G, we
provide the full proof of Proposition D.2, as warm-up to the proof of Theorem 4. In particular, the
argument substantially simplifies if we consider the case of no added augmentation (when σ = 0
in HINT) and we present a coupling construction that implies the analogous bound in the presence
of an additional assumption. The heart of the first part of our appendices is Appendix H, where we
rigorously prove a generalization of Theorem 4 by constructing a sophisticated coupling between
the imitator and demonstrator trajectories. We conclude the first part of our appendices by proving
a number of lower bounds in the composite MDP setting in Appendix I, which demonstrate the
tightness of our arguments in Appendix H.

Part III: Instantiations We continue our appendices in the second part, which is concerned with
the instantiation of the composite MDP in with incremental stability. The heart of the second part
of our appendices is Appendix J, which provides the final, end-to-end guarantees and the proof of
Theorem 1 and Theorems 2 and 3. We also provide a number of variations on this result, including
stronger guarantees on imitation of the joint trajectories (Appendix J.4), guarantees on HINT under
the aassumption that sampling is close in total variation (Appendix J.5). We also show in Proposi-
tion J.5 that most natural cost funtions have similar expected values on imitator and demonstrator
trajectories assuming that the imitation losses are small. In Appendix K, we provide a detailed proof
that the control setting considered in Section 2 satisfies the stability properties required by our anal-
ysis of the composite MDP and prove Proposition D.1, and Appendix K.6 in particular explains how
to synthesize stabilizing gains, as assumed in Section 2. With the stability properties thus proven, we
proceed in Appendix L to instantiate our conditional sampling guarantees with DDPMs. In particu-
lar, by applying earlier work, we state and prove Theorem 13, which guarantees that with sufficiently
many samples, in our setting we can ensure that the learned DDPM provides samples close in the
relevant optimal transport distance to the expert distribution. We also explain in Remark L.4 why
stronger total variation guarantees on sampling are unrealistic in our setting.

Appendix M generalizes the proofs in Appendix J to the generic primitive controllers considered in
Appendix E. We then provide a number of extensions of our main results in Appendix N, including
to the setting of noisy dynamics (Appendix N.2). Finally, in Appendix O, we expand the discussion
of our experiments, including training and compute details, environment details, and a link to our
code for the purpose of reproducibility.

B Complete Related Work

Imitation Learning. Over the past few years, there has been a significant surge of interest in utiliz-
ing machine learning techniques for the execution of exceedingly intricate manipulation and control
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tasks. Imitation learning, whereby a policy is trained to mimic expert demonstrations, has emerged
as a highly data efficient and effective method in this domain, with application to self-driving vehi-
cles [30, 15, 10], visuomotor policies [23, 78], and navigation tasks [31]. A widely acknowledged
challenge of imitation learning is distribution shift: since the training and test time distributions are
induced by the expert and trained policies respectively, compounding errors in imitating the expert at
test-time can lead the trained policy to explore out-of-distribution states [57]. This distribution shift
has been shown to result in the imitator making incorrect judgements regarding observation-action
causality, often with catastrophic consequences [21]. Prior work in this domain has predominantly
attempted to mitigate this issue in the non-stochastic setting via online data augmentation strategies,
sampling new trajectories to mitigate distribution shift [58, 57, 40]. Among this class of methods,
the DAgger algorithm in particular has seen widespread adoption [57, 65, 37]. These approaches
have the drawback that sampling new trajectories or performing queries on the expert is often expen-
sive or intractable. Due to these limitations, recent developments have focused on novel algorithms
and theoretical guarantees for imitation learning in an offline, non-interactive environment [16, 50].
Our work is similarly focused on the offline setting, but is capable of handling stochastic, non-
Markovian demonstrators. Unlike [50], we do not require our expert demonstrations to be sampled
from a stabilizing expert policy, instead utilizing a synthesis oracle to stabilize around the provided
demonstrations. This is a significantly weaker requirement and enables the development of high-
probability guarantees for human demonstrators, where sampling new trajectories and reasoning
about the stability properties is not possible.

Denoising Diffusion Probabilistic Models and other Generative Approaches. Denoising Dif-
fusion Probabilistic Models (DDPMs) [60, 29] and their variant, Annealed Langevin Sampling [62],
have seen enourmous empirical success in recent years, especially in state-of-the-art image gen-
eration [55, 47, 61]. More relevant to this paper is their application to imitation learning, where
they have seen success even without the proposed data augmentation in Janner et al. [33], Chi et al.
[19], Pearce et al. [48], Hansen-Estruch et al. [26]. DDPMs rely on learning the score function
of the target distribution, which is generally accomplished through some kind of denoised estima-
tion [32, 74, 63]. On the theoretical end, annealed Langevin sampling has been studied with score
estimators under a variety of assumptions including the manifold hypothesis and some form of diss-
apitivity [53, 13, 14], although these works have generally suffered from an exponential dependence
on ambient dimension, which is unacceptable in our setting. Of greatest relevance to the present pa-
per are the concurrent works of Chen et al. [18], Lee et al. [41] that provide polynomial guarantees
on the quality of sampling using a DDPM assuming that the score functions are close in an appro-
priate mean squared error sense. We take advantage of these latter two works in order to provide
concrete end-to-end bounds in our setting of interest. To our knowledge, ours is the first work to
consider the application of DDPMs to imitation learning under a rigorous theoretical framework,
although we emphasize that this does not constitute a strong technical contribution as opposed to an
instantiation of earlier work for the sake of completeness and concreteness.

Recent work has also shown that transformer architectures [80, 17, 59] can also serve as probabilistic
models for predicting sequences of robotic actions, and can represent multi-modality to varying
degrees. Notably, these approaches also rely heavily on the action-chunking which we consider in
this paper [80].

Hierarchical Planning. Hierarchy has long been applied in robotic learning and planning to ab-
stract away low-level primitives. Task-and-motion planning (TAMP) [35] reduces robotic motion
represents planning via sequences of discrete primitives — a “mode sequence” — constrained to
which the optimization problem is continous. LQR trees [66] proposes using linear quadratic regu-
lator (LQR) trees to efficiently cover a control state space with local feedback laws so as to compute
a motion plan that reaches a desired goal or behavior, subject to stability guarantees. Graph of Con-
vex Sets (GCS), a more recent innovation, decomposes constraint sets into convex regions, each of
which represents nodes in a planning graph [43]. More recent work has used hierarchy to leverage
the power of large learned models for solving tasks that contain multiple types of data inputs4 [4],
and as modules for generating multiple forms of supervision [79].

4These tasks are also called multimodal, where modes here refer to types of data. In distinction, multi-
modality in this paper refers to multiple modes within the distribution over expert demonstrations
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Smoothing Augmentations. Data augmentation with smoothing noise has become such common
practice, its adoption is essentially folklore. While augmentation of actions which noise is common
practice for exploration (see, e.g. [40]), it is widely accepted that noising actions in the learned policy
is not best practice, and thus it is more common to add noise to the states at training time, preserving
target actions as fixed [36]. Our work gives an interpretation of this decision as enforcing that the
learned policy obey the distributional continuity property we term TVC (Definition D.3), so that the
policy selects similar actions on nearby states. Previous work has interpreted noise augmentation as
providing robustness. Data augmentation has been demonstrated to provide more robustness in RL
from pixels [39], adaptive meta-learning [3], in more traditional supervised learning as well [28].

C Further Main Results and Discussion

We begin with a general remark.

Remark C.1 (Do we need state observation or time-varying policies?). In practical applications,
behavior cloning policies respond not to measurements of physical system state, but rather visual
observations and/or tactile feedback. Additionally, learned policies to not explicit take a time index
h as input. This allows these policies to perform flexibily across tasks with varying time horizons,
and to automatically reset after encountered obstacles.

In contrast, our formulation requires policies to be (a) functions of system state and (b) vary with
the chunk index h. If visual observations or tactile measurements are sufficient to recover system
state, then we can view these data are redundant states, and thus (a) is not a restriction. Moreover,
as described in Remark C.6, a limited portion of theoretical results do hold for policies which do
not vary with h. In general, restrictions (a) and (b) are necessary for our analysis because they allow
us to analyze the imitator behavior in a Markovian fashion. Without these restrictions, one would
have to reason about (a′) uncertainty over state given observation, or (b′) variation in expert behavior
across different time steps h. Removing these restrictions is an exciting direction for future work.

C.1 Discussion surround Theorem 1

Remark C.2 (The ε = 0 case). If we were able to bound the policy error ∆(ε) with ε = 0 –
which corresponds to estimating ah | oh in total variation distance – the imitation learning problem
would be trivialized, and neither the TVC condition above or the noise-injection based smoothing
in the section below would not be needed (see Appendix J). Appendix L explains that the needed
assumptions for this stronger sense of approximate sampling do not hold in our setting, because
expert distributions over actions typically lie on low-dimensional manifolds.

Remark C.3 (On the TVC assumption). It is true than any π̂ implemented as a DDPM with a Lips-
chitz activation with bounded-magnitude parameters is indeed TVC. Unfortunately, these Lipschitz
constants can be too large to be meaningful in practical scenarios, scaling exponentially with net-
work depth. In addition, the absence of smoothing σ may make the corresponding DDPM learning
problem more challenging. Hence, in what follows, we shall require the additional sophistication of
smoothing with Gaussian noise of variance σ2 > 0 for meaningful guarantees.

Furthermore, we show in Appendix G.1 that the TVC assumption, which measures total variation
distance between nearby π̂h(·) at nearby observations, can be relaxed to variant which measures
the probability (under a minimal coupling) that actions differ by some tolerance. However, this
tolerance has to be quite small, and as we argue, any reasonable notion of Wasserstein continuity is
unlikely to suffice.

Remark C.4 (Imitation of the joint distribution). Suppose the expert distribution Dexp has at most
τobs-bounded memory (defined formally in Definition J.5). Then Ljoint,ε(π̂) satisfies the same upper
bound (E.2), where Ljoint,ε(π̂), formally defined in Definition J.4, measures an optimal transport
distance between the joint distribution of the expert trajectory and the one induced by π̂.

Remark C.5 (Is chunking necessary?). In Appendix N.1, we show that we can remove the required
lower bound on τchunk — allowing, in particular, the choice of τchunk = 1 — under the slightly
stronger condition that our synthesis oracle ensures that the entire sequence of primitive controllers
κ1:T on the whole horizon T are incrementally stabilizing. However, chunking is known to yield
empirical benefits [80], and training models to predict action-chunks of longer duration than the
agent acts on is also observed to improve performance [19].
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Remark C.6 (Are time-varying policies necessary? (continuing Remark C.1)). In practice, time-
invariant policies π̂ which do depend on the h-index are preferred because they are more resilient
to varying-horizon tasks, and can automatically “reset” when they encounter an obstacle. Here,
we note that if π⋆

h(oh), the conditional distribution of π⋆
h given oh, is independent of h — that is,

the expert is Markov and time-invariant given oh — then the term ∆(ε/c1) (π
⋆
h(oh), π̂h(oh)) on the

right-hand side of (E.2) can be made small by choosing a time-invariant π̂. Thus, certain expert
behavior can indeed be imitated by time-invariant policies. However, we do require time-varying
policies to imitate arbitrary experts. And, in addition, the data smoothing strategy described below
requires a time-varying π̂. Extending our results to time-invariant π̂ is an interesting direction for
future inquiry, and we suspect that this may require some further notion of cost-to-go to made the
formulation feasible.

C.2 Proof sketch of Theorem 2

As with Theorem 1, the key ideas of the proof are given Appendix D, expressed in terms of a general
abstraction for behavior cloning we call the “composite MDP”. This template is instantiated with
a details in Appendix J. Moreso than Theorem 1, the proof of Theorem 2 requires sophisticated
couplings between expert and learner trajectories, and in particular. The intuition is based on the
observation that π̂σ,h mimic π⋆

rep,σ,h := (π⋆
dec,σ,h)σ , the smoothing of the deconvolution policy.

Inspired by replica pairs in statistical physics, we call π⋆
rep,σ the “replica” policy because actions

from π⋆
rep,σ,h can be thought of as actions from π⋆

h that have been noised and deconvolved. This
implies:
Fact C.1. Let oh ∼ Dexp,h. Then, the distributions of ah ∼ π⋆

h(oh), and a′h ∼ π⋆
rep,σ,h(oh),

marginalized over oh, are identical.

This observation can be interpreted as meaning that smoothing and deconvolution are inverse opera-
tions at the distributional level. In particular, for a moment, consider an idealized environment where
ah, and not oh, perfectly determined the dynamics (e.g. by teleportation), then π⋆

rep,σ = (π⋆
rep,σ,h)

and π⋆ = (π⋆
h) would induce the same dynamics (and, as remarked above, Lmarg,ε(π

⋆) = 0).

For non-idealized environments, the argument goes as follows: We couple ah ∼ π⋆
h(oh), and a′h ∼

π⋆
rep,σ,h(oh) so that a′h has the distribution of a′h ∼ π⋆(o′h), where o′h is distributed as oh and, with

high probability, o′h and oh are Õ(σ)-close in Euclidean norm. This coupling is depicted Figure 4.
We then argue that the dynamics induced by π⋆

rep,σ track those of π⋆ by roughly a similar margin.
Moreover, by smoothing π̂h and π⋆

dec,h and applying Jensen’s inequality,

Eoh∼Dexp,h

[
∆(ε2)

(
π⋆
rep,σ,h (oh) , π̂σ,h (oh)

)]
≤ Eõh∼Dexp,σ,h

[
∆(ε2)

(
π⋆
dec,σ,h (õh) , π̂h (õh)

)]
.

Consequently, when the right hand side of the above inequality is small, the noised policy π̂σ tracks
the replica policy π⋆

rep,σ , which we have shown to be track π⋆ (and thus track Dexp).

C.3 Merits and Drawbacks of the Synthesis Oracle

The role of a synthesis oracle satisfying Assumption 3.1 is to replace a strong assumption on the
stability of an expert demonstration with an algorithmic assumption that allows post-hoc stabilizing
of expert demonstrations. This approach presents a natural question: in what sense is this tradeoff
a sensible one? To answer this, consider a paradigmatic case, where the demonstrations solve some
complicated task in a smooth, nonlinear control system. Suppose further that the one-step dynam-
ics of the system are known, but that the expert demonstrations come from some optimal control
law which is computationally prohibitive to compute, or possibly even some mixture of different,
mutually-incompatible trajectories. Assuming the Jacobian linearizations of the nonlinear system
are stabilizable (see Appendix K for further details), one can implement a synthesis oracle for affine
gains directly by solving a Ricatti recursion on the Jacobian-linearized dynamics around each ex-
pert trajectory. . Conceptually, this has the following interpretation: Our framework reduces the
problem of imitating a complex expert trajectory to (i) supervised generative modeling and (ii)
solving strictly local control problems.

That is, we offload complex behavior of the expert being imitated, and reduce the learner’s burden to
solving local control problems that are significantly simpler than global planning. For more general
systems, Appendix E addresses possibly non-affine stabilizing gains, and discusses how these may
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arise from standard practices of using robotic position control or inverse dynamics. Appendix E.2
compares our hierarchical approach to stability to standard formulations that apply to the expert
distribution, and we show how the latter rule out the possibility for complex behaviors such as
bifurcated trajectories.

Limitations and Future Directions. Our above example required access to differentiable (indeed,
smooth) system dynamics. Stabilizing systems with contact dynamics remains an outstanding chal-
lenge. More generally, an overtly hierarchical approach may be inefficient for many reasons, notably
(1) the dimension of the primitive controller may be much higher than the dimension of raw con-
trol inputs; and (2) when the high-level and low-level controllers are parametrized by the neural
networks, explicit heirarchy with separate models may preclude shared representation learning. De-
veloping a more comprehensive approach to stability (perhaps one that does not require explicit gain
synthesis, and extends to non-smooth systems) is an exciting direction for future work. Neverthe-
less, we think that our conceptual contribution of decoupling low-level stability and generative
matching of demonstrated behavior will prove useful in future endeavors for reliable and per-
formant behavior cloning.

C.4 Formal Assumptions for Analysis of HINT

We now state the assumptions required for our theoretical guarantees on HINT. We require access
to a class of score functions rich enough to represent the following deconvolution conditionals. To
define these, we introduce the following distribution
Definition C.1. Recall the policy π⋆

dec,σ,h from Definition 3.6. Given oh ∈ O, let π⋆
dec,σ,h,[t](oh) ∈

∆(A) denote the law of ah,[t] := e−ta(0)h +
√
1− e−2tγ, where ah ∼ π⋆

dec,σ,h(oh), and γ ∼ N (0, I)
is independent whte Gaussian noise. In words, ah,[t] is generated from the Ornstein–Uhlenbeck
process that interpolates ah with white noise. To avoid notational clutter, we supress the dependence
of π⋆

dec,σ,h,[t] on σ via π⋆
dec,h,[t] = π⋆

dec,σ,h,[t] when σ is clear from context.

Next, we need an assumption of bounded statistical complexity. We opt for the popular Rademacher
complexity [11]. In defining this quantity, recall that scores are vector-valued, necessitating the
vector analogue of Rademacher complexity [44, 24], studied for score matching in [13].
Definition C.2 (Function Class Θ and Rademacher Complexity). Consider a class of score functions
of the form Θ = {(sθ,h)1≤h≤H |θ ∈ Θ}, where sθ,h maps triples (a, oh, j) of composite actions
a ∈ A, observation-chunks oh, and DDPM-steps j ∈ N to vectors in RdA . For each chunk h ∈ [H],
DDPM-step j ∈ N and discretization size α, define the vector- Rademacher complexity of Θ as

Rn,h,j(Θ;α) := E

[
sup
θ∈Θ

1

n

n∑
k=1

〈
ε(k), sθ,h

(
a
(k)
h,[jα], õ

(k)
h , j

)〉]
,

where εk ∈ Rd are i.i.d. random vectors with Rademacher coordinates, and where (õ(k)h , a
(k)
h,[jα]) are

i.i.d. samples from Dσ,h,[jα].
Assumption C.1. We suppose that, for any σ > 0, we are given a class of score functions Θ =
Θ(τchunk, τobs, σ, α) of the form in Definition C.2 which satisfies the following conditions:

(a) Realizability: there exists a θ⋆ such that, for all h ∈ [H] and j ∈ N, sθ⋆,h (a, oh, j) is the
score function of π⋆

dec,h,[jα](oh) at a ∈ A.

(b) The Rademacher complexity of Θ has polynomial decay in n and growth in α:

sup
j∈N

max
h∈[H]

Rn,h,j(Θ;α) ≤ CΘα
−1n−

1
ν ,

where CΘ = CΘ(σ, τchunk, τobs) > 0.

(c) The scores have linear growth; that is, there exists some Cgrow = Cgrow(σ, τchunk, τobs) >
0 sucht hat

sup
j∈N,h∈[H]

sup
θ∈Θ
||sθ(a, õh, j)|| ≤ Cgrowα

−1(1 + ||a||+ ||õh||),

As discussed in Appendix L, generalizing to polynomial growth is straightforward.
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As justified in Appendix L, our decay condition on the Rademacher complexity is natural for sta-
tistical learning, and holds for most common function classes (often with ν ≤ 2 and even more
benign dependence on J, α); our results can easily extend to approximate realizability as well. Our
Rademacher bound depends implicitly on chunk and observation lengths τchunk, τobs > 0 and im-
plicitly on dimension dA via CΘ. Realizability is motivated by the approximation power of deep
neural networks [12]. Lastly, we do expect realizability to hold uniformly over j ≥ 0 because,
as j → 0, the corresponding scores corresponds to a scaled identity function (i.e. the score of a
standard Gaussian).

C.5 Theoretical Guarantee for HINT.

We now state our guarantee for HINT, invoking assumptions from the section above. Recall that dA
denotes the dimension of composite actions, and that c1, . . . , c5 are as in Definition 3.2.
Theorem 3. Suppose Assumption 3.1 holds. Let c1, . . . , c5 > 0, defined in Definition 3.2, and
let ΘIss(x) denote a term which is upper and lower bounded by a x times a polynomial in those
constants and their inverses. Let ε ≤ ΘIss(1), if we choose σ = ε/ΘIss(

√
dx + log(1/ε)) and let

τchunk ≤ c3 and τchunk − τobs ≥ 1
Lβ

log(c1/ε). Consider running HINT for σ > 0 with parameters
J, α polynomial in the parameters given in Assumption 3.1 specified in Appendix L. Then, Then, if

Nexp ≥ poly (CΘ(σ, τchunk, τobs), 1/ε,RK, dA, log(1/δ))
ν
> 0,

then with probability 1− δ, the policy π̂σ returned by HINT satisfies

Lmarg,ε(π̂σ) ≤ ΘIss

(
εH
√
τobs · (

√
dx + log(1/ε)

)
.

In addition, consider running HINT with σ = 0, and suppose CΘ(σ, τchunk, τobs)
∣∣
σ=0

is finite.
Then, for Nexp satisfying the same bound as above, it holds that with probability 1− δ, the policy π̂
produced by HINT satisfies the guarantees of Theorem 1 up to an additive factor of Hε on the event
that π̂ happens to be γ-TVC.

Theorem 3 instantiates Theorem 2 by bounding the policy error terms ∆(ε2)(π
⋆
dec,σ,h(õh), π̂h(õh))

in that theorem when π̂ is the policy learned by fitting the DDPM in Line 7. The formal bound
on Nexp is given in (J.6) in Appendix J. While making τchunk larger appears to improve the above
bound, it generally increases the statistical and computational challenge of learning the DDPM itself.
The guarantees for score matching are derived in Appendix L by applying [18, 41, 13]; these are
applied to Theorem 2 in Appendix J.

D Analysis Overview

Our analysis abstracts away the vector-valued dynamics into a deterministic MDP – the composite
MDP – with composite-states s ∈ S and composite-actions a ∈ A, corresponding to trajectory-
chunks and composite-actions in Section 2. We abstract away our dynamics as

sh+1 = Fh(sh, ah), h ∈ {1, 2, . . . ,H} (D.1)

A composite-policy π is a sequence of kernels π1, π2, . . . , πH : S → ∆(A). We let Pinit denote the
distribution of initial state s1, and Dπ denote the distribution of (s1:H+1, a1:H) subject to s1 ∼ Pinit,
ah | s1:h, a1:h−1 ∼ πh(sh), and the composite-dynamics (D.1). We assume that we have an optimal
policy π⋆ to be imitated, and define P⋆

h as the marginal distribution of sh under Dπ⋆ ; ultimately, we
shall take π⋆ to be the policy defined in Definition 3.4.

D.1 Structure of the proof.

We begin by explaining key objects, stability and continuity properties required in the composite
MDP. Then, Appendix D.2 relates the composite MDP to our original setting by taking composite-
states sh = sh as chunks, and taking composite actions as sequences of primitive controllers ah =
κth:th+1−1 as in Section 2. We also explain why relevant stability and continuity conditions are
met. Finally, we derive Theorem 2 from a generic guarantee for smoothed imitiation learning in the
composite MDP, Theorem 4, and from sampling guarantees in Appendix L.
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We consider two pseudometrics on the space S: dS , dTVC : S2 → R≥0, and a function dA : A2 →
R≥0. For convenience, do not require dA to satisfy the axioms of a pseudometric. We use dS and dA
to measure error between states and actions, respectively, and dTVC(·, ·) for a probabilistic continuity
property described below. In terms of dS and dA, we consider three measures of imitation error:
error on the (i) joint distribution of trajectories (Γjoint,ε) (ii) marginal distribution of trajectories
(Γmarg,ε) and (iii) one-step error in actions (dos,ε). Formally:
Definition D.1 (Imitation Errors). Given an error parameter ε > 0, define the joint-error
Γjoint,ε(π̂ ∥ π⋆) := infµ1

Pµ1

[
maxh∈[H] max{dS(s⋆h+1, ŝh+1), dA(a⋆h, âh)} > ε

]
, where the

first infimum is over trajectory couplings ((̂s1:H+1, â1:H), (s⋆1:H+1, a
⋆
1:H)) ∼ µ1 ∈ C (Dπ̂,Dπ⋆)

satisfying Pµ1 [̂s1 = s⋆1] = 1. Define the marginal error Γmarg,ε(π̂ ∥ π⋆) :=
maxh∈[H]{infµ1

Pµ1
[dS(s⋆h+1, ŝh+1) > ε], infµ1

Pµ1
[dA(a⋆h, âh) > ε]} to be the same as the

to joint-gap, with the “max” outside the probability and inf over couplings. Lastly, define the
one-step error dos,ε(π̂h(s) ∥ π⋆

h(s)) := infµ2
Pµ2

[dA(âh, a⋆h) ≤ ε], where the infimum is over
(a⋆h, âh) ∼ µ2 ∈ C (π̂h(s), π

⋆
h(s)).

Stability. Our hierarchical approach offloads stability of stochastic π⋆ onto that of its composite-
actions ah, instantiated as primitive controllers (not raw inputs!). This allows us to circumvent more
challenging incremental senses of stability (see Appendix E.2 for further discussion).
Definition D.2 (Input-Stability). A trajectory (s1:H+1, a1:H) is input-stable if all sequences s′1 = s1
and s′h+1 = Fh(s

′
h, a
′
h) satisfy dS(s′h+1, sh+1)∨ dTVC(s

′
h+1, sh+1) ≤ max1≤j≤h dA

(
a′j , aj

)
, ∀h ∈

[H]. A policy π is input-stable if (s1:H , a1:H) ∼ Dπ is input-stable almost surely.

TVC. Continuity of probability kernels and policies in TV distance are measured in terms of dTVC.
Definition D.3. For a measure-space X and non-decreasing γ : R≥0 → R≥0, we call a prob-
ability kernel W : S → ∆(X ) γ-total variation continuous (γ-TVC) if, for all s, s′ ∈ S ,
TV(W(s),W(s′)) ≤ γ(dTVC(s, s

′)). A policy π is γ-TVC if πh : S → ∆(A) is γ-TVC ∀h ∈ [H].

Data Noising. In Appendix G, we show that under the strong condition that the learned policy π̂ is
γ-TVC, then HINT with no noise injection (σ = 0) learns the distribution. Frequently, however, π̂
may not satisfy this condition, such as when the ground truth π⋆ is not also TVC. We circumvent this
by introducing a smoothing kernel Wσ : S → ∆(S) that corresponds to the data noising procedure;
in HINT we let the kernel be a Gaussian, sending oh toN (oh, σ

2I) ∈ ∆(Poh). We will thus be able
to replace TVC of π̂ with TVC of Wσ . We now introduce a few key objects.
Definition D.4. Given a policy π, we define its smoothed policy π◦Wσ via components (π◦Wσ)h =
πh ◦Wσ : S → ∆(A). For π⋆ fixed, define the smoothed distibution P⋆

aug,h as the joint distribution
over (s⋆h ∼ P⋆

h, a
⋆
h ∼ π⋆

h(s
⋆
h), s̃

⋆
h ∼ Wσ(s

⋆
h)), with a⋆h ⊥ s̃⋆h | s⋆h. The deconvolution policy π⋆

dec
is defined by letting π⋆

dec,h(s) denote the distribution of a⋆h | s̃⋆h = sh, where a⋆h, s̃
⋆
h are drawn from

P⋆
aug,h. Finally, the replica policy is π⋆

rep = π⋆
dec ◦Wσ .

The operator π◦Wσ composes π with the smoothing kernel. The deconvolution policy π⋆
dec captures

the distribution of actions under π⋆ given a smoothed state, and corresponds to π⋆
dec = (π⋆

dec,h)
H
h=1.

We argue that if a policy π̂ approximates π⋆
dec at each step, then π̂ ◦Wσ imitates π⋆

rep = π⋆
dec ◦Wσ .

We explain the “replica policy”, and importance of imitating it, after we state our main theorem.
First, we define a notion of stability to smoothing, taking dTVC, dS , dA as given.
Definition D.5. For a non-decreasing maps γIPS,TVC, γIPS,S : R≥0 → R≥0 a pseudomet-
ric dIPS : S × S → R (possibly other than dS or dTVC), and rIPS > 0, we say a pol-
icy π is (γIPS,TVC, γIPS,S , dIPS, rIPS)-input-&-process stable (IPS) if the following holds for any
r ∈ [0, rIPS]. Consider any sequence of kernels W1, . . . ,WH : S → ∆(S) satisfying
maxh,s∈S Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, and define a process s1 ∼ Pinit, s̃h ∼Wh(sh), ah ∼ πh(s̃h),
and sh+1 := Fh(sh, ah). Then, almost surely, (a) the sequence (s1:H+1, a1:H) is input-stable
(b) maxh∈[H] dTVC(Fh(̃sh, ah), sh+1) ≤ γIPS,TVC(r) and (c) maxh∈[H] dS(Fh(̃sh, ah), sh+1) ≤
γIPS,S(r).

Condition (a) means that the policy π̃ defined by π̃h = πh ◦Wh is input-stable. In the appendix,
we instantiate W1:H not as Wσ , but as (a truncation of) replica kernels W⋆

rep,h for which π⋆
rep,h =

π⋆
h◦W⋆

rep,h. We show that the replica kernel inherits any concentration satisfied by Wσ , ensuring (via
truncation) that Ps̃∼Wh(s)[dIPS (̃s, s)] ≤ r. Conditions (b & c) merely require that one-step dynamics
are robust to small changes in state, measured in terms of both dTVC and dS .
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Figure 7: Schematic depicting the composite MDP. States x and stabilizing gains κ are chunked
into composite states s and composite actions a (control inputs u not depicted). The distance labels
correspond to the domain over which each distance is evaluated. Note that ah begins at the same
time that sh+1 does, an indexing convention that we adopt to make the notation in the proofs simpler.

D.2 Instantiation for control

Here we explain the mapping from the control setting of interest to the composite MDP; in so doing
we distinguish between the case h > 1 and h = 1 with reference to composite-states. Recall the
definitions of dmax and dtraj from (3.1) and (3.2). In the former case, sh = (xth−1:th ,uth−1:th−1) ∈
Pτobs , and ah = κth:th+1−1 (as in Section 2). Importantly, ah are primitive controllers, which
allows us to meet the strong stability condition in Definition D.2. Figure 7 provides a visual aid
for the subtle indexing. For sh = sh, s

′
h = s′h, we define dS(sh, s′h) = maxt∈[th−1:th] ∥xt −

x′t∥∨maxt∈[th−1:th−1] ∥ut−u′t∥, which measures distance on the full subtrajectory, dTVC(sh, s
′
h) =

maxt∈[th−τobs:th] ∥xt − x′t∥ ∨maxt∈[th−τobs:th−1] ∥ut − u′t∥, which measures distance on the last
τobs steps, and dIPS(sh, s

′
h) = ∥xth − x′th∥, which is only on the last step. In the latter case, when

h = 1, we let s1 = x1 ∈ X , and we let dS , dTVC, dIPS all denote the Euclidean distance on X . In all
cases, the transition dynamics Fh are induced by the dynamics (2.1) with ut = κt(xt). Finally, for
a = (ū1:τchunk

, x̄1:τchunk
, K̄1:τchunk

) and a′ = (ū′1:τchunk , x̄
′
1:τchunk

, K̄′1:τchunk), we recall from (3.1)
dmax(a, a

′) := max1≤k≤τchunk
(∥ūk− ū′k∥+ ∥x̄k− x̄′k∥+ ∥K̄k− K̄′k∥). We choose a dA that takes

value∞ when primitive controllers are too far apart

dA(a, a
′) := c1dmax(a, a

′) · I∞{dmax(a, a
′) ≤ c2} (D.2)

I∞ is the indicator taking infinite value when the event E fails to hold and 1 otherwise, and c1 and
c2 are constants depending polynomially on all problem parameters, given in Appendix K.

We let the expert policy π⋆ be the concatenation of policies π⋆
h, each of which is defined to be the

distribution of ah conditioned on oh underDexp (see Appendix J for a rigorous definition). As noted
above, we take the smoothing kernel Wσ to map oh to a N (oh, σ

2I) ∈ ∆(Poh), which that same
appendix shows is 1

2σ -TVC (w.r.t. dTVC defined above). We note that under these substitutions, the
deconvolution policy π⋆

dec = (π⋆
dec,h)

H
h=1 is precisely as defined in Definition C.1.

Appendix K shows that Assumption 3.1 imply that π⋆ enjoys the IPS property in the composite
MDP thus instantiated, along with many more granular stability guarantees for time-varying affine
feedback in nonlinear control systems, which may be of independent interest.

Proposition D.1. Let c3, c4, c5 > 0 be as given in Appendix K (and polynomial in the terms in As-
sumption 3.1). Suppose τchunk ≥ c3, and let rIPS = c4, γIPS,TVC(u) = c5u exp(−Lβ(τchunk−τobs)),
γIPS,S(u) = c5u. Then, for dS , dTVC, dIPS as above, we have that π⋆ is (γIPS,TVC, γIPS,S , dIPS, rIPS)-IPS.

D.3 A Guarantee in the Composite MDP, and the derivation of Theorem 3

With the substitutions in Appendix D.2, it suffices to prove an imitation guarantee in the composite
MDP, assuming π⋆ is IPS, and π̂ is close to π⋆

dec in the appropriate sense.

Theorem 4. Suppose π⋆ is (γIPS,TVC, γIPS,S , dIPS, rIPS)-IPS and Wσ is γσ-TVC. Let ε > 0, r ∈
(0, 12rIPS]; define pr := sups Ps′∼Wσ(s)[dIPS(s

′, s) > r] and ε′ := ε + γIPS,S(2r). Then, for any
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policy π̂, both Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep) and Γmarg,ε′(π̂ ◦Wσ ∥ π⋆) are upper bounded by

H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
H∑

h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h)). (D.3)

Deriving Theorem 2 from Theorem 4. A full proof is given in Appendix J. The key steps are using
the stability guarantee of Proposition D.1, the aforementioned TVC-bound on Wσ , and Gaussian
concentration to bound pr with the bound in Theorem 4 to conclude. Moreover, we can show that,
with s̃⋆h = õh,

H∑
h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(s̃
⋆
h) ∥ π⋆

dec(s̃
⋆
h)) =

H∑
h=1

Eõh∼Dexp,σ,h

[
∆(ε2)

(
π⋆
dec,σ,h (õh) , π̂h (õh)

)]
.

Thus, Theorem 4 provides the desired guarantee for imitating the policy π⋆ constructed in Ap-
pendix D.2. We conclude with a subtle but powerful observation: that π⋆ as constructed has trajec-
tories with the same marginals (but possibly different joint distributions) as ρT ∼ Dexp.

A simplified guarantee when π̂ is TVC. Before we sketch the proof of Theorem 4, we present the
simpler guarantee that underpins Theorem 1 in Section 3. This guarantee considers no smoothing,
but where π̂ is guaranteed to be γ-TVC. As discussed in Remark C.3, this situation is practically
unrealistic when π̂ is instantiated with a DDPM. Still, the following result is more transparent, and
its proof sketch will inform the proof sketch of Theorem 4 following it.
Proposition D.2. Suppose for simplicity that dS = dTVC. Let π⋆ be input-stable w.r.t. (dS , dA) and
let π̂ be γ-TVC. Then, for all ε > 0,

Γjoint,ε(π̂ ∥ π⋆) ≤ Hγ(ε) +
H∑

h=1

Es⋆h∼P⋆
h
dos,ε(π̂h(s

⋆
h) ∥ π⋆(s⋆h)) (D.4)

Proof Sketch of Proposition D.2. We couple a trajectory (s⋆h, a
⋆
h) induced by π⋆ with a trajectory

(̂sh, âh) induced by π̂. To do so, consider an inductive event on which all past states and actions are
close

Eh = {∀j ≤ h, dTVC (̂sj , s
⋆
j ) ∨ dS (̂sj , s

⋆
j ) ≤ ε} ∩ {∀j ≤ h− 1, dA(âj , a

⋆
j ) ≤ ε},

which can be made to hold with probability one for h = 1 by ensuring ŝ1 = s⋆1 ∼ Pinit. It suffices
to find a µ coupling under which Pµ[EH+1] is bounded by the righthand side of (D.4).

When Eh holds, then as π̂ is γ-TVC, âh ∼ π̂h(̂sh) is γ(ε)-close in TV distance to an interpo-
lating action âinterh ∼ π̂h(s

⋆
h). Thus, there is a coupling under which P[âh ̸= âinterh ] ≤ γ(ε).

Moreover, by definition of dos,ε, there exists a coupling under which P[dA(âinterh , a⋆h) > ε] ≤
Es⋆h∼P⋆

h
dos,ε(π̂h(s

⋆
h) ∥ π⋆(s⋆h))]. Thus, by “gluing” the couplings together (an operation rigorously

justified in Appendix F), we have

P[Eh ∩ {dA(âh, a⋆h) > ε}] ≤ γ(ε) + Es⋆h∼P⋆
h
dos,ε(π̂h(s

⋆
h) ∥ π⋆(s⋆h))]. (D.5)

Invoking the defition of input stability (Definition D.2), Eh and dA(âh, a⋆h) ≤ ε imply Eh+1. There-
fore, by selecting couplings appropriately, P[Eh ∩ Ech+1] is also bounded by the righthand side of
(D.5). As the events (Eh) are nested, we can finally telescope to bound P[EH+1] by summing up
these terms for each h. A full proof is given in Appendix G.

D.4 Proof Overview of Theorem 4

In this sketch, we focus on bounding Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep); we adress Γmarg,ε′(π̂ ◦Wσ ∥ π⋆)

at the end of the section. Our argument constructs a coupling between a replica trajectory over
(sreph , areph ) sampled using the replica policy π⋆

rep, and an imitator trajectory (ŝh, âh) sampled from
π̂σ . The construction of this coupling draws inspiration from the notion of replica pairs in statistical
physics (hence, the name replica) [45]. We refer the reader back to Figure 4 above the proof sketch
in Section 3.3 for a visual depiction.
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The replica kernel. A central object in our proof is the replica kernel W⋆
rep,h : S → ∆(S), defined

so that π⋆
rep,h = π⋆

h ◦W⋆
rep,h, and constructed by analogy to the replica policy in Definition D.4.

The key property of the replica kernel is that it preserves marginals: if sh ∼ P⋆
h is drawn from the

distribution of states under the expert demonstrations, then s′h ∼ W⋆
rep,h(sh) is also distributed as

P⋆
h; in other words, P⋆

h is a fixed point of W⋆
rep,h:

Fact D.1 (Replica Property). It holds that P⋆
h = W⋆

rep,h ◦ P⋆
h.

A second crucial property is that we can represent the replica kernel as a convolution between Wσ

and a deconvolution kernel. Thus, data-processing implies that W⋆
rep,h inherits TVC from Wσ .

Fact D.2 (Replica Kernel is TVC). If Wσ is γTVC-TVC, W⋆
rep,h is as well.

Constructing the replica and teleporting trajectories. Because the replica kernel satisfies
π⋆
rep,h = W⋆

rep,h ◦ π⋆, we can realize the replica trajectory via

s̃reph ∼W⋆
rep,h(s

rep
h ), areph ∼ π⋆

h(̃s
rep
h ), sreph+1 = Fh(s

rep
h , areph ), srep1 ∼ Pinit.

We then introduce a teleporting trajectory obeying the an almost identical generative process:

s̃telh ∼W⋆
rep,h(s

tel
h ), areph ∼ π⋆

h(̃s
tel
h ), stelh+1 = Fh(̃s

tel
h , atelh ), atel1 ∼ Pinit.

In words, stelh “teleports” to an independent and identically distributed copy conditional on the noise
agumentation s̃telh , and draws an action from the expert policy evaluated on the new state. The replica
and teleporting sequences differ only in the transitions: whereas sreph+1 = Fh(s

rep
h , areph ) transitions

from its current state sreph , the telporting trajectory transition stelh+1 = Fh(̃s
tel
h , atelh ) from the replica-

drawn, “teleported” state s̃telh ∼ W⋆
rep,h(s

tel
h ). By iteratively applying Fact D.1, and the fact that

stelh ∼ π⋆
h(̃s

tel
h ), we can make the following claim:

Fact D.3. For each h, stelh and s̃telh are distributed according to P⋆
h, the marginal distribution of states

under the expert policy. Hence, because stelh ∼ P⋆
h, we know that π̂ and π⋆

h are close under the
distribution of states induced teleporting sequence.

Constructing the coupling. We now describe how to use the teleporting trajectory to couple the
replica and imitator trajectory. We begin by coupling the replica and imitator trajectories. The
following diagram explains how we construct the coupling:

(̃srep ↔ s̃tel), (arep ↔ atel)︸ ︷︷ ︸
γTVC , γIPS,TVC , and induction

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
learning and sampling

→ (âtel,inter ↔ ârep,inter)︸ ︷︷ ︸
γTVC and induction

→ (ârep,inter ↔ â)︸ ︷︷ ︸
γTVC , input-stability, and induction

.

(D.6)

As the dynamics are deterministic, (D.6) determines the coupling of states sreph , stelh , ŝh as well.

(a) We begin by arguing that replica and teleporting trajectories are close to one another. The
argument is inductive: suppose that dTVC(s

rep
h , stelh ) are close. By TVC of the replica kernel,

s̃reph and s̃telh are close in TV, and so there is a coupling under which

P[(areph , s̃reph ) ̸= (atelh , s̃telh )] is small.

Next, recall pr := sups Ps′∼Wσ(s)[dIPS(s
′, s) > r] as defined in Theorem 4, which de-

scribes the concentration behavior of Wσ . We use a Bayesian concentration argument
(Lemma H.5) to ensure that with probability of failure at most 2pr, dIPS (̃s

rep
h , sreph ) ≤ 2r.

We then use IPS (Definition D.5) to argue that, with the same failure probability,

sreph+1 = Fh(s
rep
h , areph ) is within O(r) dTVC-distance of Fh(s̃

rep
h , areph ).

Thus, when (areph , s̃reph ) = (atelh , s̃telh ), we obtain that sreph+1 is close to Fh(a
tel
h , s̃telh ) = stelh+1

in dTVC as well. For more detail, consult Figure 10 in the appendix.
(b) Because the marginals of stelh are distributed according to P⋆

h, we can argue that a (fictitious)
action âtel,interh ∼ (π̂h◦Wσ)(s

tel
h ) is close to atelh . Indeed, by the data processing inequality,

it is bounded by the closeness of π̂h and π⋆
dec,h on s̃telh ∼ Wσ(s

tel
h ), stelh ∼ P⋆

h; this is
controlled by the contribution of dos,ε(π̂h(s̃⋆h) ∥ π⋆

dec(s̃
⋆
h)) on the right-hand-side of (M.2).
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(c) From part (a) of the coupling, we expect that sreph and stelh are close. As π̂ ◦Wσ is γTVC

by the data-processing inequality, it follows that âtel,interh is close in TV distance to another
fictious action ârep,interh ∼ (π̂h ◦Wσ)(s

rep
h ).

(d) Finally, we argue that that trajectory of actions induced by taking the replica-interpolating
action ârep,interh is close to TV to the imitation trajectories induced by taking âh. The argu-
ment is similar in spirit to the proof of Proposition D.2 sketched above, and uses both TVC
of the smoothed policy π̂◦Wσ , and the form of input-stability guaranteed by Definition D.5.

Bounding the marginal gap. Because the teleporting sequence stelh has marginals P⋆
h, bounding

the marginal gap amounts to controlling the distance between stelh and ŝh. This follows from more-
or-less the same manipulations.5

Measure-theoretic considerations. We construct conditional couplings between pairs of the
aforementioned trajectories, each of which corresponds to a certain optimal transport cost. That
past trajectories can be associated to optimal couplings measurably is non-trivial, and proven in
Proposition F.3. To conclude, we apply a measure theoretic result (Lemma F.2) to “glue” the pair-
wise couplings together and establish the main result. The full proof is given in Appendix H, relying
on measure-theoretic details in Appendix F.

E Generalization to Generic Incrementally Stable Primitive Controllers

In this section, we consider a generalization of the theory to allow for general, nonlinear primitive
controllers, as long as they obey the incremental stability considered in Pfrommer et al. [50]. We
consider controllers of the form:

κ(x) = κ(x; θ), θ ∈ Θ.

We assume that Θ ⊂ RdΘ is a measurable subset of a finite dimensional space and (2) that κ(x; θ)
is jointly piecewise-Lipschitz with at most countably many pieces. We define composite actions just
as for linear primitive controllers:

a = (κ1, κ2, . . . , κτchunk).

We view K := {κ(·; θ)|θ ∈ Θ} and A = Kτchunk as Polish spaces with the Euclidean metric on
the controller parameters θ (resp. sequences of control parameters). Our definition of incremental
stability from Definition 3.1 applies verbatim to these more general controllers.
Example E.1 (Approximate Inverse Dynamics & Position Control). A natural example of the above
is where θ corresponds to a sequence of position commands supplied to a robotic position controller,
as in [19], or where θ is a of state-command given to an inverse dynamics model, as in [3]. In these
settings, we can actually regard θ as the “control action,” and envision the closed loop system of
{system + position controller/inverse dynamics model} as itself being incrementally stable. How-
ever, our framework is considerably more general, and allows us, for example, to diffuse other pa-
rameters governing the performance of the low level controllers as well (e.g. joint spring constants
in robotic position control).

In this section, we replace Assumption 3.1 with the more general assumption that allows arbitrary
forms of the incremental stability moduli:
Assumption 3.1b. Let γ(·) be class K, β(·, ·) be class KL, and let cξ, cβ, cγ > 0 be postive con-
stants. We assume access to a synthesis oracle synth : PT → AH such that, with probability 1
over ρT = (x1:T+1,u1:T ) ∼ Dexp, a1:H = synth(ρT ) satisfies the following properties:

• ah = κth:th+1−1 is consistent with sh+1 = (xth:th+1
,uth:th+1−1); equivalently,

xt+1 = f(xt, κt(xt)), t ∈ [T ].

• ah is locally t-ISS at xth with moduli γ(·),β(·, ·) and constants cγ, cβ, cξ > 0.
5A key difference is that we pick up an additive factor of γIPS,S (measuring sensitivity of dS to the smoothing

from Wσ) in our tolerance ε′.
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E.1 Main Results for General Primitive Controllers

To state our main results, we begin by defining distances on primitive controllers, as well as the
induced imitation error of a policy π̂. Throughout,Dσ,h denotes the noise-smoothed expert data dis-
tribution over (õh, ah) as in Definition 3.6 (with ah now representing sequence of general primitive
controllers, not the linear ones considered in the main body.
Definition E.1. Define the local-distance between composite actions a = κ1:τchunk , a

′ = κ′1:τchunk ∈
A at state x and scale α > 0 as

dloc,α(a, a
′ | x) := max

1≤i≤τchunk
sup

δx:∥δx∥≤α
∥κi(xi + δx)− κ′i(xi + δx)∥,

where above x1 = x, xt+1 = f(xt, κt(x)), and a = κ1:τchunk . Finally, we define

∆ISS,σ,h(π̂; ε, α) := inf
µ∈Cσ,h(π̂)

P(ah,a′h)∼µ [dloc,α(a, a
′ | xth)) > ε] ,

where C σ,h(π̂) denotes the set of couplings of (oh, õh, ah, a
′
h), induced by drawing (oh, ah) ∼

Dexp,h, õh ∼ N (oh, σ
2I), and a′h ∼ π̂h(õh), and where above xth is the last state in oh.Note that

the only degree of freedom for in selecting elements of C σ,h(π̂).
Remark E.1 (On the distance dloc,α). In words, dloc,α(a, a′ | x1:τchunk) measures the supremal dis-
tance between the primitive controllers comprising a, a′, along radius-α neighborhoods of a given
sequence x1:τchunk

. This supremal distance was studied in Pfrommer et al. [50] and motivates their
proposed algorithm TaSIL. Unlike affine primitive controllers, the supremal distance between gen-
eral primitive controllers may indeed dependence on the localizing sequence x1:τchunk .

Having defined our distance, ∆ISS,σ,h(π̂; ε, α) measures the probability that this difference exceeds
some threshold α > 0, under appropriate couplings where õh is induced by noising the expert
distribution, a is the corresponding action, a′ is from the policy π̂, and the localizing sequence
follows from rolling out a on the last state x̃th of õh. ∆ISS,σ,h is the natural analogue of the distances
consider in Theorem 2. One subtlety of ∆ISS,σ,h is that the couplings are constructed such that ah is
the action associated with oh. This is conceptually correct because it specifies a localizing-state for
dloc,α(ah, a

′
h | xth) (which is not an issue for affine primitive controllers). When ah arises from a

synthesis oracle, xth lies on the trajectory from which ah is synthesized.

Theorem 2 generalizes as follows.
Theorem 5 (Generalization of Theorem 2 to general primitive controllers). Assume Assump-
tion 3.1b, and let ε > 0 satisfy

γ−1(β(2γ(ε), τchunk) ≤ ε ≤ min{cγ,γ−1(cξ/4)} (E.1)

Define

ω = 2

√
5dx + 2 log

(
2σ

γ(ε)

)
, ε1 = 2β(2γ(ε), 0) + 2β(2σω, 0), ε2 = 2β(2γ(ε), 0).

Then, if σ ≤ cξ/4ω and γ(ε) ≤ 2σ, we have

Lmarg,ε1(π̂) ≤
3H
√
2τobs − 1

2σ
(2ε2 + β(2σω, τchunk − τobs)) +

H∑
h=1

∆ISS,σ,h(π̂; ε, ε1).

Before continuing, let us remark on the parameters and the scaling. Here, ε parametrizes an error
scale. ε1 captures both the imitation error, as well as the radius in which ∆ISS,σ,h is evaluated. ε2
contributes to the upper bound on theLmarg,ε1 normalized by 1/σ. We recall thatLmarg,ε1 measures
probabilities of deviating from the marginal by a magnitude of at most ε1 under optimal couplings.
To drive the upper bound on Lmarg,ε to zero, we need (a) ∆ISS,σ,h(π̂; ε, ε1)→ 0 , (b) ε2/σ → 0 and
(c) 1

σβ(2σω, τchunk− τobs)→ 0, which requires τchunk− τobs to grow and β to decay in its second
argument. To drive the tolerance ε1 to zero, we require that 2β(2γ(ε), 0) + 2β(2σω, 0) to tend to
zero, which requires σ → 0 as well. 6 The following remark examines the typical scalings of these
terms and checks that (E.1) is generally easy to satisfy.

6Notice that ε1 → ∆ISS,σ,h(π̂; ε, ε1) is non-increasing, so making ε1 smaller does not increase this term
(though making ε smaller does).
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Remark E.2. Suppose that for some c > 0, q1, q2 ∈ (0, 1], we have γ(u) = cuq1 and β(u, τ) =
uq2ϕ(τ) for some decreasing function ϕ. This is the scaling studied in [50], and indeed for smooth
systems with stabilizable systems, our analysis essentially shows that we can take q1 = q2 = 1 and
ϕ(τ) to decay exponentially in τ as shown in Appendix K, and which reflects in Theorem 2. For the
more general power scalings, (E.1) reads

cq2−1ϕ(τchunk)
1/q1εq2 ≤ ε ≤ constant.

If q2 = 1 (e.g. the stabilizable, smooth case), then this is satisfied whenever ε is sufficiently
small and τchunk is sufficently large. Otherwise, it one has to take ε ≥ 1

cϕ(τchunk)
1/q1(1−q2),

whch becomes increasingly permissive as τ is enlarged. Morever, for these scalings, we have
ω = O (log(1 + σ/εq1)), ε1 = O (εq1q2 + σω) = ε1 = Õ (εq1q2 + σ), and ε2 = O (εq1q2).
In the regime where q1 = q2, this recovers the scaling observed in Theorem 2.

Similarly, we can generalize Theorem 1 to the general controller setting.
Theorem 6. Suppose Assumption 3.1b holds, and suppose that ε > 0 and τchunk ∈ N satisfies
(E.1). Then, for any non-decreasing non-negative γ(·) and γ-TVC chunking policy π̂,

Lmarg,ε1(π̂) ≤ Hγ(ε) +
H∑

h=1

∆ISS,σ,h(π̂; ε, ε1), ε1 := 2β(2γ(ε), 0) (E.2)

In addition, suppose the expert distribution Dexp has at most τobs-bounded memory (defined for-
mally in Definition J.5). ThenLjoint,α(ε)(π̂) satisfies the same upper bound (E.2), whereLjoint,α(π̂),
formally defined in Definition J.4, measures an optimal transport distance between the joint distri-
bution of the expert trajectory and the one induced by π̂.

The proofs of Theorems 5 and 6 are given in the Appendix M, generalizing the proofs of Theorems 1
and 2 in the main text, respectively. As with Theorem 1, Appendix N.1 shows that we can replace the
condition on the chunk length τchunk on and on ε in (K.4) with the condition ε ≤ cγ and the vacuous
condition τchunk ≥ 1, provided that the synthesis oracle produces entire primitive controllers for
which the entire sequences κ1:T are incrementally stabilizing.

E.2 Comparison to prior notions of stability.

Prior theoretical work in imitation learning focuses either on constraining the learned policy to be
stable [27, 68] or assumes the expert policy is suitably stable [50]. The principal notion of stability
used in these prior works is incremental-input-to-state stability of the closed-loop system under a
deterministic, but possibly sophisticated time-independent controller π : X → U . Importantly, this
work considers the imitiation of a joint distribution over sequences of simple controlers κwe call the
“primitive controllers”. These approach necessitate subtle differences in our choice of definitions
described below.

In what follows, we let γ be a class K function and β be a class KL function, as described above
Definition 3.1.
Definition E.2 (Incremental Input-to-State Stability). We say a policy π : X → U satisfies Incre-
mental Input-To-State Stability (δ-ISS) with moduli γ and β if for any two initial conditions ξ1, ξ2 ∈
X , the closed-loop dynamics under policy π : X → U given by fcl(xt,∆t) = f(xt, π(ut) + ∆t)
satisfies:

∥xt(ξ1; δu1:τ )− xt(ξ2;01:τ )∥ ≤ β(∥ξ1 − ξ2∥) + γ
(

max
0≤s≤t−1

∥δus∥
)
,

where xt(ξ; δu1:t−1) is the state at time t under fcl with x0 = ξ and input perturbations δu1:t−1.

We say that it satisfies π satisfies local δ-ISS with parameter c if the above holds for all of identical
initial conditions ξ1 = ξ2 (with β(0) = 0) and for δu1:t−1 satisfying max1≤s≤t ∥δus∥ ≤ c.

Notice that for ξ1 ̸= ξ2, the β-term necessitates that the dynamics converge irrespective of initial
condition. Without time-varying dynamics this can only be achieved by a policy which stabilizes
to an equilibrium point, as a policy which tracks a reference trajectory is unable to “forget" the
initial condition. Constraining learned policies such that they satisfy this notion of stability is also
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Expert

Augmentations

Figure 8: Instance of bifurcation, where augmentation is necessary for stability. The example on
the left has an expert demonstrator bifurcating around a circular obstacle. The example on the right
demonstrates the utility of augmentations, allowing for trajectories that navigate around the object
in the direction farther from their starting point.

challenging. Tu et. al. [68] attempt to do so through regularization while Haven et. a. [27] use matrix
inequalities to satisfy this stability property under linear dynamics. Pfrommer et. at. [50] avoid this
difficulty only requiring local incremental stability. This weaker notion of incremental stability
simply postulates the existence of a (local) input-perturbation to state-perturbation gain function γ.
Since this stability property does not necessitate convergence across with different initial conditions
and only under input perturbations of magnitude ≤ c, this only necessitates that the expert policy
can correct from small input perturbations.

Comparing local δ-ISS and Definition 3.1. As stated above, past work consider imitation of a
fixed, but possibly complex deterministic controller π. In contrast, we imititate joint distributions
over sequences of primitive controllers a = (κ1:τ ). Moreover, our “primitive” controllers are in-
tended to be much simpler than the policy π considered in past work; e.g. the affine controllers
consided in the body in this work. Indeed, the real “policy” we try to imitate is potentially very
complex expert distribution Dexp, and these primitive controllers serve to stablize to this distribu-
tion. To account for these differences, we modify the local stability considered by Pfrommer et al.
[50] in three respects.

• Our notion of stability, Definition 3.1, is applied to fixed-length sequences of controllers
a = (κ1, . . . , κτ ); past notions of incremental stability are for time-varying controllers and
are infinite horizon.

• Definition 3.1 only requires that our notion of incremental stability holds for initial condi-
tions ξ in a radius cξ of a nomimal initial condition ξ0. The reason for this can be seen
by considering jus tthe affine primitive controllers studied in the body: time-varying feed-
back that stabilizes the linearization of a smooth dynamical system is only stabilizing of
the actual system in a tube around the nominal trajectory.

• Unlike the local notion of δ-ISS considered in Pfrommer et al. [50], we do require con-
sidering stability from different initial conditions ξ1 ̸= ξ2. This is because we re-apply
incremental stability at each chunk h, and must account for imitation error accumulated up
to that point.

The power of a hierarchical approach to stability. Through the introduction of a synthesis oracle
which can generate locally stabilizing primitive controllers, we decouple the stability properties
of the expert’s behavior from the stabilizability of the underlying dynamical system. This allows
for reasoning about generalization in the presence of bifurcations or conflicting demonstrations,
which is precluded by local δ-ISS since an expert policy cannot simultaneously stabilize to multiple
branches of a bifurcation. For a concrete example, consider Figure 8. Indeed, continuity is the sine
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π⋆
̂πσ

Figure 9: Instance where π̂σ and π⋆ induce the same marginals and joint distributions (left), but in
the presence of expert demonstration trajectories that traverse the figure eight both clockwise and
counterclockwise directions, π̂σ may switch with some probability between demonstrations where
they overlap.

qua non of stability and the example given demonstrates the necessity of augmentation to enforce the
former. In detail, the figure illustrates an example where an agent is navigating around an obstacle,
providing a bifurcation. Without augmentation, the demonstrator trajectories always navigate around
the obstacle in the direction closer to their starting point, leading to a sharp discontinuity along a
bisector of the obstacle. On the other hand, the data augmentations allow for the policy to have some
probability of navigating around the obstacle in the “wrong” direction, which leads to the notion of
continuity we consider: total variation continuity.

Because our notion of stability is applied in chunks, our theory is sufficiently flexible so as to allow
for the learned policy to switch between expert demonstrations in a manner preserving the marginal
distributions but not consistent with the joint distribution across the entire trajectory. This flexibil-
ity is illustrated in Figure 9, where we suppose that the demonstrator distribution consists both of
trajectories traversing a figure “8” consistently in either a clockwise or counter-clockwise manner,
with both orientations represented in the data set. Due to the multi-modality at the critical point in
the trajectory, there is ambiguity about which loop to traverse next; specifically, there may exist a
policy that randomly select which loop to traverse each time the critical point is visited in such a
way that the marginal distributions on states and actions is the same as that induced by the demon-
strator. Such a policy will, by definition, preserve the correct marginal distributions across states
and actions; at the same time, this policy has a different joint distribution across all time steps from
the demonstrator due to the possibility of traversing the same loop twice in a row.
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Part II

Composite MDP
F Measure-Theoretic Background

In this section, we introduce the prerequisite notions from probability theory that we use to formally
construct the couplings in Appendices G and H. We begin by introducing general preliminaries, fol-
lowed by kernels, regular conditional probabilities and a “gluing” lemma in Appendix F.1. We then
show that optimal transport costs commute in an appropriate sense with conditional probabilities
(Proposition F.3 in Appendix F.2). We use the preliminaries in the previous sections to derive cer-
tain optimal-transport and data processing inequalities in Appendix F.3. We prove Proposition F.3
in Appendix F.4. Finally, we state a simple union bound lemma (Lemma F.11 in Appendix F.5) of
use in later appendices.

General preliminaries. We rely extensively on the exposition in Durrett [22] and refer the reader
there for a more thorough introduction. Throughout, we assume there is a Polish space Ω such that
all random variables of interest are mappings X : Ω → X , where X is also Polish. Here, the
σ-algebras are always the Borel algebras (the σ-algebra generated by open subsets), denoted B(Ω)
and B(X ).
The space of (Borel) probablity distributions on X is denoted ∆(X ), and measurability is meant in
the Borel sense. Given a measure µ on a space X × Y , we say that X ∼ PX under µ if, for all
A ∈ B(X ), µ(X ∈ A) = PX(A).

We adopt standard information theoretic notation to denote joint, marginal, and conditional dis-
tributions on vectors of random variables. In particular, if random variables X,Y are distributed
according to P, we denote by PX as the marginal over X , PX|Y as the conditional of X|Y under P,
and PX,Y as the joint distribution when this needs to be empasized.
Definition F.1 (Couplings). Let X ,Y be Polish spaces and let PX ∈ ∆(X ) and PY ∈ ∆(Y). The
set of couplings C (PX ,PY ) denotes the set of measure µ ∈ ∆(X × Y) such that, (X,Y ) ∼ µ has
marginals X ∼ PX and Y ∼ PY .7 We let PX ⊗ PY ∈ C (PX ,PY ) denote the indepent coupling
under which X and Y are independent.

It is standard that PX ⊗ PY is always a valid coupling, and hence C (PX ,PY ) is nonempty. Cou-
plings have the advantage that they can be used to design many probability-theoretic distances.
Through the paper, we use the total variation distance.
Definition F.2 (Total Variation Distance). Let P1,P2 ∈ ∆(X ). We define the total variation distance
TV(P1,P2) := supA⊂B(X ) |P1(A)− P2(A)|

The total variation distance can be expressed in terms of couplings as follows [52].
Lemma F.1. Let P1,P2 ∈ ∆(X ). Then,

TV(P1,P2) = inf
µ∈C (P1,P2)

P(X1,X2)∼µ{X1 ̸= X2}.

Moreover, there exists a coupling µ⋆ attaining the infinum.

Support and absolute continuity. We will also require the definition of the support of a measure.
Definition F.3. Given a measure µ on a Borel space (Ω,F), we define the support supp(µ) to be
the closure in the topology given by the metric of the set {ω ∈ Ω|µ(U) > 0 for all open U ∋ ω}.

In addition, we require the definition of absolute continuinty.
Definition F.4 (Absolute Continuity). We say that P ∈ ∆(X ) is absolutely continuous with respect
to law P′ ∈ ∆(X ), written P≪ P′, if for A ∈ B(X ), P′(A) = 0 implies P(A) = 0.

We now go into greater detail on the kinds of couplings that we consider.
7More pedantically, for all Borel sets A1 ∈ B(X ), µ(A1 × Y) = PX(A1) all Borel sets A2 ∈ B(X ),

µ(X ×A2) = P2(A2).
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F.1 Kernels, Regular Conditional Probabilities and Gluing

One key technical challenge in proving results in the sequel is the fact that we need to “glue” together
multiple different couplings. Specifically, while it may be the case that there exist pairwise couplings
which satisfy desired properties, there exists a coupling such that the probability of the relevant
event is small, it is not obvious that there exists a single coupling such that all of these probabilities
are small simultaneously. There are two natural ways to due this gluing: the first, using regular
conditional probabilities we provide here. The second, involving a sophisticated construction of
Angel and Spinka [8] requires stronger assumptions on the pseudo-metric, but generalizing beyond
Polish spaces, we simply remark can be substituted with a loss of a constant factor.

Kernels. We begin by introducing the notion of a kernel.

Definition F.5 (Kernels). Let (Ω,P) be a probability space and let X denote a random variable on
this space. For a given σ-algebra G, and map Q : Ω × G → [0, 1], we say that Q is a probability
kernel if the following two conditions are satisfied:

1. For all measurable events A, the map ω 7→ Q(ω,A) is measurable.

2. For almost every ω ∈ Ω, the map A 7→ Q(ω,A) is a probability measure.

We can combine a probability kernel with a probabilty measure on Y to yield joint distributions over
X × Y .

Definition F.6. Given an PY ∈ ∆(Y), we define the probability measure law(QX|Y ;PY ) ∈ ∆(X ×
Y) such that µ = law(QX|Y ;PY ) satisfies8

µ(A×B) = EY∼PY

[
QX|Y (A | Y )I{Y ∈ B})

]
, ∀A ∈ B(X ), B ∈ B(Y). (F.1)

We let QX|Y ◦ PY ∈ ∆(X ) denote the measure for which µ = QX|Y ◦ PY satisfies

µ(A) = EY∼PY

[
QX|Y (A | Y )

]
, ∀A ∈ B(X )

From these, we define the space of conditional couplings as follows.

Definition F.7 (Kernel Couplings). Let PY ∈ ∆(Y), and QXi|Y ∈ ∆(X | Y) for i ∈ {1, 2}. We
let CPY

(QX1|Y ,QX1|Y ) denote the space of measures µ ∈ ∆(X1 ×X2 ×Y) over random variables
(X1, X2, Y ) such that (Xi, Y ) ∼ law(QX|Y ;PY ) for i ∈ {1, 2}.

Note that a similar construction to the independent coupling ensures CPY
(QX1|Y ,QX1|Y )

is nonempty, namely considering the measure µ(A1 × A2 × B2) =
EY∼PY

[
QX1|Y (A1 | Y )QX2|Y (A2)I{Y ∈ B}

]
.

Regular Conditional Probabilities. We now recall a standard result that conditional probabilities
can be expressed through kernels in our setting.

Theorem 7 (Theorem 5.1.9, Durrett [22]). If Ω is a Polish space and P is a probability measure on
the Borel sets of Ω, such that random variables (X,Y ) ∼ P in spaces X and Y , then there exists
a kernel Q(· | ·) ∈ ∆(X | Y) such that, for all A ∈ B(X ) and P-almost every y, the (standard)
conditional probability P[X ∈ A | Y ] = Q(A | y). We can Q(· | ·) the regular conditional
probability measure.

Regular conditional probabilities allow one to think of conditional probabilities in the most intuitive
way, i.e., for two random variables X,Y , the map Y 7→ P(X ∈ A | Y ) is a probability kernel. This
will be the essential property that we use below.

Gluing. Finally, regular conditional probabilities allow us to “glue together” couplings which
share a common random variable.

8Recall that B(X ×Y) is generated by sets A×B ∈ B(X )×B(Y), so (F.1) defines a unique probability
measure
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Lemma F.2 (Gluing Lemma). Suppose that X,Y, Z are random variables taking value in Polish
spaces X ,Y,Z . Let µ1 ∈ ∆(X × Y), µ2 ∈ ∆(Y × Z) be couplings of (X,Y ) and (Y, Z) respec-
tively. Then there exists a coupling µ ∈ ∆(X ×Y×Z) on (X,Y, Z) such that under µ, (X,Y ) ∼ µ1

and (Y,Z) ∼ µ2.

Proof. Let Q(· | Y ) be a regular conditional probability for Z given Y under µ2 (who existence is
ensured by Theorem 7).

We construct µ by first sampling (X,Y ) ∼ µ1 and then sampling Z ∼ Q(· | Y ); observe that by the
second property in Definition F.5, this is a valid construction. It is immediate that under µ, we have
(X,Y ) ∼ µ1 and thus we must only show that (Y,Z) ∼ µ2 to conclude the proof. Let A,B be two
measurable sets and we see that

Pµ ((Y, Z) ∈ A×B) = EY∼µ [Pµ ((Y,Z) ∈ A×B|Y )]

= EY∼µ
[
E(Y,Z)∼µ [I[Y ∈ A] · I[Z ∈ B]|Y ]

]
= EY∼µ [I[Y ∈ A] · Eµ [I [Z ∈ B] |Y ]]

= EY∼µ [I[Y ∈ A] · Pµ2
(Z ∈ B|Y )]

= µ2 ((Y, Z) ∈ A×B) ,

where the first equality follows from the tower property of expectations, the second follows by
definition of conditional probability, the third follows from the definition of conditional expectation,
the fourth follows by the first property from Definition F.5, and the last follows from the fact that
the marginals of Y under µ and under µ2 are the same. The result follows.

F.2 Optimal Transport and Kernel Couplings

As shown above for the TV distance, many measures of distributional distance can be quantified
in terms of optimal transport costs; these are quantities expressed as infima, over all couplings, of
the expectation of a certain lower-semicontinuous functions. We show that if the optimal transport
costs between two kernels Y → ∆(Xi) are controlled pointwise, then for any PY ∈ ∆(Y), is a there
exists a joint distribution over (X1, X2, Y ) which attains the minimal transport cost.

Proposition F.3. Let X1,X2,Y be Polish spaces, and let PY ∈ ∆(Y), and Qi ∈ ∆(Xi | Y). for
i ∈ {1, 2}. Finally, let ϕ : X1 × X2 → R be lower semicontinuous and bounded below. Then, the
following function

ψ(y) := inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[ϕ(X1, X2)]

is a measurable function of y and there exists some µ⋆ ∈ CPY
(Q1,Q2) such that

E(X1,X2,Y )∼µ⋆
[ϕ(X1, X2)] = EY∼νY

ψ(Y ).

In particular it holds µ⋆-almost surely that

Eµ⋆
[ϕ(X1, X2)|Y ] = ψ(Y ).

We prove the above proposition in Appendix F.4. One useful consequence is the following identity
for the total variation distance.

Corollary F.1. Let X ,Y be Polish spaces, and let PY ∈ ∆(Y), and Qi ∈ ∆(X | Y), for i ∈ {1, 2}.
Then, there exists a coupling µ⋆ ∈ CPY

(Q1,Q2) such that

Pµ⋆
[X1 ̸= X2] = EY∼PY

TV(Q1(· | Y ),Q2(· | Y )),

with the left-hand side integrand being measurable.

Proof. Using Lemma F.1, we can represent total variation as an optimal transport cost with
ϕ(x1, x2) = I{x1 ̸= x2}. Note that ϕ(x1, x2) is lower semicontinuous, being the indica-
tor of an open set. Thus, the result follows from Proposition F.3 with X = X1 = X2, and
ϕ(x1, x2) = I{x1 ̸= x2}.
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F.3 Data Processing Inequalities

We now derive two inequalities. First, we recall the classical version for the total variation distance,
and check that a well-known identity holds in our setting.
Lemma F.4 (Data Processing for Total Variation). Let PY1

,PY2
∈ ∆(Y) and let QX ∈ ∆(X | Y).

Then,

TV(QX ◦ PY1
,QX ◦ PY2

) ≤ TV(law(QX ;PY1
), law(QX ;PY2

)) = TV(PY1
,PY2

).

Proof. The first inequality is just the data processing inequality [52, Theorem 7.7], which also shows
that TV(law(QX ;PY1

), law(QX ;PY2
)) ≥ TV(PY1

,PY2
). To prove the reverse inequality, we use

Lemma F.1 to find a coupling µY such that (PY1
,PY2

) such that E[I{Y1 ̸= Y2}] = TV(Y1, Y2).

Define a probability kernel in ∆(X × X | Y1 × Y2) via defining the set
B= {(x1, x2) ∈ X × X : x1 = x2} ⊂ X × X , and define for A ∈ B(X × X ),

Q(A | y1, y2) =
{
QX (π1 (A ∩B=) | y1) y1 = y2
QX(· | y1)⊗ QX(· | y2)(A) otherwise

In a Polish space, Lemmas F.6 and F.7 imply that A 7→ QX (π1 (A ∩B=) | y1) for eacy y1 is a
valid measure, and it is standard that the product measures QX(· | y1) ⊗ QX(· | y2)(A) are valid.
Moreover, this construction ensures that for µ = law(Q;µY ),

Pµ[{Y1 = Y2} and {X1 ̸= X2}] = 0. (F.2)

Lastly, one can check that under µ = law(Q;µY ), that (X1, Y1) ∼ law(QX ;PY1
) and (X2, Y2) ∼

law(QX ;PY2
). Thus, µ can be regarded as an element of C (law(QX ;PY1

), law(QX ;PY2
)). Hence,

Lemma F.1 implies that

TV(law(QX ;PY1
), law(QX ;PY2

)) ≤ TV(Pµ[(X1, Y1) ̸= (X2, Y2)]

= Pµ[Y1 ̸= Y2] + Pµ[{Y1 = Y2} and {X1 ̸= X2}]
= Pµ⋆

[Y1 ̸= Y2] (Eq.(F.2))
= P(Y1,Y2)∼µY

[Y1 ̸= Y2]

= TV(PY1 ,PY2). (construction of µY )

Next, we derive a general data processing inequality for optimal costs. This result is a corollary of
Proposition F.3.
Lemma F.5 (Another Data Processing Inequality for Optimal Transport). Let X1,X2,Y be Polish
spaces, and let PY ∈ ∆(Y), and Qi ∈ ∆(Y | Xi). for i ∈ {1, 2}. Denote by Qi ◦ PY the marginal
of Xi under (Xi, Y ) ∼ law(Qi;PY ). Then,

inf
µ∈C (Q1◦PY ,Q2◦PY )

EX1,X2∼µϕ(X1, X2) ≤ EY∼µY

(
inf

µ′∈C (Q1(Y )◦Q2(Y ))
EX1,X2∼µ′ϕ(X1, X2)

)
.

Proof. One can check that any coupling in µ ∈ C (Q1 ◦PY ,Q2 ◦PY ) can be obtained by marginal-
izing Y in a certain coupling of µ′ ∈ C (law(Q1;PY ), law(Q1;PY )), and any coupling in the latter
can be marginalized to a coupling in the former. Hence,

inf
µ∈C (Q1◦PY ,Q2◦PY )

EX1,X2∼µϕ(X1, X2) = inf
µ∈C (law(Q1;PY ),law(Q1;PY )

EX1,X2,Y1,Y2∼µϕ(X1, X2)

Moreover, to every measure µ ∈ µPY
(Q1,Q2) over (X1, X2, Y ), Lemma F.8 implies that there

exists a coupling µ′ ∈ C (law(Q1;PY ), law(Q1;PY )) over (X1, X2, Y1, Y2) such (X1, X2) have
the same marginals under µ and µ′. Therefore,

inf
µ∈C (law(Q1;PY ),law(Q1;PY )

EX1,X2,Y1,Y2∼µϕ(X1, X2) ≤ inf
µ′∈CPY

(Q1,Q2)
EX1,X2,Y∼µϕ(X1, X2).

Finally, the right hand side is equal to EY∼µY

(
infµ′∈C (Q1(Y )◦Q2(Y )) EX1,X2∼µ′ϕ(X1, X2)

)
by

Proposition F.3.
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F.3.1 Deferred lemmas for the data processing inequalities

Lemma F.6. Let X be a Polish space. Then, the set {(x1, x2) ∈ X × X : x1 ̸= x2} is open in
X × X .

Proof. The diagonal is closed in any Polish space by definition of the topology. The result follows.

Lemma F.7. Let X be a Polish space, and let π1, π2 : X × X denote the projection mappings onto
each coordinate. Then, for any A ∈ B(X × X ), π1(A) and π2(A) are in B(X ).

Proof. The projection map is open so the result follows immediately by definition of the Borel
algebra.

Lemma F.8. Let X ,Y be Polish spaces, and let µ ∈ ∆(X × Y). Then, there is a measure µ′ ∈
∆(X × Y × Y) satisfying

µ′(A× Y) = µ(A), ∀A ∈ B(X × Y)

and

µ′(X × {(y1, y2) : y1 = y2}) = 1

Proof. Define the set B= = {(y1, y2) : y1 = y2}. One can check that µ′(A × B) = µ(A ×
π1(B ∩ B=)), where π1 : Y × Y → Y is the projection onto the first coordinate, extends to a valid
measure.

F.4 Proof of Proposition F.3

In the case that ϕ(·, ·) is continuous, the result follows from Villani et al. [73, Corollary 5.22]. For
general lower-semicontinuous ϕ, our argument adopts the strategy of “Step 3” of the proof of Villani
[72, Theorem 1.3]. This shows that there exists a sequence ϕn ↑ ϕ pointwise, such that each ϕn is
uniformly bounded. Define

ψn(y) := inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[ϕn(X1, X2)].

Then, for each n, the continuous case implies that there exists a measure µ⋆,n ∈ CνY
(Q1,Q2) such

that

EY∼νY
ψn(Y ) = E(X1,X2,Y )∼µ⋆,n

[ϕn(X1, X2)] (F.3)

Recall now the definition

ψ(y) = inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[ϕ(X1, X2)].

Claim F.9. ψ(y) is measurable and satisfies ψn(y) ↑ ψ(y) pointwise.

Proof. We can write

sup
n≥0

ψn(y) = sup
n≥0

inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[ϕn(X1, X2)]

(i)
= inf

µ∈C (Q1(y),Q2(y))
E(X1,X2)∼µ[ϕ(X1, X2)] = ψ(y).

Here, (i) follows from the “Step 3” in the proof of Villani [72, Theorem 1.3], which shows that
any optimal transport cost C of a lowersemicontinuous ϕ is equal to a limit of the costs Cn of any
bounded continuous ϕn ↑ ϕ. In our case, we fix each y, so C = ψ(y) and Cn = ψn(y). It is clear
that ψn(y) is increasing, so for each y, ψn(y) ↑ ψ(y). As ψ is the pointwise monotone limit of ψn,
it is measurable.

Claim F.10. The set of couplings of CPY
(X1, X2) is compact in the weak topology.
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Proof. Recall that ∆(Y × X1 × X2) denote the set of Borel measures on Y × X1 × X2. This set is
also a Polish space in the weak topology. The subset CPY

(X1, X2) ⊂ ∆(Y × X1 × X2) is compact
if and only if it is relatively compact and closed.

To show relative compactness, Prokhorov’s theorem means that it suffices to show that µPY
(Q1,Q2)

is tight, i.e. for all ε > 0, there exists a compact Kε ⊂ Y × X1 × X2 such that for any µ ∈
CPY

(X1, X2), Pµ[(Y,X1, X2) ∈ Kε] ≥ 1−ε. This follows by settingK = KY,ε×KX,1,ε×KX,2,ε,
where the sets are such that PPY

[Y /∈ KY,ε] ≥ 1 − ε/3 and PQi [Xi /∈ KX,i,ε] ≥ 1 − ε/3, where
Qi is the marginal of Xi given by Y ∼ PY , Xi ∼ Pi(· | Y ) (such sets exist because X1,X2,Y are
Polish).

To check that CPY
(Q1,Q2) ⊂ ∆(Y × X1 × X2) is closed, it suffices to show that it is sequentially

closed (as ∆(Y × X1 ×X2) is Polish). To this end, consider any sequence µn ∈ CPY
(Q1,Q2) such

that µn
weak→ µ ∈ ∆(Y × X1 × X2) in the weak topology. By definition, this means that for any

i ∈ {1, 2} and any continuous and bounded fi : Y × Xi → R,

lim
n→∞

Eµnfi(Y,Xi) = Eµfi(Y,Xi).

For all µn ∈ CPY
(Q1,Q2), Eµn

fi(Y,Xi) = EY∼νY
EXi∼νi(·|Yi)fi(Y,Xi). Thus,

Eµfi(Y,Xi) = EY∼νY
EXi∼νi(·|Yi)fi(Y,Xi), for all continuous, bounded fi : Y × X → R.

Hence, the marginal distribution of (Y,Xi) under µ must be equal to that of (Y ∼ PY , Xi ∼ Qi(· |
Y )) for i ∈ {1, 2}, which means µ ∈ CPY

(Q1,Q2).

By compactness, there exists (passing to a subsequence if necessary) a µ⋆ ∈ CPY
(Q1,Q2) such that

µ⋆,n
weak→ µ⋆ in the weak topology. Then, as ϕm is continuous and bounded, it follows that for all

m,

E(X1,X2,Y )∼µ⋆
[ϕm(X1, X2)] = lim sup

n→∞
E(X1,X2,Y )∼µ⋆,n

[ϕm(X1, X2)] (µ⋆,n
weak→ µ⋆)

≤ lim sup
n→∞

E(X1,X2,Y )∼µ⋆,n
[ϕn(X1, X2)] (ϕm ≤ ϕn for n ≥ m)

= lim sup
n→∞

EY ψn(Y ) ((F.3))

= EY lim
n→∞

ψn(Y ) (Monotone Convergence)

= EY ψ(Y ). (Claim F.9)

Thus, by the monotone convergence theorem,

E(X1,X2,Y )∼µ⋆
[ϕ(X1, X2)] = E(X1,X2,Y )∼µ⋆

[
lim

m→∞
ϕm(X1, X2)

]
= lim

m→∞
E(X1,X2,Y )∼µ⋆

[ϕm(X1, X2)]

≤ lim
m→∞

EY ψ(Y ) = EY ψ(Y ).

Similarly, repeating some of the above steps,

EY ψ(Y ) = lim sup
n→∞

EY ψn(Y )

= lim sup
n→∞

E(X1,X2,Y )∼µ⋆,n
[ϕn(X1, X2)]

≤ lim sup
n→∞

E(X1,X2,Y )∼µ⋆,m
[ϕn(X1, X2)] (µ⋆,n is the optimal coupling for ϕn)

≤ E(X1,X2,Y )∼µ⋆,m
[ lim
n→∞

ϕn(X1, X2)] (monotone convergence)

≤ E(X1,X2,Y )∼µ⋆,m
[ϕ(X1, X2)].

Hence, EY ψ(Y ) ≤ lim infm≥1 E(X1,X2,Y )∼µ⋆,m
[ϕ(X1, X2)]. By assumption, ϕ(X1, X2) is lower

semicontinuous and bounded from below. Thus, the Portmanteau theorem [22] implies that, as
µ⋆,m

weak→ µ⋆,

lim inf
m≥1

E(X1,X2,Y )∼µ⋆,m
[ϕ(X1, X2)] = E(X1,X2,Y )∼µ⋆

[ϕ(X1, X2)].

Hence, EY ψ(Y ) ≤ E(X1,X2,Y )∼µ⋆
[ϕ(X1, X2)], proving the reverse inequality.
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Proof of the last statement. To prove the last statement, we observe that if µ⋆ ∈ CPY
(Q1,Q2)

then there exists a version of (µ⋆)X,X′|Y that is a regular conditional probability and such that for
almost every y it holds that (µ⋆)X,X′|y ∈ C (Q1(y),Q2(y)). Indeed, the existence of a version that
is a regular conditional probability is immediate by Theorem 7. To see that this version is a valid
coupling of Q1(y) and Q2(y), observe that under µ⋆, the joint law of (X,Y ) ∼ Q1 and thus the
conditional distribution under µ⋆ of X|Y is determined up to sets of Q1-measure 0. In particular,
again by Theorem 7, there exists a regular conditional probablity that is a version of (µ⋆)X|y and
this must agree almost everywhere with (Q1)X|y = Q1(y). The same argument holds for X ′ and
thus (µ⋆)X,X′|y ∈ C (Q1(y),Q2(y)) for almost every y. Thus, by definition of ψ as an infimum, it
holds for almost every y that

ψ(y) ≤ E(X,X′)∼(µ⋆)|Y [ϕ(X,X
′)].

By the second claim of the proposition, we also have that
Eµ⋆

[ϕ(X1, X2)] = Eµ⋆
[ψ(Y )].

Because the expectations are equal and one function is pointwise almost everywhere dominated by
the other function, the two functions must be equal almost everywhere, concluding the proof.

F.5 A simple union-bound recursion.

Finally, we also use the following version of the union bound extensively in our recursion proofs.
Lemma F.11. For any event E and events B1,B2, . . . ,BH , it holds that

P[(Q∩
H⋂

h=1

Bh)c] ≤ P[Qc] + P

∃h ∈ [H] s.t.

Q∩ h−1⋂
j=1

Bj ∩ Bch

 holds


Proof. Note that(

Q∩
H⋂

h=1

Bh

)c

= Qc ∪

(
Q∩

(
H⋂

h=1

Bh

)c)
= Qc ∪

H⋃
h=1

Q∩ Bh ∩
h−1⋂
j=1

Bj .

The result follows by a union bound.

G Warmup: Analysis Without Augmentation

In this section, we give a simplified analysis that replaces the smoothing kernels Wσ with the as-
sumption that the learner policy π̂ is already total variation continuous. The removal of the coupling
kernel makes the coupling construction considerably simpler while still communicating some intu-
ition for the full proof in Appendix H.

Throughout this section, we make the following assumptions on the state and action spaces, along
with their associated metrics:
Assumption G.1. We assume that S and A are Polish spaces. This means they are metrizable, but
we do not annotate their metrics because, e.g. the metric on S may be other than dS . We further
assume that

• dS , dTVC are pseudometrics and Borel measurable function from S × S → R≥0
• For any ε ≥ 0, the set {(a, a′) ∈ A × A : dA(a, a′) > ε} is an open subset of A × A;

i.e. dA(·, ·) is lower semicontinuous. In particular, this means dA is a Borel measurable
function.

Recall the definitions of total variation continuity (TVC) and input-stability in Appendix D.

Proof. The key to the proof is to construct an appropriate “interpolating sequence” of actions âinter1:H
to which we couple both (s⋆1:H+1, a

⋆
1:H) and (̂s1:H+1, â1:H). This technique will be used in a signif-

icantly more sophisticated manner in the sequel to prove the analogous result with smoothing.

Let Fh denote the σ-algebra generated by (s⋆1:h, a
⋆
1:h), (̂s1:h, â1:h), and âinter1:h , and let F0 denote the

σ-algebra generated by s⋆1, ŝ1. We construct couplings of the following form:
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• The initial states are generated as s⋆1 = ŝ1 ∼ Pinit.

• The dynamics are determined by Fh:

s⋆h+1 = Fh(s
⋆
h, a

⋆
h), ŝh+1 = Fh(̂sh, âh) (G.1)

In particular, s⋆h+1, ŝ1:h+1 are Fh measurable.

• The conditional distributions of the primitive controllers satisfy the following

a⋆h | Fh−1 ∼ π⋆
h(s

⋆
h), âh−1 | Fh−1 ∼ π̂h(̂sh), âinterh | Fh ∼ π̂h(s⋆h). (G.2)

Note that if µ satisfies the above construction, then (s⋆1:H+1, s
⋆
1:H) ∼ Dπ⋆ and (̂s1:H+1, â1:H) ∼ Dπ̂ .

Specifying the rest of the coupling. It remains to specify the coupling of the terms in (G.2). We
establish our coupling sequentially. Let µ(0) denote the coupling of ŝ1 = s⋆1 ∼ Pinit.

Assume we have constructed the coupling up to state h − 1.For ease, let Yh−1 denote the random
variable corresponding to (s⋆1:h, ŝ1:h, a

⋆
1:h−1, â1:h−1, â

inter
1:h−1); note that Yh−1 isFh−1-measurable (as

ŝh, s
⋆
h are determined by the dynamics (G.1)). Observe that, by the assumption of π̂h being TVC, it

holds that

TV(Pâh|Yh−1
,Pâinterh |Yh−1

) ≤ γ(dTVC (̂sh, s
⋆
h)).

Thus by Lemma F.1, there exists a coupling µ(h)
1 between Yh−1, âh, âinterh , with Yh−1 ∼ µ(h−1)

such that it holds that

P[âh ̸= âinterh ] ≤ Eµ(h−1) [γ(dTVC (̂sh, s
⋆
h))].

Similarly by Proposition F.3, there is a coupling µ(h)
2 of Yh−1, âinterh , a⋆h such that

P
µ
(h)
2

[dA(â
inter
h , a⋆h) > ε] ≤ Es⋆h∼µ(h−1) [dos,ε(π̂h(s

⋆
h), π

⋆
h(s

⋆
h))].

By the gluing lemma Lemma F.2 and a union bound, we may construct a coupling µ(h) of
Yh, â

inter
h , a⋆h, âh such that (almost surely),

Pµ(h) [{dA(âinterh , a⋆h) > ε} ∪ {âh ̸= âinterh } | Fh−1]

= Pµ(h) [{dA(âinterh , a⋆h) > ε} ∪ {âh ̸= âinterh } | Yh−1]
≤ γ(dTVC (̂sh, s

⋆
h))] + dos,ε(π̂h(s

⋆
h), π

⋆
h(s

⋆
h)) (G.3)

Thus inductively, we may continue this construction for h ≤ H and let µ = µ(H).

Concluding the proof. Define the event Bh := {dA(ah, âinterh ) ≤ ε} and Ch = {âinterh = âh}.
Then, by Lemma F.11

Pµ

[
(

H⋂
h=1

Bh ∩ Ch)c
]
≤

H∑
h=1

Pµ

(h−1⋂
j=1

Bj ∩ Cj) ∩ (Bch ∪ Cch)

 . (G.4)

Note first that (
⋂h−1

j=1 Bj ∩ Cj) is Fh−1 measurable. On this event, input stability at âinterj = âj ,
1 ≤ j ≤ h− 1, implies that

dS(s
⋆
h, ŝh) ≤ ε.

Thus, (G.3) implies that

Pµ

(h−1⋂
j=1

Bj ∩ Cj) ∩ (Bch ∪ Cch)

 ≤ Eµ[γ(dTVC (̂sh, s
⋆
h))I{dTVC(ŝh, s

⋆
h) ≤ ε}+ dos,ε(π̂h(s

⋆
h), π

⋆
h(s

⋆
h)) | Fh−1]

≤ γ(ε) + Eµ [Eµ[dos,ε(π̂h(s
⋆
h), π

⋆
h(s

⋆
h)) | Fh−1]]

= γ(ε) + Eµ[dos,ε(π̂h(s
⋆
h), π

⋆
h(s

⋆
h))]

= γ(ε) + Es⋆h∼P⋆
h
Eµ[dos,ε(π̂h(s

⋆
h), π

⋆
h(s

⋆
h))],
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where the first equality follows from the tower rule for conditional expectations and the second
follows because s⋆h ∼ P⋆

h under µ. Summing and applying (G.4) implies that

Pµ

[
(

H⋂
h=1

Bh ∩ Ch)c
]
≤ Hγ(ε) +

H∑
h=1

Es⋆h∼P⋆
h
[dos,ε(π̂h(s

⋆
h), π

⋆
h(s

⋆
h))].

Again, invoking input stability and the definitions Bh := {dA(ah, âinterh ) ≤ ε} and Ch = {âinterh =

âh}, (
⋂H

h=1 Bh ∩ Ch)c implies that

max
1≤h≤H

max{dS(s⋆h+1, ŝh+1), dA(a
⋆
h, âh)} ≤ ε.

This concludes the proof.

G.1 Relaxing the TVC Condition

In this section, we show our results hold with the following generalization of TVC,
Definition G.1 (Relaxed TVC). We say π̂ satisfies (γ, ε′)-relaxed TVC if, for all h, and s, s′ ∈ S,

inf
µ

P(a,a′)[dA(a, a
′) > ε′] ≤ γ(dS(s, a′)),

where infµ is the infimum over all couplings µ with a ∼ π̂h(s) and a′ ∼ π̂h(s′).

The main result of this section is as follows.
Proposition G.1 (Generalization of Proposition D.2). Let ε > ε1, ε2 > 0. Let π⋆ be input-stable
w.r.t. (dS , dA) and let π̂ be (γ, ε1)-relaxed TVC. Further, suppose that dA (which need not satisfy
the triangle inequality), satisfies

{dA(a′, a) ≤ ε2} and {dA(a′′, a′) ≤ ε1} implies {dA(, a′′, a) ≤ ε} , (G.5)

for all a, a′, a′′ ∈ A and all ε1, ε2, ε given above. Then,

Γjoint,ε(π̂ ∥ π⋆) ≤ Hγ(ε) +
H∑

h=1

Es⋆h∼P⋆
h
dos,ε2(π̂h(s

⋆
h) ∥ π⋆(s⋆h)).

We remark that (G.5) holds the distance dA defined in Appendix D.2 whenever ε is sufficiently
small, and ε1 + ε2 = ε.

Proof Sketch of Proposition G.1. The proof is nearly identical to the standard proof under (non-
relaxed) TVC given above. The only difference is we replace the events {dA(âinterh , a⋆h) > ε} and
{âh ̸= âinterh } with the events {dA(âinterh , a⋆h) > ε1} and {dA(âh, âinterh ) > ε2}. By (G.5), the
intersection of the complement these events implies{

dA(â
inter
h , a⋆h) ≤ ε2

}
∩
{
dA(âh, â

inter
h ) ≤ ε1

}
implies {dA(âh, a⋆h) ≤ ε} ,

which allows the same argument to be followed.

Remark G.1 (Why Wasserstein continuity is not enough). Given that relaxed TVC is enough, we
may be tempted to believe that π̂ need only satisfy a Wasserstein continuity condition with linear
γ(·). However, this is not quick strong enough to imply our argument.

For simplicity, assume dA is a metric and uppose that we have π̂ is continuous with respect to the
p-Wasserstein distance with metric dA. This means that, when dS(s, s′) ≤ ε0, we can can hope by
Markov’s inequality that

inf
µ

Eµ[dA(a, a
′)p]1/p ≤ LdS(s, s′),

where µ are the couplings of a ∼ π̂h(s) and a′ ∼ π̂(s′h). Then, by Markov’s inequality, the Most we
have hope for is that

inf
µ

Pµ[dA(a, a
′) ≥ tLdS(s, s′)] ≤

1

tp
.
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In particular, using the argument from the proof of our proposition,

inf
µ

Pµ[dA(â
inter
h , âh) ≥ tLdS(s⋆h, ŝh)] ≤

1

tp
.

On the other hand, out stability assumption can only bound dS(s⋆h+1, ŝh+1) ≤
max1≤i≤h dA(âinteri , âi). Thus, for L > 1, an any target ε, we can at most hope for bounds
which scale as LH in error. This is essentially the same issue tackled in Pfrommer et al. [50] by
matching higher-order derivatives. What matching these derivatives in Wasserstein space would
mean is still unclear.

H Imitation in the Composite MDP

In this section, we prove our imitation guarantees in the composite MDP under the full generality
of data augmentation. The majority of this section is devoted to proving a more general version
of Theorem 4 that applies to vectorized notions of distance and helps tighten our bounds when
instantiated in the control setting. In Appendix H.1, we introduce some notation and state our most
general result, Theorem 8. We then proceed to show that Theorem 4 follows from Theorem 8 and
in Appendix H.2, we provide a detailed and rigorous proof of the main result. In Appendix H.3, we
show that the more general Theorem 8 impiles Theorem 4 from the text.

Throughout, we also assume S admits a direct decomposition. This is useful to capture the fact that
we only apply smoothing on the oh coordinates (observation chunk), not the full trajectory chunk
sh.
Definition H.1 (Direct Decomposition). Let S = O⊕S/O is a direct decomposition. We let ϕo and
ϕ/o denote projections onto theO and S/O components, respectively. We say that the S = O⊕S/O
is compatible with the dynamics if Fh((o, v), a) = Fh((o, v

′), a) for all v, v′ ∈ S/O and o ∈ O, and
compatible with policy π if πh((o, v), a) = πh((o, v

′), a).; we define compatibility of a kernel W
and of a pseudometric d(·, ·) : S × S → R≥0 with S = O ⊕ S/O similarly.

We emphasize that compatibility of dynamics with a direct decomposition does not make v irrelevant
because dS still depends on v. For the purposes of the instantiation for control in the following
appendix, we wish to control the imitation gaps on distances that do depend on vh, even though vh
does not figure directly into the dynamics. Note that as defined, vh does depend on the dynamics up
until time h− 1 and thus it is necessary to deal with this component in order to provide guarantees
in dS .

H.1 A generalization of Theorem 4

We now state a generalization of Theorem 4, which replaces a single distance by a vector of distances
of dimension K; this will be useful for our instantiation of the composite MDP as a chunked control
system in our final application (in particular, for deriving a bound on Lfin,ε). It also showcases the
most general structure accomodated by our proof technique.

We begin by defining some notation:

• Let K ∈ N denote a dimension
• Let ε⃗ ∈ RK

≥0 denote a vector of tolerances

• Let d⃗S(·, ·) denote a vector of pseudometrics dS,i on S

• Let d⃗A denote a vector of non-negative functions dA,i : A2 → R≥0, not necessarily pseuo-
metrics.

• Let ⪯ denote vector wise inequality, and let the symbols ∧ and ∨ be generalized to de-
note entrywise minima and maxima. Similarly, addition of vectors is coordinate wise with
scalars assumed to be broadcast appropriately.

• We let dS,1 = dTVC denote the metric we consider for evaluating total variation distance.

We generalize We assume the following measure-theoretic regularity conditions, generalizing As-
sumption G.1 as follows.
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Assumption H.1. We assume that S and A are Polish spaces. This means they are metrizable, but
we do not annotate their metrics because, e.g. the metric on S may be other than dS . We further
assume that

• dS,i is a pseudometric and Borel measurable function from S × S → R≥0.

• For any ε ≥ 0, the set {(a, a′) ∈ A × A : dA,i(a, a
′) > ε} is an open subset of A × A;

i.e. dA,i(·, ·) is lower semicontinuous. In particular, this means dA,i is a Borel measurable
function. Note that this implies that the

{(a, a′) ∈ A×A : d⃗A(a, a
′) ̸⪯ ε⃗}.

is open and thus measurable.

Note that the above assumption is the natural vectorized generalization of Assumption G.1. Next,
we define vector versions of our imitation errors.
Definition H.2 (Imitation Errors, vector version). Given error parameter ε⃗ ∈ RK

≥0, define

• The vector joint-error

Γ⃗joint,ε⃗(π̂ ∥ π⋆) := inf
µ1

Pµ1

[
∃h ∈ [H] : d⃗S (̂sh+1, s

⋆
h+1) ∨ d⃗A(a

⋆
h, âh) ̸⪯ ε⃗

]
,

where the infimum is over trajectory couplings ((̂s1:H+1, â1:H), (s⋆1:H+1, a
⋆
1:H)) ∼ µ1 ∈

C (Dπ̂,Dπ⋆) satisfying Pµ1
[̂s1 = s⋆1] = 1.

• The vector marginal error

Γ⃗marg,ε⃗(π̂ ∥ π⋆) := max
h∈[H]

max

{
inf
µ1

Pµ1

[
d⃗S (̂sh+1, s

⋆
h+1) ̸⪯ ε⃗

]
, inf

µ1

Pµ1

[
d⃗A(a

⋆
h, âh) ̸⪯ ε⃗

]}
the same as the to joint-gap, with the “max” outside the probability and infimum over
couplings.

• The vector-wise one-step error

d⃗os,ε⃗(π̂h(s) ∥ π⋆
h(s)) := inf

µ2

Pµ2

[
d⃗A(âh, a

⋆
h) ̸⪯ ε⃗

]
,

where the infimum is over (a⋆h, âh) ∼ µ2 ∈ C (π̂h(s),π
⋆
h(s)).

We now describe input stability.
Definition H.3 (Input-Stability, vector version). A trajectory (s1:H+1, a1:H) is input-stable w.r.t.
(⃗dS , d⃗A) if all sequences s′1 = s1 and s′h+1 = Fh(s

′
h, a
′
h) satisfy

dS,i(s
′
h+1, sh+1) ≤ max

1≤j≤h
dA,i

(
a′j , aj

)
, ∀h ∈ [H], i ∈ [K]

Finally, define input process stability. A slight technicality is that, in our instantiation, π⋆ is taken to
be a suitable regular condition probability of the joint distribution Dexp of expert trajectories. This
means that π⋆ can only really satisfy desired regularity conditions on states visited with positive
probabiliy by Dexp. We address this subtlety by considering the following definition generalizing
Definition D.5 in the body. We also restrict the kernels under consideration to those which produce
distributions absolutely continuous (Definition F.4) with respect to P⋆

h, and denoted with the ≪
comparator. More specifically, we only care about absolute continuity under the projections onto
the O component of S .
Definition H.4 (Input & Process Stability, vector version). Let pIPS ∈ (0, 1), γ⃗IPS = (γIPS,i)1≤i≤K
be a collection non-decreasing maps γIPS,i : R≥0 → R≥0, let dIPS : S × S → R be a pseudometric
(possibly other than any of the dS,i), and rIPS > 0. We say a policy π⋆ is (γ⃗IPS, dIPS, rIPS, pIPS)-
(vectorwise-input-&-process stable (vIPS) if the following holds for any r ∈ [0, rIPS]:

Consider any sequence of kernels Wh : S → ∆(S), 1 ≤ h ≤ H , satisfying

∀h, s ∈ S : Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, ϕo ◦Wh(s)≪ ϕo ◦ P⋆
h. (H.1)

Define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼ πh(̃sh), and sh+1 := Fh(sh, ah). Then, with
probability at least 1− pIPS,
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(a) the sequence (s1:H+1, a1:H) is input-stable w.r.t (⃗dS , d⃗A) (as defined by Definition H.3).

(b) maxh∈[H] dS,i(Fh(̃sh, ah), sh+1) ≤ γIPS,i(r).

We can now state our desired generalization.
Theorem 8. Suppose that there

(a) π⋆ is (γ⃗IPS, dIPS, rIPS, pIPS)-vector IPS in the sense of Definition H.4.

(b) There is a direct decomposition of S = O⊕S/O, which associated projection maps ϕo and
ϕ/o, and which is compatible with the dynamics, and policies π⋆, π̂, and smoothing kernel
Wσ , and dIPS.

(c) ϕo ◦Wσ is γσ-TVC with respect to the pseudometric dTVC = dS,1.

Let π̂σ be any policy which is γ̂-TVC, also w.r.t. dTVC = dS,1. Finally, let ε⃗ ∈ RK
≥0, r ∈ (0, 12rIPS],

and define

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r], ε⃗marg := ε⃗+ γ⃗IPS(2r).

Then,

• For any policy π̂, both Γ⃗joint,ε⃗(π̂σ ∥ π⋆
rep) and Γ⃗marg,ε⃗marg

(π̂σ ∥ π⋆) are upper bounded by

pIPS +H(2pr + γ̂(ε⃗1) + (γ̂ + γσ) ◦ γIPS,TVC(2r)) +

H∑
h=1

Es⋆h∼P⋆
h
d⃗os,ε⃗ (π̂σ,h(s

tel
h ) ∥ π⋆

rep,h(s
tel
h ))

(H.2)

• In the special case where π̂σ = π̂ ◦Wσ , we can take γ̂ = γσ , and obtain that Γ⃗joint,ε⃗(π̂σ ∥
π⋆
rep) and Γ⃗marg,ε⃗marg

(π̂σ ∥ π⋆) are upper bounded by

pIPS +H (2pr + 3γσ(max{ε, γIPS,TVC(2r)}) +
H∑

h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

d⃗os,ε⃗(π̂h(̃s
⋆
h) ∥ π⋆

dec,h(̃s
⋆
h)).

(H.3)

We note that Theorem 4 is a special case of Theorem 8 and prove the former assuming the latter
here at the end of the section.

H.2 Proof of Theorem 8

H.2.1 Proof Overview and Coupling Construction

We begin with an intuitive overview of the proof and partially construct the relevant intermediate tra-
jectories used to define our coupling, after which we sketch the organization of the rest of Appendix
H.2.

The proof proceeds by constucting a sophisticated coupling between the law of a trajectory evolv-
ing according to π̂ and a trajectory evolving according to π⋆

rep by introducing several intermediate
sequences of composite states and composite actions.

We partially specify this coupling below and formally construct it in Appendix H.2.4. Our construc-
tion is recursive and relies on the input and process stability as well as total variation continuity to
show that if the trajectories generated by π⋆

rep and π̂ are close in d⃗os,ε⃗ evaluated on states at step h,
then they will remain close at step h+ 1. There are a number of technical subtelties involved, espe-
cially those of a measure-theoretic nature, but much of the inuition can be gleaned from the following
partial specification of the coupling µ over composite-state (ŝ1:H , s

rep
1:H , s

tel
1:H , s̃

tel
1:H) ⊂ S, composite-

actions (arep1:H , â1:h, a
tel
1:H) ⊂ K and interpolating composite-actions, (ârep,inter1:H , âtel,inter1:H ) ⊂ A.

To define the construction, we define the probability kernels corresponding to the replica and decon-
volution policies. Note that these are slightly different from the definitions in the body due to the
use of the direct decomposition; the intuition is the same, however.
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Definition H.5 (Replica and Deconvolution Kernels). Let Pproj
aug,hdenote the joint distribution over

(o⋆h, s
⋆
h, õ

⋆
h, a

⋆
h) under the generative process

s⋆h ∼ P⋆
h, a⋆h ∼ π⋆

h(s
⋆
h), o⋆h = ϕo(s

⋆
h), õ⋆h ∼ ϕo ◦Wσ(s

⋆
h)

For o ∈ O, let W⋆
dec,O,h(o) denote the distribution of o⋆h conditioned on õ⋆h = o, under Pproj

aug,h.
Given s = (o, v), define

W⋆
dec,h(s) = W⋆

dec,O,h(ϕo(s))⊗ δϕ/o(s),

W⋆
rep,h(s) = W⋆

dec,h ◦ (Wσ(ϕo(s))⊗ δϕ/o(s)) = (W⋆
dec,O,h ◦Wσ(ϕo(s)))⊗ δϕ/o(s).

where we recall the dirac-delta δ. Equivalently, W⋆
dec,h(s) denotes the conditional sequence of (õ, v),

where v = ϕ/o(s), and õ ∼W⋆
dec,O,h(s); W

⋆
rep,h can be expressed similarly.

We remark that W⋆
dec,h and W⋆

rep,h are both kernels and by Theorem 7, we may assume that the joint
distribution over (s⋆h, s̃

tel
h ) admits a regular conditional probability and thus these constructions are

well-defined.
Remark H.1. Note that the kernels W⋆

dec,h and W⋆
rep,h are compatible with the decomposition

S = O⊕S/O by construction. Moreover, note that if s = (o, v), ϕ/o ◦W⋆
dec,h(s) = ϕ/o ◦W⋆

rep,h(s)
is the dirac-delta distribution supported on v.
Lemma H.1. Under our the assumption that π⋆ and Wσ are compatible with the direct decomposi-
tion,

π⋆
dec,h(s) = π⋆ ◦W⋆

dec,h, π⋆
rep,h(s) = π⋆ ◦W⋆

rep,h

Proof. This follows imediately because π⋆ and Wσ are compatile with the direct decomposition,
and by the definition of Definition D.4.

A template for the coupling. Our couplings are partially specified by the following generative
process, and what remains unspecified are couplings between random variables at each each step h.
In what follows, let F0 denote the σ-algebra generatived by ŝ1 = srep1 = stel1 . Let Fh denote the
sigma-algebra generated by (̂s1:h, s

rep
1:h, s

tel
1:h), (a

rep
1:h, s̃

rep
1:h, s̃

tel
1:h, a

tel
1:h, â1:h), and (ârep,inter1:h , âtel,inter1:h ).

• The initial states are drawn as

ŝ1 = srep1 = stel1 ∼ Pinit.

• The dynamics satisfy

ŝh+1 = Fh(ŝh, âh), sreph+1 = Fh(s
rep
h , areph ), stelh+1 = Fh(̃s

tel
h , atelh )

Note that determinism of the dynamics implies that stelh+1, sreph+1 and ŝh+1 are Fh-
measurable.

• We generate

s̃reph | Fh−1 ∼W⋆
rep,h(s

rep
h ), areph | Fh−1, s̃

rep
h ∼ π⋆

h(̃s
rep
h ),

s̃telh | Fh−1 ∼W⋆
rep,h(s

tel
h ), atelh | Fh−1, s̃

tel
h ∼ π⋆

h(̃s
tel
h ).

âh | Fh−1 ∼ π̂σ,h(ŝh)

Importantly, we note that, marginalizing over s̃telh and s̃reph , respectively, atelh | Fh−1 ∼
π⋆
rep,h(s

tel) and areph | Fh−1 ∼ π⋆
rep,h(s

rep
h ).

• Lastly, we select interpolating actions via

ârep,interh | Fh−1 ∼ π̂σ,h(sreph ), âtel,interh | Fh−1 ∼ π̂σ,h(stelh )

We will say µ is “respects the construction” as shorthand to mean that µ obeys the above equations.
The coupling is illustrated graphically in Figure 10. We now establish several key properties of the
above constructions, separated into a subsection for the sake of clarity.
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Figure 10: Graphical illustration of the coupling, in the special case where O = S for simplicity.
On the left is the teleporting sequence, with s̃tel ∼W⋆

rep,h(s
tel
h ) = W⋆

dec,h ◦Wσ(s
tel
h ). We represent

the teleporting explicitly by noising stelh to become (stelh )′ by applying Wσ and then applying W⋆
dec,h

to complete the “teleporting” to s̃telh . We then apply atelh ∼ π⋆
h(̃s

tel
h ), and continue onto stelh+1 from

the teleported state s̃telh+1. On the right, we illustrate the replica sequence next to the teleporting
sequence. We start with sreph , which is close to stelh (a consequence of our proof). We then apply
the replica kernel to achieve s̃reph . Our argument uses that W⋆

rep,h = W⋆
dec,h ◦ Wσ is TVC (a

consequence of TVC of Wσ as shown in Lemma H.2). We depict this property pictorially: since Wσ

is TVC and stelh and sreph are close, we can couple things in such a way that, with good probability,
(stelh )′ ∼Wσ(s

tel
h ) and (sreph )′ ∼Wσ(s

rep
h ) are equal. We then extend the coupling to that s̃reph = s̃telh

on the event {(stelh )′ = (sreph )′}, both being drawn by applying W⋆
dec,h to both of (stelh )′ = (sreph )′.

We extend the coupling once more so that atelh ∼ π⋆(s̃telh ) and areph ∼ π⋆(̃sreph ) are equal on this
good probability event. Using our notion of stability, IPS, and the fact that sreph and stelh are close,
the good probability event on which atelh and areph are equal implies that sreph+1 remains close to stelh+1.
We remark that our actual analysis never explicitly computes the (·)′-terms drawn from Wσ; rather,
these terms appear implicitly in our definitions of W⋆

rep,h and the verification of its TVC property.

Organization of the remaining parts of Appendix H.2. In Appendix H.2.2, we prove several
prerequisite properties of the construction given above, including concentration of the smoothing
kernel, and key properties of the replica distribution. Next, Appendix H.2.3 shows that, due to these
properties of the replica distribution, we can bound the marginal imitation gap by controlling the
tracking of the teleporting sequence constructed above. Finally, in Appendix H.2.4 we formally
construct the coupling and rigorously prove Theorem 8.

H.2.2 Properties of smoothing, deconvolution, and replicas.

In this section, we establish several useful properties of smoothed and replica policies. We begin by
showing that smoothed policies are TVC.
Lemma H.2. The following hold

• For any h, ϕo ◦W⋆
rep,h and π⋆

rep,h are γσ TVC.

• If π is any policy compatible with the direct decomposition S = O ⊕ S/O (in the sense of
Definition H.1), then π ◦Wσ is γσ-TVC.

Proof. We observe that ϕo ◦W⋆
rep,h = ϕo ◦W⋆

dec,h ◦Wσ(s). Moreover, we observe W⋆
dec,h satisfies

ϕo ◦W⋆
dec,h(s) = W⋆

dec,O,h ◦ϕo, so that ϕo ◦W⋆
rep,h = W⋆

dec,O,h ◦ϕo ◦Wσ(s). As ϕo ◦Wσ is TVC,
the first claim is a consequence of the data-processing inequality Lemma F.4. The second uses the
fact that all listed objects involve composition of kernels with Wσ .

Next, we show that the replica construction preserves marginals.
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Lemma H.3 (Marginal-Preservation). There exists a coupling P of oh ∼ ϕo ◦ P⋆
h, o′h ∼ ϕo ◦

Wσ(oh, ·) (where (·) denotes an irrelevant argument due to compatibility of Wσ with the direct
decomposition), and õh ∼ ϕo ◦W⋆

rep,h(oh, ·) (again, (·) denotes an irrelevant argument) such that

(oh, o
′
h)

d
= (õh, o

′
h).

In particular, for stelh and s̃telh as in our construction, the marginal distributions of ϕo(stelh ) and ϕo(̃stelh )
are the same, where stelh ∼ P⋆

h and s̃telh | stelh ∼W⋆
rep,h(s

tel
h ).

Proof. By Assumption G.1 and Theorem 7, we may assume that all joint distributions’ conditional
probabilities are regular conditional probabilities and thus almost surely equal to a kernel. Moreover,
since all kernels are compatible with the direct decomposition, it suffices to prove the special case of
the trivial direct-decomposition where O = S. Fix a common measure P over which stelh , s̃telh , and
s′h are defined such that stelh ∼ P⋆

h, s′h ∼Wσ(s
tel
h ), and s̃telh ∼Wdec,h(s

′
h). Then for any measurable

sets A,B, we have

P(stelh ∈ A, s′h ∈ B) = P(s′h ∈ B) · Es′h

[
I[s′h ∈ B] · P(stelh ∈ A|s′h)

]
= P(s′h ∈ B) · Es′h

[
I[s′h ∈ B] · P(s̃telh ∈ A|s′h)

]
= P

(
s̃telh ∈ A, s′h ∈ B

)
,

where the first equality holds by the fact that we are working with regular conditional probabilities
and Bayes’ rule, the second equality holds by the definition of the deconvolution kernel above, and
the last equality holds again by Bayes’ rule and the tower rule for conditional expectations.

To prove the second statement, we apply induction, again assuming that O = S as in the proof of
the first statement. Note that stel1 ∼ P⋆

1 = Pinit, and s̃tel1 ∼ W⋆
rep,1 ◦ P⋆

1. Thus, from the first part of
the lemma, ϕo(stel1 ) ∼ ϕo ◦ P⋆

1. Now, suppose the induction holds up to step h. Then, s̃telh ∼ P⋆
h, as

atelh ∼ π⋆
h(a

tel
h ), then stelh+1 = Fh(̃s

tel
h , atelh ) ∼ P⋆

h+1. Again s̃telh+1 ∼ W⋆
rep,h+1(s

tel
h+1), so that s̃telh+1

has marginal W⋆
rep,h+1 ◦ P⋆

h+1 = P⋆
h+1, as needed.

We further show that Wrep,h can be defined to be absolutely continuous with respect to P⋆
h.

Lemma H.4. The kernel Wrep,h satisfies that ϕo ◦Wrep,h ≪ ϕo ◦P⋆
h as laws, validating the second

condition in (H.1). It further holds that ϕo ◦Wdec,h ≪ ϕo ◦ P⋆
h.

Proof. The first statement follows immediately from Lemma H.3 because these distributions are the
same. The second statement follows immediately from the tower law of conditional expectation and
the definition of Wdec,h.

Lastly, we establish that the replica kernel inherits all concentration properties from the smoothing
kernel.
Lemma H.5 (Replica Concentration). Recall that

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r].

We then have

Psh∼P⋆
h ,̃sh∼W⋆

rep,h(sh)
[dIPS(s̃h, sh) > 2r] ≤ 2pr

Proof. Again, all terms – Wσ,W
⋆
rep,h,W

⋆
dec,h and dIPS – are compatible with the direct decomposi-

tion, it suffices to consider the case of the trivial direct decomposition under whcih O = S.

Let P denote a distribution over sh ∼ P⋆
h, s′h ∼ Wσ(sh), and s̃h ∼ W⋆

dec,h(s
′
h). In this special case,

we see that s̃h | sh ∼W⋆
rep,h(sh)

9. By a union bound,

Psh∼P⋆
h ,̃sh∼W⋆

rep,h(sh)
[dIPS(sh, s̃h) > 2r] ≤ P[dIPS (̃sh, s

′
h) > r] + P[dIPS(sh, s

′
h) > r]

= 2P[dIPS(sh, s
′
h) > r] ≤ 2pr,

where the equality follows from the first statment of Lemma H.3.
9Notice that, for general S = O ⊕ S/O , this condition would become ϕo(̃sh) | ϕo(sh) ∼ ϕo ◦

W⋆
rep,h(ϕo(sh), ·), where the · argument is irrelevant.
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Remark H.2. Note that, in the previous lemma, it suffices that the following weaker condition
holds: Ps∼P⋆

h,s
′∼Wσ(s)[dIPS(s

′, s) > r] ≤ pr, i.e. for concentration to hold only in distribution over
s ∼ P⋆

h, instead of uniformly over states.

H.2.3 Bounding the marginal imitation gaps in terms of the teleporting sequence error

Before turning to the proof of Theorem 8, we verify that closeness to the teleporting sequences
suffices to control error in marginal gap to π⋆. The key property here is that the teleporting sequence,
as shown in Lemma H.3, has the same marginal distribution over states as does π⋆.

Lemma H.6. Let µ be any coupling obeying the construction of the couplings above. Then,

Γ⃗marg,ε⃗(π̂σ ∥ π⋆) ≤ Pµ

[
∃h ∈ [H] :

{
d⃗S(s

tel
h+1, ŝh+1) ̸⪯ ε⃗marg

}
∪
{
d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

}]

Proof. We begin with a (reverse) union bound.

Pµ

[
∃h ∈ [H] :

{
d⃗S(s

tel
h+1, ŝh+1) ̸⪯ ε⃗marg

}
∪
{
d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

}]
≥ max

h
max

{
Pµ

[
d⃗S(s

tel
h+1, ŝh+1) ̸⪯ ε⃗marg

]
, Pµ

[
d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

]}
.

By Lemma H.3 implies that stelh has the marginal distribution of s⋆h ∼ P⋆
h. Moreover, by construction,

for each h, atelh | Fh ∼ π⋆
rep,h(s

tel
h ), Thus, for each h, stelh+1 and atelh have the same marginals as the

marginals as s⋆h+1 and a⋆h under the distribution Dπ⋆ induced by π⋆. Hence,

Pµ

[
d⃗S(s

tel
h+1, ŝh+1) ̸⪯ ε⃗marg

]
≥ inf

µ1

P
[
d⃗S(s

⋆
h+1, ŝh+1) ̸⪯ ε⃗marg

]
Pµ

[
d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

]
≥ inf

µ1

P
[
d⃗S(a

⋆
h, âh) ̸⪯ ε⃗marg

]
,

where the infµ1
is, as in Definitions D.1 and H.2, the infinum over couplings between Dπ⋆ and Dπ̂ .

Thus,

Pµ

[
∃h ∈ [H] :

{
d⃗S(s

tel
h+1, ŝh+1) ̸⪯ ε⃗marg

}
∪
{
d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

}]
≥ max

h
max

{
inf Pµ1

[
d⃗S(s

⋆
h+1, ŝh+1) ̸⪯ ε⃗marg

]
, inf

µ
Pµ1

[
d⃗A(a

⋆
h, âh) ̸⪯ ε⃗marg

]}
:= Γ⃗marg,ε⃗(π̂σ ∥ π⋆).

H.2.4 Formal proof of Theorem 8

We now proceed to formally prove Theorem 8

Key Events. For the random variables defined above, we define three groups of events.

• The coupling events, denoted by B, which are controlled by carefully selecting a coupling.

• The inductive events, denoted by C, which we condition on when bounding the probability
of the coupling events.

• The stability events, denoted by Q, which take advantage of the stability properties of the
imitation policy.
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Definition H.6 (Coupling Events). Define the events

Btel,h =
{
areph = atelh , ϕo(̃s

rep
h ) = ϕo(s̃

tel
h )
}

Best,h =
{
d⃗A(â

tel,inter
h , atelh ) ̸⪯ ε⃗

}
Binter,h =

{
âtel,interh = ârep,interh

}
Bâ,h =

{
ârep,interh = âh

}
Ball,h = Binter,h ∩ Btel,h ∩ Best,h ∩ Bâ,h

B̄all,h =

h⋂
j=1

Ball,h

Notice that each of the events above are Fh-measurable. Moreover, note that on B̄all,h,
max1≤j≤h ϕIS(âj , a

rep
j ) ≤ ε.

Definition H.7 (Inductive Event). Define the events

Cŝ,h =
{
d⃗S(s

rep
h , ŝh) ⪯ ε⃗

}
,

Ctel,h =
{
d⃗S(s

rep
h , stelh ) ⪯ γ⃗IPS(2r)

}
Call,h := Cŝ,h ∩ Ctel,h

C̄all,h =

h⋂
j=1

Call,j

Notice that all the above events are Fh−1-measurable, due to determinism of the dynamics. Note
that also Pµ[C̄all,1] = 1 for any µ that respects the construction (as srep1 = stel1 = ŝ1).

Definition H.8 (Stability Events). Define the events

Qclose := {∀h ∈ [H] : dIPS(s
rep
h , s̃reph ) ≤ 2r}

QIS :=
{
(srep1:H+1, a

rep
1:H) is input-stable w.r.t. (⃗dS , d⃗A)

}
QIPS :=

{
d⃗S(Fh(̃s

rep
h , areph ), sreph+1) ≤ γ⃗IPS ◦ dIPS (̃s

rep
h , sreph ) , 1 ≤ j ≤ H

}
Qall := QIPS ∩Qclose.

In words, Qclose the event on which sreph and s̃reph ∼ W⋆
rep,h(s

tel
h ) are close, and QISand QIPS ensure

consequencs of (vector) input-stability and (vector) input process stability holds.

Steps of the proof. First, we use stability to reduce the event C̄all,h+1 to C̄all,h ∩ B̄all,h:

Lemma H.7 (Stability Claim). By construction,

C̄all,h+1 ⊂ Qall ∩ C̄all,h ∩ B̄all,h.

Proof. It suffices to show that on Qall ∩ C̄all,h ∩ B̄all,h, d⃗S(s
rep
h+1, ŝh+1) ⪯ ε⃗ and d⃗S(s

rep
h+1, s

tel
h+1) ⪯

γ⃗IPS(2r). By applying the event QIS to the sequence a′h = âh and s′h = ŝh, we have that on
Qall ⊂ QIS that

∀h ∈ [H], i ∈ [K], dS,i(s
rep
h+1, ŝh+1) ≤ max

1≤j≤h
dA,i

(
arepj , âj

)
For the next point, note that the compatibility of the dynamics with the direct decomposition S =
O ⊕ S/O implies that there exists a dynamics map Fo,h for which

Fh(s, a) = Fo,h(ϕo(s), a).
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Similarly, by applying QIPS and Qclose and the event {ϕo(̃sreph ) = ϕo(̃s
tel
h ), atelh = areph } on Btel,h, it

holds that on Qall ∩ C̄all,h ∩ B̄all,h that, for all h ∈ [H],

d⃗S(s
rep
h+1, Fh(̃s

rep
h , areph )) = d⃗S(s

rep
h+1, Fo,h(ϕo(̃s

rep
h ), areph ))

= d⃗S(s
rep
h+1, Fo,h(ϕo(̃s

tel
h ), atelh )) (Btel,h)

= d⃗S(s
rep
h+1, Fh(s̃

tel
h , atelh ))

= d⃗S(s
rep
h+1, s

tel
h+1)

≤ γ⃗IPS ◦ dIPS

(
stelj , s̃telj

)
(QIPS)

≤ γ⃗IPS ◦ dIPS (2r) . (Qclose)

From Lemma H.7, we decompose our error probability as follows:

Lemma H.8 (Key Error Decomposition). Let µ respect the construction (in the sense of Ap-
pendix H.2.1). Then, for any coupling µ which respects the construction,

Γ⃗joint,ε⃗(π̂σ ∥ π⋆
rep) ∨ Γ⃗marg,ε⃗(π̂σ ∥ π⋆) ≤ Pµ[Qc

all] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1] (H.4)

Proof. In what follows, we use v⃗ ∨ w⃗ to denote the entrywise maximum of two vectors of the same
dimension. Define the events Eh := C̄all,h+1∩B̄all,h. Observe that the events are nested: Eh ⊃ Eh+1,
and that on EH , we have that for all h ∈ [H]

d⃗S(s
rep
h+1, ŝh+1) ∨ d⃗A(a

rep
h , âh) ⪯ ε⃗ ∨ d⃗A(a

rep
h , âh) (Cŝ,h+1 ⊃ C̄all,h+1 ⊃ Eh)

⪯ ε⃗. (B̄all,h ⊃ Eh)

On Qall ∩ EH , we have that

max
h

d⃗S(s
rep
h , stelh ) ≤ γ⃗IPS(2r), and atelh = areph

Thus, by the triangle inequality and ε⃗marg = ε⃗+ γ⃗IPS(2r), on Qall ∩ EH ,

max
h

d⃗S(s
rep
h , stelh ) ≤ ε⃗marg, and d⃗A(a

tel
h , âh) = d⃗A(a

rep
h , âh) ≤ ε⃗ ≤ ε⃗marg.

Thus,

Pµ

[
∃h ∈ [H] :

{
d⃗S(s

rep
h+1, ŝh+1) ∨ d⃗A(a

rep
h , âh) ̸⪯ ε⃗

}
∪
{
d⃗S(s

tel
h+1, ŝh+1) ∨ d⃗A(a

tel
h , âh) ̸⪯ ε⃗marg

}]
≤ Pµ[(Qall ∩ EH)c] (H.5)

In particular, this shows that

Γ⃗joint,ε⃗(π̂σ ∥ π⋆
rep) ≤ Pµ[(Qall ∩ EH)c],

and similarly, by Lemma H.6,

Γ⃗marg,ε⃗(π̂σ ∥ π⋆) ≤ Pµ[(Qall ∩ EH)c]

As (srep1:H+1, a
rep
1:H) ∼ Dπ⋆

rep
, (H.5) shows that

Γ⃗joint,ε⃗(π̂σ ∥ π⋆
rep) ∨ Γ⃗marg,ε⃗(π̂σ ∥ π⋆

rep) ≤ Pµ[(Qall ∩ EH)c].
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Let us conclude by bounding Pµ[(Qall ∩ EH)c]. Using the nesting structure Eh =
⋂h

j=1 Ej , the
peeling lemma, Lemma F.11, and a union bound, it holds that
Pµ [(Qall ∩ EH)c] ≤ Pµ[Qc

all] + P [∃h ∈ [H] s.t. (Qall ∩ Eh−1 ∩ Ech) holds ]

≤ Pµ[Qc
all] +

H∑
h=1

Pµ [Qall ∩ Eh−1 ∩ Ech holds ]

= Pµ[Qc
all] +

H∑
h=1

Pµ

[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ (B̄all,h ∩ C̄all,h+1)

c holds
]

= Pµ[Qc
all] +

H∑
h=1

Pµ

[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ B̄call,h

]
= Pµ[Qc

all] +

H∑
h=1

Pµ

[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ Bcall,h

]
,

where the last step invokes Lemma H.7.

Next, we bound the contribution of Pµ[Qc
all] in (H.4), uniformly over all couplings.

Lemma H.9. For all µ which respect the construnction,
Pµ[Qc

all] ≤ pIPS + 2Hpr.

Proof. Pµ[Qc
close] = Pµ[∃h : dIPS(s

tel
h , s̃telh ) > 2r] ≤ 2Hpr by Lemma H.5 and a union bound.

Let us now bound Pµ[Qclose ∩ Qc
IPS] ≤ Pµ[Qc

IPS | Qclose]. Define the kernels Wh(s) to be equal
to the kernel Wrep,h(s) conditioned on the event s′ ∼ Wrep,h(s) satisfies dIPS(s

′, s) ≤ 2r. Then,
conditional on Qclose, we see that the sequence (srep1:H+1, s̃

rep
1:H , a

rep
1:H) obeys the generative process

s̃reph | s̃rep1:h−1, s
rep
1:h, a

rep
1:h−1 ∼Wh(s), areph | s̃rep1:h, s

rep
1:h, a

rep
1:h−1 ∼ π

⋆
h(̃s

rep
h ), sreph+1 = Fh(s

rep
h , areph ).

By construction, for each h, Ps′∼Wrep,h(s)[dIPS(s
′, s) > 2r] = 0. Thus, the definition of (vector)

input process stability (Definition H.4) and assumption r ≤ 1
2rIPS implies that Pµ[Qc

IPS | Qclose] ≤
pIPS.

The remaining step of the proof is therefore to bound the second term in (H.4).
Lemma H.10. There exists a coupling µ which respects the construction and satisfies the following
for any h ∈ [H]

Pµ[Bcall,h | Fh−1]

≤ γ̂ ◦ dTVC(s
rep
h , ŝh) + (γ̂ + γσ) ◦ dTVC(s

rep
h , stelh ) + d⃗os,ε⃗ (π̂σ,h(s

tel
h ) ∥ π⋆

rep,h(s
tel
h )), µ-almost surely

Consequently, for all h ∈ [H],
Pµ[Bcall,h ∩ C̄all,h ∩ B̄all,h−1]

≤ γ̂(ε⃗1) + (γ̂ + γσ) ◦ γIPS,TVC(2r) + Eµ [⃗dos,ε⃗ (π̂σ,h(s
tel
h ) ∥ π⋆

rep,h(s
tel
h ))]

Moreover, s 7→ d⃗os,ε⃗ (π̂σ,h(s) ∥ π⋆
rep,h(s)) is measurable.

Proof Sketch. We begin by giving a high level overview of the construction, which is done recur-
sively. The key technical tool is Lemma F.2 above, which allows us to transform any coupling µ
between random variables (X,Y ) into a probability kernel µ(·|X) mapping instances of X to prob-
ability distributions on Y such that (X,Y ) ∼ µ has the same law as (X,Y ∼ µ(·|X)). For each h,
we then show that, assuming the coupling has kept the states and controls close together until time
h− 1, this will imply the following chain:

(arep ↔ atel)︸ ︷︷ ︸
γTVC and induction

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
learning and sampling

→ (âtel,inter ↔ ârep,inter)︸ ︷︷ ︸
γTVC and induction

→ (ârep,inter ↔ â)︸ ︷︷ ︸
γTVC and induction

,

where the bidirectional arrows indicate individual couplings between the laws of the random vari-
ables that are constructed by the method outlined in text below and the single directional arrows
denote the probability kernels described above. The full proof of the lemma is given in Ap-
pendix H.2.5.
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Concluding the proof. Here, we finish the proof of Theorem 8. Recall that we wish to bound
Γ⃗joint,ε⃗ (π̂σ ∥ π⋆

rep) ∨ Γ⃗marg,ε⃗marg
(π̂σ ∥ π⋆). We begin by bounding Γ⃗joint,ε⃗ (π̂σ ∥ π⋆

rep) ∨
Γ⃗marg,ε⃗marg

(π̂σ ∥ π⋆
rep). In light of Lemma H.8, it suffices to bound

Pµ[Qc
all] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1],

where µ is the coupling in Lemma H.10. Applying Lemma H.9 and Lemma H.10,

Pµ[Qc
all] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1]

≤ pIPS + 2Hpr +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1]

≤ pIPS +H(2pr + γ̂(ε⃗1) + (γ̂ + γσ) ◦ γIPS,TVC(2r)) +

H∑
h=1

Estelh ∼µd⃗os,ε⃗ (π̂σ,h(s
tel
h ) ∥ π⋆

rep,h(s
tel
h ))

To conclude, we note that for any µ which respects the construction, Lemma H.3 ensures that stelh as
the marginal distribution of s⋆h ∼ π⋆

h. Thus, the above is at most

pIPS +H(2pr + γ̂(ε⃗1) + (γ̂ + γσ) ◦ γIPS,TVC(2r)) +

H∑
h=1

Es⋆h∼P⋆
h
d⃗os,ε⃗ (π̂σ,h(s

⋆
h) ∥ π⋆

rep,h(s
⋆
h))

(H.6)

which concludes the proof of (H.2) for Γ⃗joint,ε⃗(π̂ ∥ π⋆
rep).

To prove (H.3) for Γ⃗joint,ε⃗(π̂ ∥ π⋆
rep), we consider the special case that π̂σ = π̂ ◦Wσ . By definition,

π̂σ,h = π̂ ◦Wσ . Thus, the data-processing inequality for optimal transport (Lemma F.5)

d⃗os,ε⃗ (π̂σ,h(s
⋆
h) ∥ π⋆

rep,h(s
⋆
h)) ≤ Es′h∼Wσ(s⋆h)

d⃗os,ε⃗ (π̂(s
′
h) ∥ π⋆

dec,h(s
′
h)),

for all s⋆h. Substituting this into (H.6), and setting γ̂ = γσ (in view of Lemma H.2), finishes the
argument.

H.2.5 Proof of Lemma H.10

Recall that Assumption H.1 ensures all of the general measure-theoretic guarantees of Appendix F
hold true in our setting. Notably we need the gluing lemma (Lemma F.2) and the commuting of
optimal transport metrics and conditional probabilities (Proposition F.3).

Proof strategy. Our proof follows along similar lines as that of Proposition D.2, although with the
added complication of including the smoothing. We will inductively construct µ. A useful schematic
for the construction at each step is the following diagram:

(s̃rep ↔ s̃tel), (arep ↔ atel)︸ ︷︷ ︸
Btel,h

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
Best,h

→ (âtel,inter ↔ ârep,inter)︸ ︷︷ ︸
Binter,h

→ (ârep,inter ↔ â)︸ ︷︷ ︸
Bâ,h

,

where the events under each bidirectional arrow refer to the event such ensuring that there exists
a coupling such that the objects are close. We then will apply Lemma F.2 to glue the individual
couplings together. We will then use Lemma F.11 and a union bound to control the probability
under our constructed coupling that any of the relevant events fail to hold, concluding the proof.

Recursive construction of µ. Let h ≥ 1, and suppose that we have constructed the coupling
µ(1:h−1) for steps 1, . . . , h − 1 which respects the construction. Recall that Fh denotes the sigma-
algebra generated by (̂s1:h, s

rep
1:h, s

tel
1:h), (a

rep
1:h, s̃

rep
1:h, s̃

tel
1:h, a

tel
1:h, â1:h), and (ârep,inter1:h , âtel,inter1:h ). Notice

that stelh+1, s
rep
h+1, ŝh+1 are determined by Fh as well. Similarly, it can be seen from Definition H.5

that ϕ/o(̃stelh+1) and ϕ/o(̃s
rep
h+1) are also determined by Fh (since the replica kernel preserves the
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S/O-components). We summarize all these aforementioned variables in a random variable Yh. Let
F0 denote the filtration generated by srep1 = stel1 = ŝ1. We let Y0 = (srep1 , stel1 , ŝ1).

Correspondingly, let Zh denote the random variables (areph , ϕo(̃s
rep
h ), ϕo(̃s

tel
h ), atelh , âh), and

(ârep,interh , âtel,interh ) such that the joint law of these random variables respects the construction.
Our goal is then to specify, for each h ∈ [H], a joint distribution of (Yh−1, Zh). Note that Zh, Yh−1
determines Yh, and we call this induced law µ(h).

We begin by specifying joint distributions conditional on Yh−1 and subsets of Zh, then glue them
together by the gluing lemma. Below, we use use information-theoretic notation.

• By total variation continuity of ϕo ◦W⋆
rep,h (Lemma H.2),

TV(Pϕo (̃s
rep
h )|Yh−1

,Pϕo (̃stelh )|Yh−1
) ≤ γσ ◦ dTVC(s

rep
h , stelh ).

Because areph ∼ π⋆
h(̃s

rep
h+1) and atelh ∼ π⋆

h(̃s
tel
h ), and π⋆ is compatible with the decompo-

sition S = O ⊕ S/O (i.e. π⋆
h(s) is a function of ϕo(s)) Lemma F.4 implies that (almost

surely)

TV(P(areph ,ϕo (̃s
rep
h )|Yh−1

,P(atelh ,ϕo (̃stelh )|Yh−1
) ≤ γσ ◦ dTVC(s

rep
h , stelh ).

Hence, Corollary F.1 implies that there exists a coupling µ
(h)
tel over

Yh−1, (ϕo(s̃
rep
h ), areph ), (ϕo(s̃

tel
h ), atelh ) respecting the construction such that Yh ∼ µ(h−1)

and such that (almost surely)

E
µ
(h)
tel

[Btel,h | Yh−1] = P
µ
(h)
tel

[(ϕo(̃s
rep
h ), areph ) ̸= (ϕo(̃s

tel
h ), atelh ) | Yh−1] ≤ dTVC(s

rep
h , stelh )].

• In our construction, atelh | Yh−1 ∼ π⋆
rep,h(s

tel
h ), and âtel,interh | Yh−1 ∼ π̂σ,h(s

tel
h ). Thus,

by definition of d⃗os,ε⃗, and the assumption I{d⃗A(·, ·) ̸⪯ ε⃗} is lower semicontinuous, Propo-
sition F.3 implies that we may find a coupling µ(h)

est of (atelh , âtel,interh , Yh−1) respecting the
construction such that, almost surely,

P
µ
(h)
est

[
Bcest,h | Yh−1

]
= P

µ
(h)
est

[
d⃗A(â

tel,inter
h , atelh ) ̸⪯ ε⃗ | Yh−1

]
= d⃗os,ε⃗ (π̂σ,h(s

tel
h ) ∥ π⋆

rep,h(s
tel
h ))].

Moreover, that same proposition ensures measurability of s→ d⃗os,ε⃗ (π̂σ,h(s) ∥ π⋆
rep,h(s)).

• Since âtel,interh | Fh ∼ π̂σ,h(s
tel
h ) and ârep,interh+1 | Fh ∼ π̂σ,h(s

rep
h ), and since π̂σ,h(·) is

γ̂-TVC by assumption,

TV(Pâtel,interh |Yh−1
,Pârep,inter

h |Yh−1
) ≤ γ̂ ◦ dTVC(s

rep
h , stelh ).

Corollary F.1 implies that there is a coupling µ
(h)
inter between (âtel,interh , ârep,interh , Yh−1)

such that

P
µ
(h)
inter

[Bcinter,h | Yh−1] = P
µ
(h)
inter

[
âtel,interh ̸= ârep,interh | Yh−1

]
≤ γ̂ ◦ dTVC(s

tel
h , sreph )

• Similarly, since ârep,interh | Fh−1 ∼ π̂h(s
rep
h ) and âh+1 | Fh−1 ∼ π̂h(̂sh), π̂h(·) is γ̂-TVC,

Corollary F.1 implies that there is a coupling µ(h)
â between (ârep,interh , âh, Yh−1) such that

P
µ
(h)
â

[Bcâ,h | Yh−1] = P
µ
(h)
â

[
âh ̸= ârep,interh | Yh−1

]
≤ γ̂ ◦ dTVC(s

rep
h , ŝh)

We can then apply the gluing lemma (Lemma F.2) to

Xh,1 = (ϕo(s̃
tel
h ), atelh , Yh−1)

Xh,2 = (ϕo(s̃
rep
h ), areph , Yh−1)

Xh,3 = (atelh , âtel,interh , Yh−1)

Xh,4 = (âtel,interh , ârep,interh , Yh−1)

Xh,5 = (ârep,interh , âh, Yh−1)

54



with

(Xh,1, Xh,2) ∼ µ(h)
tel , (Xh,2, Xh,3) ∼ µ(h)

est , (Xh,3, Xh,4) ∼ µ(h)
inter, (Xh,4, Xh,5) ∼ µ(h)

â .

Lemma F.2 guarantees the existence of a coupling µ(h) consident with all sub-couplings µ(h)
tel ,

µ
(h)
est , µ

(h)
intp, µ

(h)
â . Then, µ(h)-almost surely (and using that Fh−1 is precisely the σ-algebra gen-

erated by Yh−1)

Pµ(h) [Bcall,h | Fh−1]

≤ Pµ(h) [Bctel,h | Fh−1] + Pµ(h) [Bcest,hFh−1] + Pµ(h) [Bcinter,hFh−1] + Pµ(h) [Bcâ,hFh−1]

≤ γ̂ ◦ dTVC(s
rep
h , ŝh) + (γ̂ + γσ) ◦ dTVC(s

rep
h , stelh ) + d⃗os,ε⃗ (π̂σ,h(s

tel
h ) ∥ π⋆

rep,h(s
tel
h ))

= γ̂ ◦ dTVC(s
rep
h , ŝh) + (γ̂ + γσ) ◦ dTVC(s

rep
h , stelh ) + d⃗os,ε⃗ (π̂σ,h(s

tel
h ) ∥ π⋆

rep,h(s
tel
h ))

This concludes the inductive construction.

For the second statement, notice that the events C̄all,h∩B̄all,h−1 are Fh measurable (thus determined
by µ(h−1)) and, when they hold, d⃗S(s

rep
h , stelh ) ⪯ γ⃗IPS(2r) and dS(s

rep
h , ŝh) ⪯ ε⃗. For our purposes,

we use dTVC = dS,1(s
rep
h , stelh ) ⪯ γIPS,TVC(2r) and dS(s

rep
h , ŝh) ⪯ ε⃗1. Hence,

max
h∈[H]

Pµ[Bcall,h ∩ C̄all,h ∩ B̄all,h−1] ≤ γ̂(ε⃗1) + (γ̂ + γσ) ◦ γIPS,TVC(2r)

+ d⃗os,ε⃗ (π̂σ,h(s
tel
h ) ∥ π⋆

rep,h(s
tel
h )).

The result follows.

H.3 Proof of Theorem 4, and generalization to direct decompositions

In this subsection, we consider the special case dealt with in Theorem 4. Note that there always exists
a trivial direct decomposition that is compatible with all policies and dynamics simply by letting
S/O = ∅ and S = O. We prove here the version of the result that involves a possibly nontrivial
direct decomposition, as we will instantiate this in our control setting by letting O = {oh} and
S = {sh}, i.e., projecting sh onto the last τobs coordinates gives oh. We further consider a restriction
of IPS to consider kernels absolutely continuous with respect to P⋆

h in their O component.
Definition H.9 (Restricted IPS). For a non-decreasing maps γIPS,TVC, γIPS,S : R≥0 → R≥0 a pseu-
dometric dIPS : S × S → R (possibly other than dS or dTVC), and rIPS > 0, we say a policy π is
(γIPS,TVC, γIPS,S , dIPS, rIPS)-restricted IPS if the following holds for any r ∈ [0, rIPS]. Consider any
sequence of kernels W1, . . . ,WH : S → ∆(S) satisfying

max
h,s∈S

Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, ∀s, ϕo ◦Wh(s)≪ ϕo ◦ P⋆
h.

and define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼ πh(̃sh), and sh+1 := Fh(sh, ah). Then,
almost surely, (a) the sequence (s1:H+1, a1:H) is input-stable (in the sense of Definition D.2)
(b) maxh∈[H] dTVC(Fh(̃sh, ah), sh+1) ≤ γIPS,TVC(r) and (c) maxh∈[H] dS(Fh(̃sh, ah), sh+1) ≤
γIPS,S(r).

Note that the above is a slightly weaker condition than the one in Definition D.5 in the main text and
consequently, the following theorem which uses it as an assumption implies Theorem 4 in the body.

Theorem 9. Suppose that

• S = O ⊕ S/O is in Definition H.1 and projections ϕo, ϕ/o, which is compatible with the
dynamics and with given policies π̂, π⋆, smoothing kernel Wσ , and pseudometric dIPS.

• π⋆ satisfies (γIPS,TVC, γIPS,S , dIPS, rIPS)-restricted IPS (Definition H.9) and ϕo ◦Wσ is γσ-
TVC.

Given ε > 0 and r ∈ (0, 12rIPS], define

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r], ε′ := ε+ γIPS,S(2r)
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Then, for any policy π̂, both Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep) and Γmarg,ε′(π̂ ◦Wσ ∥ π⋆) are upper bounded

by

H (2pr + 3γσ (max {ε, γIPS,TVC(2r)})) +
H∑

h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε
(
π̂h(s̃

⋆
h) ∥ π⋆

dec,h(̃s
⋆
h)
)
.

(H.7)

Proof. Consider the special case K = 2 with dS,1 = dTVC, dS,2 = dS , dA,1 = dA,2 = dA, pIPS = 0
and ε⃗ = (ε, ε). In this case, applying (H.3) in Theorem 8, we see that

Γ⃗joint,ε⃗(π̂σ ∥ π⋆
rep) ∨ Γ⃗marg,ε⃗marg

(π̂σ ∥ π⋆
rep)

≤ pIPS +H (2pr + 3γσ(max{ε, γIPS,TVC(2r)}) +
∑H

h=1 Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

d⃗os,ε⃗(π̂h(s̃
⋆
h) ∥ π⋆

dec(̃s
⋆
h))

We now observe that under this convention,

Γjoint,ε(π̂σ ∥ π⋆
rep) = inf

µ1

Pµ1
[max
h∈[H]

dS (̂sh+1, s
⋆
h+1) ∨ dA(âh, a

⋆
h) > ε]

≤ inf
µ1

Pµ1

[
max
h∈[H]

(
dTVC (̂sh+1, s

⋆
h+1), dS (̂sh+1, s

⋆
h+1)

)
∨ (dA(âh, a

⋆
h), dA(âh, a

⋆
h)) ̸⪯ ε⃗

]
= Γ⃗joint,ε⃗(π̂σ ∥ π⋆

rep)

and similarly Γmarg,ε′(π̂σ ∥ π⋆) ≤ Γ⃗marg,ε⃗+γIPS(2r)(π̂σ ∥ π⋆). From the construction of d⃗A, how-

ever, we see that
{
d⃗A(a, a′) ̸⪯ ε⃗

}
= {dA(a, a′) > ε} for all a, a′ and thus for all h ∈ [H],

d⃗os,ε⃗(π̂h(̃s
⋆
h) ∥ π⋆

h(̃s
⋆
h)) = inf

µ2

Pµ2

[
d⃗A(âh, a

⋆
h) ̸⪯ ε⃗

]
= inf

µ2

Pµ2
[dA(âh, a

⋆
h) ≥ ε]

= dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

h(s̃
⋆
h)).

Plugging in to (H.3) concludes the proof.

I Lower Bounds

In this section, we establish lower bounds against the imitation results in the composite MDP. Specif-
ically, we show that

• In Appendix I.1 we show that Theorem 4 and Proposition D.2 are sharp in the regime where
γIPS,TVC = γIPS,S = 0.

• In Appendix I.2, we show that the marginals of an expert policy π⋆ and replica policy π⋆
rep

can coincide, but their joint distributions can be different. By considering π̂ = π⋆
dec in

Theorem 4, this establishes the necessity of considering the marginal imitation gap with
respect to π⋆.

• In Appendix I.3, we lower bound the distance between marginal distributions over states
under π⋆ and π⋆

rep in the regime where γIPS,S ̸= 0. This example demonstrates that the
dependence of γIPS,S in Theorem 4 is essentially sharp.

• In Appendix I.4, we show that for an expert policy π⋆ and smoothing kernel Wσ , the state
distributions under π⋆

rep and π⋆
dec can have different marginals (and thus different joint

distributions). By considering π̂ = π⋆
dec in Theorem 4, this explains why it is necessary to

smooth π̂ to π̂ ◦Wσ .

Taken together, the above counterexamples show that our distinctions between joint and marginal
distributions, decision to add noise at inference time, and dependence on almost all problem quan-
tities in Appendix D are sharp. We do not, however, establish necessity of γIPS,TVC in the interest of
brevity; we believe this quantity is necessary. Still, the γIPS,TVC term contributes a factor exponen-
tially small in τchunk in Theorem 3, so we deem lower bounds establishing its necessity of lesser
importance.
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Commonalities of construction. In all but Appendix I.3, we take the action and state spaces to be

S = A = R,

which is the archetypal Polish space [22]. Throughout, we use δx to denote the dirac-delta distribu-
tion on x ∈ R. We let dS(s′, s) = dTVC(s

′, s) = |s′ − s| and dA(a′, a) = |a′ − a| all be the Euclidean
distance.

I.1 Sharpness of Proposition D.2 and Theorem 4

Here, we demonstrate that Proposition D.2 is tight up to constant factors, and that Theorem 4 is tight
up to the terms γIPS,TVC, γIPS,S and concentration probability pr. Consider the simple dynamics

Fh(s, a) = a.

Note that, as the dynamics are state-independent, we have γIPS,TVC(·) = γIPS,S(·) ≡ 0. Furthermore,
let us assume policies do not depend on time index h. Let π⋆ : s → δ0 be deterministic, and let
Pinit = δ0 be an initial state distribution concentrated on 0. Then, Dπ⋆ is the dirac distribution on
the all-zero trajectory.

Fix parameters 0 < ε < σ, and p ∈ (0, 1). We consider the following smoothing-kernel

Wε,σ =


δ0 s ≤ 0

(1− s
σ )δ0 +

s
σδσ s ∈ [0, σ]

δσ s > σ,

Define the candidate policy

π̂ε,p,σ(s) :=

{
(1− p)δε + pδσ s ≤ ε

2

δσ s > ε
2

Proposition I.1. For any p ∈ (0, 1), 0 < ε < σ, set π̄ = π̂ε,p,σ ◦Wσ,ε. Then,

(a) π⋆, π⋆
rep and π⋆

dec all map s→ δ0, P⋆
h = δ0, and thus for any π̃ ∈ {π⋆, π⋆

rep, π
⋆
dec},

Es⋆h∼P⋆
h
Es′h∼Wσ(s⋆h)

[dos,ε(π̂ε,p,σ(s
′
h) ∥ π̃(s′h)] = Es⋆h∼P⋆

h
[dos,ε(π̄(s

⋆
h) ∥ π̃(s⋆h))] = p.

(b) The kernel Wσ,ε is γσ-TVC, where γσ(u) = u/σ.

(c) For a universal constant c > 0,

Γjoint,ε(π̄ ∥ π⋆) = Γmarg,ε(π̄ ∥ π⋆) ≥ cmin{1, H(p+ ε/σ)},

and the same holds with π⋆ replaced by π⋆
rep or π⋆

dec.

In particular, the above proposition shows that

Γjoint,ε(π̄ ∥ π⋆) = Γmarg,ε(π̄ ∥ π⋆) ≳ Hγσ(ε) +

H∑
h=1

Es⋆h∼P⋆
h
[dos,ε(π̄(s

⋆
h) ∥ π⋆(s⋆h)],

verifying the sharpness of Proposition D.2 (note that π̄ = π̂ε,p,σ ◦Wσ is γσ TVC). Similary, our
above proposition shows that,

Γjoint,ε(π̄ ∥ π⋆
rep) = Γmarg,ε(π̄ ∥ π⋆) ≳ Hγσ(ε) +

H∑
h=1

Es⋆h∼P⋆
h
[dos,ε(π̂ε,p,σ(s

⋆
h) ∥ π⋆

dec,h(s
⋆
h)],

verying that Theorem 4 is sharp up to the additional stability terms γIPS,TVC, γIPS,S .

Proof. We begin with a computation. Define

η(s) = 1− (1− p)(1− s

σ
) = p+ (1− p) s

σ
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We compute

π̄ = π̂ε,p,σ ◦Wσ,ε =

{
(1− p)δε + pδσ s ≤ ε

2

δσ s > ε
2

◦


δ0 s ≤ 0

(1− s
σ )δ0 +

s
σδσ s ∈ [0, σ]

δσ s ≥ σ.

=


(1− p)δε + pδσ s ≤ 0

(1− η(s))δε + η(s)δσ 0 ≤ s ≤ σ
δσ s > σ.

(I.1)

In particular,

π̂(0) = πε,p,σ(0) = (1− p)δε + pδσ

Part (a). Notice that the support of the deconvolution and replica distributions are always in the
support of P⋆

h, which is always s = 0 under π⋆. Thus, π⋆ = π⋆
rep = π⋆

dec. By the same token, for
any policy π,

Es⋆h∼P⋆
h
[dos,ε(π(s

⋆
h) ∥ π̃⋆(s⋆h)] = P[|π(0)| > ε].

Hence, as π̄(0) = π̂ε,p,σ(0) = (1− p)δε + pδσ , and as σ > ε, part (a) follows.

Part (b). Consider s, s′ ∈ S . We can assume, from the functional form of Wε,σ(·), that 0 ≤ s ≤
s′ ≤ σ. Then,

TV(Wε,σ(s),Wε,σ(s
′)) = TV(δ0(1−

s

σ
) + (

s

σ
)δσ, δ0(1−

s′

σ
) + (

s′

σ
)δσ =

|s′ − s|
σ

,

establishing total variation continuity.

Part (c) In view of part (a), it suffices to bound gaps relative to π⋆. Let P denote probabilities over
s1:H+1, ah under π̄. Let A1,h denote the event that at step h, ah = ε, and let A2,h denote the event
that ah = σ. As the state s0 is absoring and as Fh(s, a) = ah, the following events are equal

{∃h : |ah| ∨ |sh+1| > ε} = A2,H .

Hence,

Γjoint,ε(π̄ ∥ π⋆) = P[A2,H ].

Moreover, as A2,H is measurable with respect to the marginal of aH , we also have that

Γmarg,ε(π̄ ∥ π⋆) = P[A2,H ].

It thus suffices to lower bound P[A2,H ]. By definition of π̄, the events A1,h,A2,h are exhaustive:
Ac

1,h = A2,h. Moreover, from (I.1),

P[A2,h+1 | A2,h] = 1, P[A2,h+1 | A1,h] = η(ε), P[A1,1] = 1− η(0) ≥ 1− η(ε).

Thus,

P[A2,H ] = P[A2,H | A2,H−1]P[A2,H−1] + P[A2,H | A1,H−1]P[A1,H−1]

= P[A2,H−1] + η(ε)P[A1,H−1]

= P[A2,H−2] + η(ε) (P[A1,H−1 + P[A1,H−2])

= η(ε)

(
H−1∑
h=1

P[A1,h]

)
+ P[A2,1]

≥ η(ε)

(
H−1∑
h=1

P[A1,h]

)
Moreover, as s0 is absorbing,

P[A1,h] = P[A1,h | A1,h−1]P[A1,h−1] = (1− η(ε))P[A1,h−1].
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Combining with P[A1,1] = (1 − p) ≥ (1 − η(0)) ≥ 1 − η(ε), we have P[A1,h] ≥ (1 − η(ε))h.
Hence,

P[A2,H+1] ≥ η(ε)

(
H−1∑
h=1

(1− η(ε))h
)

= η(ε)
1− η(ε)− (1− η(ε))H

1− (1− η(ε))
= 1− η(ε)− (1− η(ε))H

= Ω(min {1, H(η(ε)})
as η(ε) ↓ 0. Subsituting in η(ε) = p+ (1− p)ε/σ = Ω(p+ ε/σ) concludes.

I.2 π⋆
rep and π⋆ induce the same marginals but different joint distributions, even with

memoryless dynamics

We give a simple example where π⋆
rep and π⋆ induce the same marginal distributions over trajec-

tories, but different joints. As we show, this example demonstrates the necessity of measuring the
marginal imitation error of a smoothed policy, Γmarg,ε, over the joint error, Γjoint,ε. A graphical (but
nonrigorous) demonstration of this issue can be seen in Figure 9 in Appendix E.2.

Again, let S = A = R, and Fh(s, a) = a. We let

Wσ(·) = N (·, σ2)

denote Gaussian smoothing. Fix some ε > 0. Define

Pinit =
1

2
(δ−ε + δ+ε), π⋆(s) =

{
δ−ε s ≤ 0

δε s > 0
.

Thus, Dπ⋆ is supported on the trajectories with (s1:H+1, a1:H) being either all ε or all −ε, and

P⋆
h = Pinit =

1

2
(δ−ε + δ+ε).

Hence, the replica and deconvolution map to distributions supported on {ε,−ε}. Let ϕσ(·) denote
the Gaussian PDF with variance σ. Then,

W⋆
dec,h(s) =

δεϕσ(s− ε) + δ−εϕσ(s+ ε)

ϕσ(s− ε) + ϕσ(s+ ε)
.

Moreover,

W⋆
rep,h(s) = EZ∼N (0,σ2)

[
δεϕσ(s− ε+ Z) + δ−εϕσ(s+ ε+ Z)

ϕσ(s− ε+ Z) + ϕσ(s+ ε+ Z)

]
. (I.2)

One can check that for ε ≤ σ,

W⋆
rep,h(uε) = Θ

(
(1 + cε

σ )δuε + (1− cε
σ )δ−uε

2

)
, u ∈ {−1, 1}

for ε≪ 1. In particular, for s ∈ {−ε, ε}
Pa∼π⋆

rep,h(s)
[a = −s] ≥ Ω(1). (I.3)

In particular, if (srep1:H+1, a
rep
1:H) ∼ Dπ⋆

rep
, then

P[∃h : d(sreph , sreph+1) > ε] ≤ P[∃h : sreph = −sreph+1]

≤ P[∃h : sreph = −areph ] = 1− exp(−Ω(H)),

where in the last step we used (I.3) and the the fact that the π⋆
rep uses fresh randomness at each

round. Moreover, as π⋆ always commits to either an all-ε or all-(−ε)-trajectory, we see that for any
µ ∈ C (Dπ⋆ ,Dπ⋆

rep
) over (s⋆1:H+1, a

⋆
1:H) ∼ Dπ⋆ and (srep1:H+1, a

rep
1:H) ∼ Dπ⋆

rep
,

Γjoint,ε(π
⋆
rep, π

⋆) ≥ Pµ[∃1 ≤ h ≤ H : d(s⋆h+1, s
rep
h+1) > ε] ≥ 1− exp(−Ω(H)),

That is, the replica and expert policies have different joint state distribution.
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Remark I.1. The above result demonstrates the necessity of measuring the marginal error be-
tween π̂ ◦ Wσ and π⋆ in Theorem 4: if we apply that proposition with π̂ = π⋆

dec, then for
all ε, Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h)) = 0. But then π̂ ◦ Wσ = π⋆

rep, and we know that
Γjoint,ε(π

⋆
rep, π

⋆) ≥ Pµ[∃1 ≤ h ≤ H : d(s⋆h+1, s
rep
h+1) > ε] ≥ 1 − exp(−Ω(H)). Thus, we can-

not hope for smoothed policies to imitate expert demonstrations in joint state distributions without
additional assumptions.

Remark I.2 (Importance of chunking). Above we have shown that π⋆
rep oscillates between ε and

−ε (for actions and subsequent states). We remark that these oscillations can have very deleterious
effects on performance on real control systems. This is why it is beneficial to predict entire sequences
of trajectories. Indeed, consider a modified construction such that S = A = RK , and Fh(s, a) =
a. Here, we interpret S as a sequence of K-control states in R, and a as sequence of K-actions,
denoting the i-th coordinate of s via s[i],

π⋆(s) =

{
δ−ε1 s[1] ≤ 0

δε1 s[1] > 0,

Then, we can view the oscillations in π⋆
rep as oscillations between length K trajectories, which is

essentially what happens in our analysis for K = τchunk.

I.3 π⋆
rep and π⋆ can have different marginals, implying necessity of γIPS,S

Our construction lifts the construction in Appendix I.2 to a two-dimensional state space S = R2,
keeping one dimensional actions A = R. Let s = (s[1], s[2]) denote coordinate of s ∈ S. For some
parameter ν, the dynamics are

sh+1 = Fh(sh, ah) = (ah, ν · (sh[1]− ah))

We let dS = dTVC = dIPS denote the ℓ1 norm on S = R2. Our initial state distribution is

Pinit =
1

2

(
δ(ε,0) + δ(−ε,0)

)
We let

π⋆(s) =

{
δ(−ε,0) s ≤ 0

δ(ε,0) s > 0
.

Thus, π⋆ induces trajectories which either stay on δ(ε,0) or δ(−ε,0).

P⋆
h =

1

2

(
δ(ε,0) + δ(−ε,0)

)
, ∀h ≥ 1.

Let

Wσ(s) = N (s′, σ2)

Proposition I.2. In the above construction, we can take γIPS,S(u) ≤ ν · u in Definition D.5, and pr
satisfies the conditions in Theorem 4 for r = 2σ

√
log(1/pr). Moreover, for any ε ≤ σ,

Γmarg,ε′(π
⋆
rep ∥ π⋆) ≥ Ω(1), ε′ = νε

Remark I.3 (Sharpness of γIPS,S ). Before proving this proposition, we note that if we take ε = σ

and r = 2σ
√

log(1/pr), then νε = Ω̃(γIPS(2r)), showing that our dependence on γIPS,S is sharp
up to logarithmic factors. Moreover, the looseness up to logarithmic factors in the above point is an
artifact of using the Gaussian smoothing Wσ , and can be remover by replaced Wσ with a truncated-
Gaussian kernel.

Proof of Proposition I.2. To see γIPS,S(u) ≤ ν · u, we have ∥Fh(s, a)−Fh(s
′, a)∥ = ∥(a, ν · (s[1]−

a)) − (a, ν · (s′[1] − a))∥ = ν|s[1] − s′[1]| ≤ νdTVC(s, s
′). That we can take r = 2σ

√
log(1/pr)

follows from Gaussian concentration.
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To prove the final claim, one can directly generalize (I.2) to find that, for any b ∈ R,

W⋆
rep,h(s) = EZ∼N (0,σ2)

[
δ(ε,0)ϕσ(s[1]− ε+ Z) + δ(−ε,0)ϕσ(s[1] + ε+ Z)

ϕσ(s[1]− ε+ Z) + ϕσ(s[1] + ε+ Z)

]
.

This follows form the observation that W⋆
rep,h and P⋆

h have the same support, and as P⋆
h always

is support on vectors with second coordinate zero, that the second coordinate of s in W⋆
rep,h(s) is

uninformative. For ε ≤ σ, we find that
W⋆

rep,h((ε, b)) = cδ(ε,0) + (1− c)δ(−ε,0), c = Ω(1), b ∈ R.
and W⋆

rep,h((−ε, b)) is defined symmetrically, Hence, under (srep1:H+1, a
rep
1:H) ∼ π⋆

rep,

P[srep1 ̸= arep1 ] ≥ Ω(1)

Moroever, when srep2 ̸= areph , we have that |srep2 [2]| = ν|srep1 − arep1 |, which as π⋆ is supported on
{δ(ε,0), δ(−ε,0)}, means, |srep2 (2)| ≥ 2νε. Thus,

P[|srep2 [2]| ≥ 2νε] ≥ Ω(1)

On the other hand, s⋆2 ∼ P⋆
h has s⋆2[2] = 0 with probability one. Thus, for any coupling µ between

Dπ⋆ ,Dπ⋆
rep

,

Pµ[dS(s
rep
2 , s⋆2)| ≥ 2νε] ≥ Ω(1)

Thus,
Γmarg,νε(π

⋆
rep ∥ π⋆) ≥ Ω(1).

I.4 π⋆
rep and π⋆

dec have different marginals, even with memoryless dynamics

Here, we show how π⋆
rep and π⋆

dec have different marginals even if the dynamics are memoryless. By
considering π̂ = π⋆

dec in Theorem 4, the discussion below demonstrates why one needs to consider
π̂σ = π̂ ◦Wσ in order to obtain small imitation gap.

For simplicity, we use a discrete smoothing kernel Wσ , though the example extends to the Gaussian
smoothing kernel in the previous counter example. Again, let S = A = R, and Fh(s, a) = a. Take

π⋆(s) =

{
δ−σ s ≤ 0

δσ s > 0

Let us consider an asymmetric initial state distribution

Pinit =
1

4
δ−σ +

3

4
δ+σ.

Note then that

∀h, P⋆
h = Pinit =

1

4
δ−σ +

3

4
δσ, (I.4)

We consider a smoothing kernel,

Wσ(s) =


( 12 + s

4σ )δσ + ( 12 −
s
4σ )δσ −2σ ≤ s ≤ 2σ

δσ s ≥ 2σ

δ−σ s ≤ −2σ
The salient part of our construction of Wσ is that

Wσ(σ) =
1

4
δ−σ +

3

4
δσ, Wσ(−σ) =

1

4
δσ +

3

4
δ−σ.

Denote the marginals of π⋆
rep and π⋆

dec with P⋆
⟲,h and P⋆

dec,h. One can show via the lack of memory
in the dynamics and the structure of π⋆ that

P⋆
⟲,h+1 = W⋆

rep,h ◦ P⋆
⟲,h, W⋆

dec,h+1 = W⋆
dec,h ◦ P⋆

dec,h, (I.5)
By the replica property (Lemma H.3), W⋆

rep,h ◦ P⋆
h = P⋆

h for all h. Thus, for all h, (I.4) and (I.5)
imply

P⋆
⟲,h = P⋆

h =
1

4
δ−σ +

3

4
δ+σ. (I.6)

The following claim computes P⋆
dec,h.

61



Claim I.3. Consider any distribution of the form P = (1− p)δσ + pδ−σ . Then

W⋆
dec,h ◦ P = (

9

10
− p

5
)δσ + (

1

10
+
p

5
)δ−σ.

Thus,

P⋆
dec,h+1[−σ] =

1

10

(
h−1∑
i=0

5−i
)

+
1

4
51−h.

Before proving the claim, let us remark on its implications. As h→∞,

P⋆
dec,h[−σ]→

1

10

(
1

1− 1/5

)
=

1

10
· 5
4
=

1

8
.

Thus,

lim
h→∞

P⋆
dec,h =

7

8
δσ +

1

8
δ−σ,

achieving a different stationary distribution that P⋆
h = P⋆

⟲,h. This shows that

lim
H→∞

Γmarg,σ(π
⋆
rep, π

⋆
dec) ≥ TV(

7

8
δσ +

1

8
δ−σ,

3

4
δσ +

1

4
δ−σ) =

1

8
,

which implies that the deconvolution policy π⋆
dec does approximate π⋆

rep. From (I.6), it also follows
that π⋆

rep and π⋆ have identical marginals, so

lim
H→∞

Γmarg,σ(π
⋆, π⋆

dec) ≥ TV(
7

8
δσ +

1

8
δ−σ,

3

4
δσ +

1

4
δ−σ) =

1

8
as well. In particular, if we take π̂ = π⋆

dec in Theorem 4, we see that there is no hope to for bounding
Γmarg,ε(π

⋆, π̂); we must bound Γmarg,ε(π
⋆, π̂◦Wσ) (again noting that if π̂ = π⋆

dec, π̂◦Wσ = π⋆
rep).

Proof of Claim I.3. We have that for s′ ∈ {−σ, σ},

W⋆
dec,s′|s =

Wσ(s
′)[s] · P⋆

h(s
′)

Wσ(s′)[s] · P⋆
h(s
′) +Wσ(−s′)[s] · P⋆

h(−s′)
With s = s′ = σ, the above is

W⋆
dec,h(s

′ = σ | s = σ) =
3
4 ·

3
4

3
4 ·

3
4 + 1

4 ·
1
4

=
9

10
.

And

W⋆
dec,h(s

′ = σ | s = −σ) =
1
4 ·

3
4

1
4 ·

3
4 + 3

4 ·
1
4

=
1

2
.

Hence, for any p ∈ [0, 1],

W⋆
dec,h(s

′ = σ | s = −σ)((1− p)δσ + pδ−σ) = ((1− p) 9

10
+
p

2
)δσ + (1− ((1− p) 9

10
+
p

2
)))δσ

= (
9

10
− p

5
)δσ + (

1

10
+
p

5
)δ−σ.

Consequently, by (I.5), we can unfold a recursion to compute
P⋆
dec,h+1[−σ] = W⋆

dec,h(s
′ = σ | s = −σ)P⋆

dec,h

= (
1

10
+

P⋆
dec,h[σ]

5
)

=
1

10

h−1∑
i=0

5−i + P⋆
dec,1[σ] · 51−h

=
1

10

h−1∑
i=0

5−i + P⋆
1[σ] · 51−h

=
1

10

(
h−1∑
i=0

5−i
)

+
1

4
51−h.
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Part III

The Control Setting
J End-to-end Guarantees and the Proof of Theorem 3

In this section, we provide a number of end-to-end guarantees for the learned imitation policy under
various assumptions. The core of the section is the proof of Theorem 2 which provides the basis
for the final proof of Theorem 3 in the body by uniting the analysis in the composite MDP from
Appendix H, the control theory from Appendix K, and the sampling guarantees from Appendix L.
We now summarize the organisation of the appendix:

• In Appendix J.1, we recall the association between the control setting and the composite
MDP presented in Appendix D, as well as rigorously instantiating the direct decomposition
and the expert policy.

• In Appendix J.2, we establish the correspondence between the imitation losses studied for
the composite MDP in Appendix D with the disiderata in Section 2.

• In Appendix J.3, we provide the proof of Proposition D.2 and Theorems 2 and 3. We prove
Theorem 2 as a consequence of a more granular guarantee, Theorem 10, which exposes the
various tradeoffs in problem parameters.

• In Appendix J.4, we demonstrate that if the demonstrator policy is assumed to be TVC,
then we can recover stronger guarantees than those provided in Theorem 3 without this
assumption; in particular, we show that we can bound the joint imitation loss as well as the
marginal and final versions.

• In Appendix J.5, we show that if we were able to produce samples from a distribution close
in total variation to the expert policy distribution, as opposed to the weaker optimal trans-
port metric that we consider in the rest of the paper, then without any further assumptions,
imitation learning is easily achievable.

• In Appendix J.6, we demonstrate the utility of our imitation losses, showing that for Lip-
schitz cost functions decomposing in natural ways, our imitation losses as defined in Def-
inition 2.2 provide control over the difference in expected cost under expert and imitated
distributions.

• Finally, in Appendix J.7, we collect a number of useful lemmata that we use throughout the
appendix.

J.1 Preliminaries

Here, we state various preliminaries to the end-to-end theorems. Reall that c1, . . . , c5 are constants
which are polynomial in the parameters in Assumption 3.1, and are spelled out explicitly in Ap-
pendix K. For simplicity, to avoid complications with the boundary effects at h = 1, we re-define
h = 1-observation chunks o1 as elements O = Pτobs−1 by prepending the necessary zeros – i.e.
o1 = (0, 0, . . . , 0,x1)– and similarly modifying s1 ∈ S = Pτchunk

by prepending zeros. We first
recall the definitions of the composite-states and -actions from Appendix D. The prepending of zeros
in the h = 1 case is mentioned above. For h > 1, recall that sh = (xth−1:th ,uth−1:th−1) and that
ah = κth:th+1−1, where we again emphasize that ah begins at the same t that sh+1 does. We further
recall the distances

dtraj(ρ,ρ
′) := max

1≤k≤τ+1
∥xk − x′k∥ ∨ max

1≤k≤τ
∥uk − u′k∥

defined for trajectories of arbitrary length. Given sh, s
′
h with observation-(sub)chunks oh, o

′
h, we

define

dS(sh, s
′
h) = dtraj(sh, s

′
h) = max

t∈[th−1:th]
||xt − x′t|| ∨ max

t∈[th−1:th−1]
= ||ut − u′t|| ,

dTVC(sh, s
′
h) = dtraj(oh, o

′
h) = max

t∈[th−τobs:th]
||xt − x′t|| ∨ max

t∈[th−τobs:th−1]
||ut − u′t|| ,

dIPS(sh, s
′
h) =

∣∣∣∣xth − x′th
∣∣∣∣ .
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Finally, for a = (ū1:τchunk
, x̄1:τchunk

, K̄1:τchunk
) and a′ = (ū′1:τchunk , x̄

′
1:τchunk

, K̄′1:τchunk), recall
from (3.1) and (D.2) that

dmax(a, a
′) = max

1≤k≤τchunk
∥ūk − ū′k∥+ ∥x̄k − x̄′k∥+ ∥K̄k − K̄′k∥

dA(a, a
′) := c1dmax(a, a

′) · I∞{dmax(a, a
′) > c2}

We note the following fact.

Fact J.1. Suppose that ε ≤ c2. Then dA(a, a′) ≤ ε whenever dmax(a, a
′) ≤ ε/c1.

J.1.1 Direct Decomposition and Smoothing Kernel.

This section will invoke the generalizations Theorem 4 which requires TVC only subspace of the
state space. This invokes the direct decomposition explained in Appendix H.

Definition J.1 (Direct Decomposition and Smoothing Kernel). We consider the decomposition of
S = O ⊕ S/O, where O = Pτobs−1 are the coordinates of sh corresponding to the observation
chunk oh, and S/O are all remaining coordinates We let ϕo : S → O denote the projection onto the
coordinates in O. We instantiate the smoothing kernel Wσ as follows: For s = sh ∈ S = Pτchunk ,
we let

Wσ(s) = N
(
sh,

[
σ2IO 0
0 0

])
, (J.1)

where IO denotes the identity supported on the coordinates in O as described above.

We note that the above direct decomposition satisfies the requiste compatibility assumptions ex-
plained in Appendix H. Note also that dIPS and Wσ are compatible with the above direct decompo-
sition.

J.1.2 Chunking Policies.

We continue by centralizing a definition of chunking policies.

Definition J.2 (Policy and Initial-State Distributions). Given an chunking policy π = (πh)
H
h=1 with

πh : O = Pτobs−1 → ∆(A), we let Dπ denote the distribution over ρT and a1:H induced by
selecting ah ∼ πh(oh), and rolling out the dynamics as described in Section 2. We extend chunking
policies to maps πh : S = Pτchunk

→ ∆(A) by expressing πh = πh ◦ϕo (i.e., projection sh onto its
oh-components). Further, we let Pinit denote the distribution of x1 under ρT ∼ Dexp.

Remark J.1. The notation Dπ denotes the special case of chunking policies in the control setting
of Section 2, whereas we reserve the seraf font Dπ for the distribution induced by policies in the
composite MDP. For composite MDPs instantiated as in Appendix D.2, the two exactly coincide.

Construction of π⋆ for composite MDP. We now recall the policies π⋆ and π⋆
dec,σ , defined in

Definitions 3.4 and 3.6, respectively.

Definition J.3 (Policies corresponding to Dexp). Define the following sequence kernels π⋆ =
(π⋆

h)
H
h=1 and π⋆

dec = (π⋆
dec,h)

H
h=1 via the following process. Let ρT ∼ Dexp, and let a1:H =

synth(ρT ); further, let o1:H be the corresponding observation-chunks from ρT . Let

• π⋆
h(·) : O = Pτobs−1 → ∆(A) denote a regular conditional probability corresponding to

the distribution over ah given oh in the above construction. In other words, the distribution
of ah | oh under Dσ=0,h.

• Let π⋆
dec,σ,h(·) : O = Pτobs−1 → ∆(A) denote a regular conditional probability corre-

sponding to the distribution over ah given an augmented õh ∼ N (oh, σ
2I). In other words,

the distribution of ah | õh under Dσ,h.

When instantiating the composite MDP, π⋆ corresponds to its namesake, and π⋆
dec,σ,h to π⋆

dec,h.
Moreover, π⋆ as constructed above, P⋆

h denotes the distribution over sh under Dπ⋆ . By Lemma J.6,
this is in fact equal to the distribution over sh under Dexp. Notice further, therefore, that ϕo ◦ P⋆

h is
precisely the distribution of oh under Dexp.
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Remark J.2. We remark that by Theorem 7, π⋆
h is unique up to a measure zero set of oh as dis-

tributed as above, and π⋆
dec,h is unique almost surely for õh distributed as above. In particular, since

the latter has density with respect to the Lebesgue measure and infinite support, π⋆
dec,h is unique in

a Lebesgue almost everywhere sense.

J.1.3 Preliminaries for joint-distribution imitation.

This section introduces a further joint imitation gap, which we can make small under a stronger
bounded-memory assumption on Dexp stated below.
Definition J.4 (Joint and Final Imitation Gap). Given a chunking polcy π, we let

Ljoint,ε(π) := inf
µ

Pµ

[
max
t∈[T ]

max
{
∥xexp

t+1 − xπ
t+1∥, ∥u

exp
t − uπ

t ∥
}
> ε

]
,

where the infimum is over all couplings between the distribution of ρT under Dexp and that induced
by the policy π. We also define

Lfin,ε(π) := inf
µ

Pµ

[
∥xexp

T+1 − xπ
T+1∥ > ε

]
,

the loss restricted to the final states under each distribution.

Controlling Ljoint,ε(π) requires various additional stronger assumptions (which we do not require in
Theorem 3), one of which is that the demonstrator has bounded memory:
Definition J.5. We say that the demonstration distribution, synthesis oracle pair (Dexp, synth)
have τ -bounded memory if under ρT = (x1:T+1,u1:T ) ∼ Dexp and a1:H = synth(ρT ),
the conditional distribution of ah and x1:th−τ ,u1:th−τ are conditionally independence given
(xth−τ+1:th ,uth−τ+1:th−1).

We note that enforcing Definition J.5 can be relaxed to a mixing time assumption (see Remark J.5).
Moreover, we stress that we do not need the condition in Definition J.5 if we only seek imitation of
marginal distributions (as captured by Lmarg,ε and Lfin,ε), as in Theorem 3.

J.2 Translating Control Imitation Losses to Composite-MDP Imitation Gaps

Lemma J.1. Recall the imitation losses Definitions 2.2 and J.4, and the compsite-MDP imitation
gaps Definition D.1. Further consider, the substitutions defined in Appendix D.2, with π⋆ instanti-
ated as in Definition J.3. Given policies π = (πh) with πh : O = Pτobs−1 → A, we can extend
πh : S = Pτchunk

→ A by the natural embedding of Pτobs−1 into Pτchunk . Then, for any ε > 0,

Lmarg,ε(π) ≤ Γmarg,ε(π ∥ π⋆).

If we instead consider the the substitutions defined in Appendix D.2, but set dS to equal dIPS, which
only measures distance in the final coordinate of each trajectory chunk sh,

Lfin,ε(π) ≤ Γmarg,ε(π ∥ π⋆), dS(·, ·)← dIPS(·, ·) (J.2)

Finally, if Dexp has τ ≤ τobs-bounded memory,

Ljoint,ε(π) ≤ Γjoint,ε(π ∥ π⋆).

Proof. Let’s start with the first bound, let superscript exp denote objects from Dexp and superscript
π fromDπ , the distribution induced by chunking policy π. Letting infµ denote infima over couplings
between the two, we have

Lmarg,ε(π) := max
t∈[T ]

inf
µ

{
Pµ

[
∥xexp

t+1 − xπ
t+1∥ > ε

]
, Pµ [∥uexp

t − uπ
t ∥ > ε]

}
:= max

t∈[T ]
inf
µ

{
Pµ

[
∥xexp

t+1 − xπ
t+1∥ ∨ ∥u

exp
t − uπ

t ∥ > ε
]}

(a)

≤ max
h∈[H]

inf
µ

{
Pµ

[
max

0≤i≤τchunk
∥xexp

th+1−i − xπ
th+1−i∥ ∨ max

1≤i≤τchunk
∥uexp

th+1−i − uπ
th+1−i∥

]}
≤ max

h∈[H]
inf
µ

{
Pµ

[
dS(s

exp
h+1, s

π
h+1)

]}
,
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where step (a) uses that for any t ∈ [H], we can find some h such that t + 1 ∈ th+1 −
{0, 1, . . . , τchunk} and t ∈ th+1 − {1, 2, . . . , τchunk}.10

From Lemma J.6, sexph has the same marginal distribution as sπ
⋆

h , the distribution induced by π⋆ in
Definition J.3.11 Still, letting infµ′ denote infimum over couplings between Dπ and Dexp, equality
of thesemarginals suffices to ensure

Lmarg,ε(π) ≤ max
h∈[H]

inf
µ

{
Pµ′

[
dS(s

π⋆

h+1, s
π
h+1)

]}
,

As sh corresponds to a composite state sh in the composite MDP, the above is at most Γmarg,ε(π ∥
π⋆) as in definition Definition D.1. For the final-state imitation loss,

Lfin,ε(π) := inf
µ

Pµ

[
∥xexp

T+1 − xπ
T+1∥ > ε

]
≤ max

h∈[H]
inf
µ
{Pµ [dIPS(s

exp
h , sπh)]} ,

where again dIPS only measures error in the final state of sh. The corresponding bound in (J.2)
follows similarly.

Finally, we have

Ljoint,ε(π) := inf
µ

Pµ

[
max
t∈[T ]

max
{
∥xexp

t+1 − xπ
t+1∥, ∥u

exp
t − uπ

t ∥
}
> ε

]
,

When Dexp has τ ≤ τobs-bounded memory, then, the expert and π⋆-induced trajectories are identi-
cally distributed. Therefore, directly from this observation and Definition D.1,

Ljoint,ε(π) = inf
µ

Pµ

[
max
t∈[T ]

max
{
∥xπ⋆

t+1 − xπ
t+1∥, ∥uπ⋆

t − uπ
t ∥
}
> ε

]
≤ Γjoint,ε(π ∥ π⋆).

J.3 Proofs of main results

J.3.1 Proof of Theorem 1

The result is a direct consequence of the following points. First, with our instantition of the com-
posite MDP, we can bound Lmarg,ε(π̂) ≤ Γmarg,ε(π̂ ∥ π⋆) ≤ Γjoint,ε(π̂ ∥ π⋆) due to Lemma J.1;
and moreover, we have Ljoint,ε(π̂) ≤ Γjoint,ε(π̂ ∥ π⋆) when Dexp has τ ≤ τobs-bounded mem-
ory. The bound now follows from Proposition D.2, and the fact that Proposition D.1 verifies the
input-stability property, and Fact J.1.

J.3.2 Proof of Theorem 2 and a more precise statement.

In this section, we derive Theorem 2 from a more precise guarantee that exposes the various algo-
rithmic knobs in a more explicit manner.
Theorem 10. Let Assumption 3.1 hold, and let c1, . . . , c5 > 0 be as in Definition 3.2. Suppose that
the ε, σ, τchunk > 0 satisfy ε < c2, and τchunk ≥ c3, and 5dx + log

(
4σ
c1ε

)
≤ c24/(16σ

2). Then the
marginal imitation loss (Definition 2.2) and final-state imitation loss (Definition J.4) of the smoothed
π̂σ are bounded by

max {Lmarg,ε1 (π̂σ) ,Lfin,ε2 (π̂σ)} ≤ H
√
2τobs − 1

(
2ε

σ
+ ισ(ε)e

−Lβ(τchunk−τobs)
)

+

H∑
h=1

Eõh∼Dexp,σ,h
∆(ε/c1)

(
π⋆
dec,σ,h(õh), π̂h(õh)

)
.

(J.3)

and where ισ(ε) = 6c5

√
5dx + 2 log

(
4σ
c1ε

)
is logarithmic in 1/ε, and where

ε1 = ε+ σισ(ε), ε2 = ε+ σe−Lβ(τchunk−τobs)ι(ε).
10Recall th := (h− 1)τchunk + 1.
11Note the subtlety that the joint distribution of these may defer because π⋆ has limited memory.
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Remark J.3 (Parameter Dependencies). Each term in (J.3) can be made small by decreasing the
amount of noise σ in the smoothing, increasing the number of trajectories, and increasing the chunk
length τchunk; indeed, these are the levers by means of which we derive Theorem 2 just below.
Increasing τchunk comes at the (implicit) expense of increasing the length of composite actions,
thereby inducing a more challenging conditional generative modeling problem. Decreasing σ in-
creases sensitivity to the tolerance ε, and, as discuseed in Appendix L, may make the underlying
generative modeling problem more challenging. Note that the contribution of the additive σ-term in
ε2, used for the final-state lossLfin,ε, is exponentially-in-τchunk smaller than that in ε1. Interestingly,
our theory suggest no benefit to increasing τobs (corroborated empirically in [19]).

We now turn the proof of proof of Theorem 2.

Deduction. Theorem 2 from Theorem 10. Fix a desired ε0 for which

ε0 < min{1/2c1, 1/
√
c1/c2, 3c4c5}.

Then, taking ε = c1ε
2
0, we have ε < c2 and ε ≤ ε0/2. Select σ = 1

2ε0/ι⋆(ε0). For such an σ, we
have that as ι⋆(ε0) ≥ 6c5, σ ≤ 1

12c5
ε0, and thus

ισ(ε) = 6c5

√
5dx + 2 log

(
4σ

c1ε

)
= 6c5

√
5dx + 2 log

(
8σ

c21ε
2
0

)
≤ 6c5

√
5dx + 2 log

(
1

c5c21ε0

)
=: ι⋆(ε0)

and therefore, with our vari ε1 := ε+ σισ(ε) ≤ ε0/2 + ε0/2 ≤ ε0. Next, we verify the condition

c24/(16σ
2) ≥ 5dx + log

(
4c1σ

ε

)
= (ισ(ε)

2)/(6c5)
2

Rearranging, we need 36c25c
2
4

16 ≥ (σισ(ε)
2, and as (σισ(ε)2 ≤ ε0/2, it then suffices that ε0 ≤ 3c4c5,

which holds. Therefore, Theorem 2 implies

Lmarg,ε0(π̂σ) ≤ Hι⋆(ε0)
√
2τobs − 1

(
2c1ε0 + e−Lβ(τchunk−τobs)

)
+

H∑
h=1

Eõh∼Dexp,σ,h
∆(ε/c1)

(
π⋆
dec,σ,h(õh), π̂h(õh)

)
.

The first result follows by relabeling ε ← ε0 and taking τchunk − τobs ≥ 1
Lβ

log(c1/ε). The
second result is a consequence of Markov’s inequality, and the well behaved-ness of conditional
distributions established throughout Appendix F.

J.3.3 Proof of Theorem 10

Proof of Theorem 10. Lets begin by bounding Lmarg,ε(π). Recall the definitions of dS , dTVC, dIPS in
Appendix D, and let s⋆1:H+1 and s1:H+1 denote the composite states corresponding to a trajectory
(xπ⋆

1:T+1,u
π⋆

1:T ) under π⋆ and (xπ
1:T+1,u

π
1:T ), respectively, under the instantiation of the composite

MDP in Appendix D.2. We can view π⋆ and π (which depend only on observation chunks oh) as
policies in the composite MDP which are compatible with the decomposition Definition H.1. We
make the following points:

• In light of Lemma J.1,

Lmarg,ε1(π ∥ π⋆) ≤ Γmarg,ε1(π ∥ π⋆).

• By Lemma J.8, a consequence of Pinsker’s inequality, it holds that the Gaussian kernel Wσ

used in HINT is γσ-TVC (w.r.t. dTVC) with

γσ(u) =
u
√
2τobs − 1

2σ
(J.4)

• Note that dIPS(sh, s
′
h) = ∥xth − x′th∥ measures Euclidean distance between the last x-

coordinates of sh, s′h. Moreover, if s′h ∼ Wσ(sh) the last coordinate x′th of s′ is distributed

as N (xth , σ
2I). By Lemma J.7 with d = dx, that for r = 2σ ·

√
5dx + 2 log

(
1
p

)
pr = Ps′∼Wσ(s)[dIPS(s, s

′) > r] ≤ p. (J.5)
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• As (a) s⋆h corresponds to sh from ρT ∼ Dexp, (b) as π̂, π⋆
dec are functions of oh, and (c) by

recalling the definition of dos,ε in Definition D.1, ε ≤ c2 ensures

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(πh(̃s
⋆
h) ∥ π⋆

dec,h(̃s
⋆
h))

= Eoh∼Dexp,h
Eõh∼N (oh,σ2I) inf

µ∈C (π⋆
dec,σ,h(õh),π̂h(õh))

P(a,a′)∼µ[dA(a, a
′) ≥ ε]

≤ Eoh∼Dexp,h
Eõh∼N (oh,σ2I) inf

µ∈C (π⋆
dec,σ,h(õh),π̂h(õh))

P(a,a′)∼µ[dmax(a, a
′) ≥ ε/c1]

(Fact J.1)
= Eõh∼Dexp,σ,h

∆(ε/c1)(π
⋆
dec,σ,h(õh), π̂h(õh)).

• Finally, Proposition K.1 (formalizing Proposition D.1) ensures that under our assumption
τchunk ≥ c3/, and let rIPS = c4, γIPS,TVC(u) = c5u exp(−Lβ(τchunk − τobs)), γIPS,S(u) =
c5u for c3, c4, c5 given in Appendix K. Then, for dS , dTVC, dIPS as above, we have that π⋆

is (γIPS,TVC, γIPS,S , dIPS, rIPS)-IPS.

Consequently, for r = 2σ ·
√
5dx + 2 log

(
4σ
c1ε

)
∈ (0, 12rIPS), Theorem 9 (which, we recall, gener-

alizes Theorem 4 to account for the direct decomposition structure) implies

Lmarg,ε+2rc5(π̂σ) = Lmarg,ε+2rc5(π̂σ ∥ π⋆) ≤ Γmarg,ε+2rc5(π̂σ ∥ π⋆)

≤ H
(
ε

2σ
+

3

2σ

√
2τobs − 1

(
max

{
ε, 2rc5e

−Lβ(τchunk−τobs)
}))

+

H∑
h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(πh(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h))

≤ H
√
2τobs − 1

(
2ε

σ
+ 6σc5

√
5dx + 2 log

(
4σ

c1ε

)
e−Lβ(τchunk−τobs)

)

+

H∑
h=1

Eõh∼Dexp,σ,h
∆(ε/c1)(π

⋆
dec,σ,h(õh), π̂h(õh)).

≤ H
√
2τobs − 1

(
2ε

σ
+ σι(ε)

)
+

H∑
h=1

Eõh∼Dexp,σ,h
∆(ε/c1)(π

⋆
dec,σ,h(õh), π̂h(õh)).

Substituting in ε1 = ε+2rc5 = c1ε+4c5σ ·
√

5d+ 2 log
(

4σ
c1ε

)
≤ ε+σι(ε), the bound on Lmarg,ε1

is proved.

To show Lfin,ε2(π̂σ) satisfies the same bound, we replace dS in the above argument (as defined in
Appendix D.2) with dS(·, ·) ← dIPS(·, ·), where again we recall that dIPS(ss, s

′
s) = ∥xth − x′th∥

measures differences in the final associated control state. From Proposition K.1, it follows we can
take γIPS,S(u) = c5ue

−Lβτchunk . Thus, we can replace ε1 above with ε2 := ε + 4c5e
−Lβτchunkσ ·

(5dx + 2 log
(
1
ε

)
)1/2. This concludes the proof that

Lmarg,ε2(π̂σ) ≤ H
√
2τobs − 1

(
6c5

√
5dx + 2 log

(
4σ
c1ε

)
e−Lβ(τchunk−τobs) +

2ε

σ

)
,

which can be simplified as needed.

J.3.4 Proof of Theorem 3

Adopt the shorthand ∆h = Eõh∼Dexp,σ,h
∆(ε/c1)

(
π⋆
dec,σ,h(õh), π̂h(õh)

)
. From Theorem 2, it suf-

fices to show that with probability at least 1 − δ, it holds that ∆h ≤ ε2 for all h ∈ [H]. For
dA = τchunk(dx + du + dxdu), we have that a ∈ RdA . Note that by Assumption 3.1 it holds Dexp-
almost surely that we can crudely bound ||ah|| ≤

√
dAmax{RK, Rdyn} and thus the condition on
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q in Theorem 13 holds for

R =
√
dAmax{RK, Rdyn}.

By Assumption C.1, the conditions on the score class sθ hold for us to apply Theorem 13. Note that
by assumption,

Nexp ≥ c
(
CΘdR(R ∨

√
dA) log(dn)

ε8

)4ν

∨

(
d6A(R

4 ∨ d2A log3
(
HndRσ

δε

)
)

ε48
d2A

)4ν

, (J.6)

where we note that the right hand side is poly (CΘ, 1/ε,RK, dA, log(H/δ))
ν , and J and α are set as

in (L.1). Taking a union bound over h ∈ [H] and applying Theorem 13 tells us that with probability
at least 1− δ, for all h ∈ [H], it holds that

Eõh∼qõh

[
inf

µ∈C (DDPM(s
θ̂
,õh),q(·|õh))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε)
]
≤ ε.

Thus, it holds that with probability at least 1− δ,
H∑

h=1

∆h ≤ Hε.

Plugging this in to Theorem 2 concludes the proof of the first statement. The proof of the second
statement is analogous.

J.4 Imitation of the joint trajectory under total variation continuity of demonstrator policy

Here, we show that if the demonstrator policy has (a) bounded memory and (b) satisfies a certain
continuity property in total variation distance, then we can imitate the joint distribution over trajec-
tories, not just marginals. Recall the joint imitation loss from Ljoint,ε from Definition J.4.
Theorem 11. Consider the setting Theorem 10, and define as shorthand

∆h,ε := Eõh∼Dexp,σ,h
∆(ε/c1)

(
π⋆
dec,σ,h(õh), π̂h(õh)

)
.

Suppose that, in addition, there is a strictly increasing function γ(·) such that for all oh, o′h ∈ O,

TV(π⋆(oh), π
⋆(o′h)) ≤ γ(∥oh − o′h∥),

where π⋆ is defined is the conditional in Definition J.3. Further, suppose that Dexp has τ ≤ τobs
bounded memory (Definition J.5). Then, with ε1 := ε+ σι(ε) as in Theorem 2,

Ljoint,ε1(π̂σ) ≤ H · ERRTVC(σ, γ)

+H
√
2τobs − 1

(
2ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e−Lβ(τchunk−τobs)

)
+

H∑
h=1

∆h,ε.

where we define d0 = τobsdx + (τobs − 1)du and u0 = γ(8σ
√
d0 log(9)), and

ERRTVC(σ, γ) =

{
2cσ
√
d0 linear γ(u) = c · u, c > 0

u0 +
∫∞
u0
e−

γ−1(u)2

64σ2 du general γ(·)
. (J.7)

In particular, under Assumption C.1, if

Nexp ≥ c
(
CΘdAR(R ∨

√
dA) log(dn)

(ε/σ)4

)4ν

∨

(
d6A(R

4 ∨ d2A log3
(
HndRσ

δε

)
)

(ε/σ)24
d2A

)4ν

,

then with probability at least 1− δ, it holds that

Ljoint,ε1(π̂σ) ≤ H · ERRTVC(σ, γ) +H
√
2τobs − 1

(
3ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e−Lβ(τchunk−τobs)

)
.
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Remark J.4. The second term in our bound on Ljoint,ε(π) is identical to the bound in Theorem 2.
The term ERRTVC captures the additional penalty we pay to strengthen for imitation of marginals to
imitation of joint distributions. Notice that if limu→0 γ(u) → 0 and γ(u) is sufficiently integrable,
then, limσ→0 Err(σ, γ) = 0. This is most clear in the linear γ(·) case, where Err(σ, γ) = O (σ).

The proof is given in Appendix J.4.1; it mirrors that of Theorem 2, but replaces Theorem 4 with the
following imitation guarantee in the composite MDP abstraction of Appendix D, which bounds the
joint imitation gap relative to π⋆ if π⋆ is TVC.
Proposition J.2. Consider the set-up of Appendix D, and suppose that the assumptions of Theo-
rem 9, but that, in addition, the expert policy π⋆ is γ̃(·)-TVC with respect to the pseudometric dTVC,
where γ̃ : R≥0 → R≥0 is strictly increasing. Then, for all parameters as in Theorem 4, and any
r̃ > 0,

Γjoint,ε(π̂ ◦Wσ ∥ π⋆) ≤ H
∫ ∞
0

max
s

Ps′∼Wσ(s)[dTVC(s, s
′) > γ̃−1(u)/2]du

+H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
∑H

h=1 Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h)),

where the term in color on the first line is the only term that differs from the bound in Theorem 4.

Moreover, in the special case where all of the distributions of dTVC(s, s
′) | s′ ∼Wσ(s) are stochasti-

cally dominated by a common random variable Z, and further more γ̃(u) = c̃ · u for some constant
c̃, then our bound may be simplified to
Γjoint,ε(π̂ ◦Wσ ∥ π⋆) ≤ 2c̃HE[Z]

+H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
∑H

h=1 Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h)).

Proof Sketch. Proposition J.2 is derived below in Appendix J.4.2. It is corollary of Theorem 4,
combined with adjoining the coupling constructed therein to a TV distance coupling between π⋆

rep
(whose joints we can always imitate) and π⋆. Coupling trajectories induced by π⋆

rep and π⋆ relies
on the TVC of π⋆, as well as concentration of Wσ .

Using the above proposition, we can derive the following consequences for imitation of the joint
distribution.

J.4.1 Proof of Theorem 11

The proof is nearly identical to that of Theorem 2, with the modifications that we replace our use
of Theorem 4 with Proposition J.2 taking γ̃ ← γ. By Lemma J.1 and the assumpton that Dexp has
τ ≤ τobs-bounded memory, it suffices to bound the joint-gap in the composite MDP:

Ljoint,ε(π) ≤ Γjoint,ε(π ∥ π⋆).

We bound this directly from Proposition J.2. The final statement follows from Theorem 13 in the
same way that it does in the proof of Theorem 3.

The only remaining modification, then, is to evaluate the additional additive terms colored in purple
in Proposition J.2; we will show that ERRTVC as defined in (J.7) suffices as an upper bound. We have
two cases. In both, let d0 = τobsdx+(τobs−1)du. As dTVC measures the distance between the chunks
oh = ϕo(sh), õh = ϕo(s

′
h), which have dimension d0, and since we ϕo ◦Wσ(·) = N (·, σ2Id0), we

have

dTVC(ϕo ◦ s, ϕo ◦ s′) | s′ ∼Wσ(s)
dist
= ∥γ∥, γ ∼ N (0, σ2Id0

) (J.8)

General γ(·). Eq. (J.8) and Lemma J.7 imply that

Ps′∼Wσ(s)[dTVC(s, s
′)] ≤ exp(−r2/16σ2), r ≥ 4σd0 log(9).

Hence, if u0 = γ(8σd0 log(9)), then

P[dTVC(s, s
′) > γ−1(u)/2] ≤ exp(−γ−1(u)2/64σ2), u ≥ u0.

Thus, as probabilities are at most one,∫ ∞
0

max
s

Ps′∼Wσ(s)[dTVC(s, s
′) > γ−1(u)/2]du ≤ u0 +

∫ ∞
u0

e−
γ−1(u)2

64σ2 du,

as needed.
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Linear γ(·). In the special case where γ(u) = c(u), Eq. (J.8) implies that we can take Z = ∥γ∥
where γ ∼ N (0, σ2Id0) in the second part of Proposition J.2. The corresponding additive term is
then 2HcE[∥γ∥]. By Jensen’s inequality, E[∥γ∥] ≤

√
E[∥γ∥2] =

√
σ2d0 = σ

√
d0, as needed.

J.4.2 Proof of Proposition J.2

Define the shorthand

B := H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
∑H

h=1 Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec(̃s
⋆
h)),

and recall that Theorem 4 ensures Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep) ≤ B. Further, recall from Definition D.1

that

Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep) = inf

µ1

Pµ1

[
max
h∈[H]

max{dS(sreph+1, ŝh+1), dA(a
rep
h , âh)} > ε

]
,

where the infinum is over all couplings µ1 of (̂s1:H+1, â1:H) ∼ Dπ̂◦Wσ
and (srep1:H+1, a

rep
1:H) ∼ Dπ⋆

rep

with Pµ1
[̂s1 = srep1 ] = 1. For any coupling µ1, we can consider another coupling µ2 of

(s⋆1:H+1, a
⋆
1:H) ∼ Dπ⋆ and (srep1:H+1, a

rep
1:H) ∼ Dπ⋆

rep
with Pµ2

[s⋆1 = srep1 ] = 1. By the “gluing
lemma” (Lemma F.2), we can construct a combined coupling µ which respects the marginals of µ1

and µ2. This combined coupling induces a joint coupling µ̃1 of Dπ̂◦Wσ and Dπ⋆ which, by a union
bound, satisfies Pµ̃1 [̂s1 = s⋆1] = 1. Thus, by a union bound, we can bound

Γjoint,ε(π̂ ◦Wσ ∥ π⋆) ≤ Pµ̃1

[
max
h∈[H]

max{dS(s⋆h+1, ŝh+1), dA(a
⋆
h, âh)} > ε

]
≤ Pµ1

[
max
h∈[H]

max{dS(sreph+1, ŝh+1), dA(a
rep
h , âh)} > ε

]
+ Pµ2

[
(s⋆1:H+1, a

⋆
1:H) ̸= (srep1:H+1, a

rep
1:H)

]
.

Passing to the infinum over µ1, µ2,

Γjoint,ε(π̂ ◦Wσ ∥ π⋆) ≤ Γjoint,ε(π̂ ◦Wσ ∥ π⋆
rep)︸ ︷︷ ︸

≤B

+ inf
µ2

Pµ2

[
(s⋆1:H+1, a

⋆
1:H) ̸= (srep1:H+1, a

rep
1:H)

]
,

where again µ2 quantify couplines of (s⋆1:H+1, a
⋆
1:H) ∼ Dπ⋆ and (srep1:H+1, a

rep
1:H) ∼ Dπ⋆

rep
with

Pµ2
[s⋆1 = srep1 ] = 1. Bounding the infinum over µ2 with Proposition J.4, we have

Γjoint,ε(π̂ ◦Wσ ∥ π⋆) ≤ B +

H∑
h=1

Es⋆h
TV(π⋆

h(s
⋆
h), π

⋆
rep,h(s

⋆
h))

To conclude, it suffices to show the following bound:
Claim J.3. For any s ∈ S, h ∈ [H], and r̃ ≥ 0, TV(π⋆

h(s), π
⋆
rep,h(s)) ≤∫∞

0
maxs maxs Ps′∼Wσ(s)[dTVC(s, s

′) > γ̃−1(u)/2].

Proof. To show this claim, we note that we can represent (via the notation in Appendix H.3)
π⋆
rep,h(s) = π⋆

h ◦ W⋆
rep,h(s), where W⋆

rep,h is the replica-kernel defined in Definition H.5. Thus,
we can construct a coupling of a⋆ ∼ π⋆

h(s) and arep ∼ π⋆
rep,h(s) by introducing an intermediate

state s′ ∼ W⋆
rep,h(s) and arep ∼ π⋆(s′). By Lemma F.4, the fact that TV distance is bounded by

one, and the assumption that π⋆ is γ̃-TVC, we then have

TV(π⋆
h(s), π

⋆
rep,h(s)) ≤ Es′∼W⋆

rep,h(s)
TV(π⋆

h(s), π
⋆
h(s
′)).

Recall the well-known formula that, for a non-negative random variable X , E[X] =
∫∞
0

P[X >
u]du [22]. From this formula, we find

TV(π⋆
h(s), π

⋆
rep,h(s)) ≤

∫ ∞
0

P[TV(π⋆
h(s), π

⋆
h(s
′)) > u]du

(i)

≤
∫ ∞
0

P[dTVC(s, s
′) > γ̃−1(u)]du
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where in (i) we used that TV(π⋆
h(s), π

⋆
h(s
′)) ≤ γ̃(dTVC(s, s

′)) and that, as γ̃(·) is strictly in-
creasing, we have the equality of events {TV(π⋆

h(s), π
⋆
h(s
′)) > u} = {dTVC(s, s

′) > γ−1(u)}.
Arguing as in the proof of Lemma H.5, we have that Ps′∼Wσ(s)[dTVC(s, s

′) > γ̃−1(u)] ≤
maxs Ps′∼Wσ(s)[dTVC(s, s

′) > γ̃−1(u)/2]. Hence, we conclude

TV(π⋆
h(s), π

⋆
rep,h(s)) ≤

∫ ∞
0

max
s

Ps′∼Wσ(s)[dTVC(s, s
′) > γ̃−1(u)/2]du

which proves the first guarantee.

With the above claim proven, we conclude the proof of the first statement of Proposition J.2. For
the second statement, we observe that under the stated stochastic domination assumption by Z, and
if γ̃(u) = c̃ · u, then maxs Ps′∼Wσ(s)[dTVC(s, s

′) > γ̃−1(u)/2] ≤ P[Z > u
2c ]. Hence, by a change of

variables u = t
2c ,∫ ∞

0

max
s

Ps′∼Wσ(s)[dTVC(s, s
′) > γ̃−1(u)/2]du ≤

∫ ∞
0

P[Z >
u

2c
] = 2c

∫ ∞
0

P[Z > u] = 2cE[Z],

where again we invoke that Z must be nonnegative (to stochastically dominate non-negative random
variables), and thus used the expectation formula referenced above.

J.5 Imitation in total variation distance

Here, we notice that estimating the score in TV distance fascilliates estimation in the composite
MDP, with no smoothing:
Theorem 12. Define the error term

∆TV,h(π̂) :=

H∑
h=1

Eoh∼Dexp,h
∆(ε) (π

⋆
h(oh), π̂h(oh))

∣∣
ε=0

We have the characterization ∆TV,h(π̂) = EohTV(π
⋆
h(oh), π̂h(oh)) where oh has the distribution

induced by π̂, and π⋆(oh) denotes the distribution of ah | oh under Dexp as in Definition J.3. Then,
under no additional assumption (not even those in Section 3),

Lfin,ε=0(π̂σ) ≤ Lmarg,ε=0(π̂σ) ≤
H∑

h=1

∆TV,h(π̂)

In in addition π⋆ has τ -bounded memory(Definition J.5) for τ ≤ τobs, then for Ljoint,ε as in Defini-
tion J.4,

Ljoint,ε=0(π̂) ≤
H∑

h=1

∆TV,h(π̂)

The first part of the above theorem is a direct consequence Proposition F.3. Then, the second part
of the toerem follows by combining the proposition below in the composite MDP, together with
the correct instantiations for control, and Lemma J.1 to convert Lmarg,ε and Lfin,ε into Γmarg,ε ≤
Γjoint,ε, and Γjoint,ε, respectively.
Proposition J.4. Consider the composite MDP setting of Appendix D. Then, there exists a coupling

TV(Dπ̂,Dπ⋆) ≤
H∑

h=1

Es⋆h∼P⋆
h
TV(π⋆

h(s
⋆
h), π̂h(s

⋆
h))

Thus, there exists a a couple µ ∈ C (Dπ⋆ ,Dπ̂) of (s⋆1:H+1, a
⋆
1:H) ∼ Dπ⋆ and (̂s1:H+1, â1:H) ∼

Dπ̂ such that Pµ[(s
⋆
1:H+1, a

⋆
1:H) ̸= (ŝ1:H+1, â1:H)] is bounded by the right-hand side of the above

display. Moreover, this coupling can be constructed such that Pµ[s
⋆
1 = ŝ1].

Proof of Proposition J.4. This is a direct consequence of Lemma J.9, with P1 ← Pinit, and Qh+1

corresponding to the kernel for sampling a⋆h ∼ π⋆(s⋆h) and incrementing the dynamics s⋆h+1 =
Fh(s

⋆
h, a

⋆
h), and Q′h the same for âh ∼ π̂h(̂sh), and similar incrementing of the dynamics.
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J.6 Consequence for expected costs

Finally, we prove Proposition J.5, which shows that it is sufficient to control the imitation losses in
Definition 2.2 if we wish to control the difference of a Lipschitz cost function between the learned
policy and the expert distribution:
Proposition J.5. Recall the marginal and final imitation losses in Definition 2.2, and also the joint
imitation loss in Definition J.4. Consider a cost function J : PT → R on trajectories ρT ∈ PT .
Finally, let ρT ∼ Dexp, and let ρ′T ∼ Dπ be under the distribution induced by π Then,

(a) If maxρT
|J(ρT )| ≤ B, and ρT is L Lipschitz in the Euclidean norm12 (treating ρT as

Euclidean vector in R(T+1)dx+Tdu ), then

|EDexp
[J(ρT )]− EDπ

[J(ρ′T )]| ≤
√
2TLε+ 2BLjoint,ε(π).

(b) If J decomposes into a sum of of costs, J(ρ) = ℓT+1,1(x1+T )+
∑T

t=1 ℓt,1(xt)+ ℓt,2(ut),
where ℓt,1(·), ℓt,2(·) are L-Lipschitz and bounded in magnitude in B. Then,

|EDexp
[J(ρT )]− EDπ

[J(ρ′T )]| ≤ 4TBLmarg,ε(π) + 2TLε.

(c) J(ρ) = ℓT+1,1(xT+1) depends only on xT+1, then

|EDexp [J(ρT )]− EDπ [J(ρ
′
T )]| ≤ +2BLfin,ε(π) + Lε

Thus, for our imitation guarantees to apply to most natural cost functions used in practice, it suffices
to control the imitation losses defined above.

Proof of Proposition J.5. Let ρT = (x1:T+1,u1:T ) ∼ Dexp, and let ρ′T = (x′1:T+1,u
′
1:T ) be under

the distribution induced by π.

Part (a). For any coupling µ between the two under which x1 = x′1, and let Eε := {maxt ∥xt+1−
x′t+1∥ ∨ ∥ut − u′t∥ ≤ ε}.

|E[J(ρT )]− E[J(ρ′T )]| = |Eµ[J(ρT )− J(ρ′T )]|
≤ Eµ[|J(ρT )− J(ρ′T )|]
≤ 2B Pµ[Ecε ] + Eµ[|J(ρT )− J(ρ′T )|I{Eε}]

By passing to an infinum over couplings, infµ Pµ[Ecε ] ≤ Ljoint,ε(π). Moreover, we observe that
under µ, x1 = x′1, and the remaining coordinates, (x2:T+1,u1:T ) and (x′2:T+1,u

′
1:T ) are the con-

catentation of 2T vectors, so the Euclidean norm of the concatenations ∥ρT − ρ′T ∥ is at most√
2T maxt ∥xt+1 − x′t+1∥ ∨ ∥ut − u′t∥, which on Eε is at most

√
2Tε. Using Lipschitz-ness of

J concludes.

Part (b) Using the adaptive discomposition of the cost and the fact that x1 and x′1 have the same
distributions,

|E[J(ρT )]− E[J(ρ′T )]| = |
T∑

t=1

(E[ℓt,1(xt+1)]− E[ℓt,1(x′t+1)) + (E[ℓt,2(ut)]− E[ℓt,2(u′1))|

≤
T∑

t=1

|E[ℓt,1(xt+1)]− E[ℓt,1(x′t+1)|+ |E[ℓt,2(ut)]− E[ℓt,2(u′1)|

Applying similar arguments as in part (a) to each term, we can bound

max
{
|E[ℓt,1(xt+1)]− E[ℓt,1(x′t+1)|, |E[ℓt,2(ut)]− E[ℓt,2(u′1)|

}
≤ 2BLmarg,ε(π) + Lε.

Summing over the 2T terms concludes.

Part (c). Follows similar to part (b).
12Of course, Lipschitznes in other norms can be derived, albeit with different T dependence
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J.7 Useful Lemmata

J.7.1 On the trajectories induced by π⋆ from Dexp

The key step in all of our proofs is to relate the expert distribution over trajectories ρT ∼ Dexp to the
distribution induced by the chunking policy π⋆ in Definition J.3, which induces distribution Dπ⋆ .
Lemma J.6. There exists a sequence of probability kernels π⋆

h mapping oh → ∆(A) such that the
chunking policy π⋆ = (π⋆

h)1≤h≤H satisfies the following:

(a) π⋆
h(oh) is equal to the almost-sure conditional probability of ah conditioned on oh under

ρT ∼ Dexp and a1:H = synth(ρT ).

(b) The marginal distribution over each sh ∼ P⋆
h (as defined in Definition J.3) is the same as

the marginals of each sh under ρT ∼ Dexp, and hence, (sh, ah) ∼ Dexp has the same
distribution as (sh, ah) where sh ∼ P⋆

h, ah | sh ∼ π⋆
h(sh).

(c) If Dexp has τ -bounded memory (Definition J.5) and if τ ≤ τobs, then the joint distribution
of ρT induced by π⋆ is equal to the joint distribution over ρT under Dexp.

(d) Again, let P⋆
h be as defined in Definition J.3. Consider any sequence of kernels W1:H

satisfying the constraint that ϕo ◦Wh(s) ≪ ϕo ◦ P⋆
h forall s, h. Consider a sequence of

states s1:H+1 drawn as in Definition H.9 by s1 ∼ Pinit, s̃h ∼ Wh(sh), and sa ∼ π⋆
h(s̃h),

ss+1 = Fh(sh, ah). Then, let õh = ϕo(s̃h) and ah ∼ π⋆
h(ah). Then the distribution of

(õh, ah) is absolutely continuous with respect to the distribution of (õh, ah) ∼ Dexp.
Remark J.5 (Replacing τ -bounded memory with mixing). We can replace that τ -bounded memory
condition to the following mixing assumption. Define the chunk ρi≤j = (xi:j ,ui:j−1). Define the
measures

Qh(oh) = Pa1:h−1,ρ1:th−τobs−1,ah:H ,ρth:T+1|oh

Q⊗h (oh) = Pa1:h−1,ρ1:th−τobs−1|oh ⊗Pah:H ,ρth:T+1|oh .

which describes the conditional distribution of the whole trajectory without oh and the product-
distribution of the conditional distributions of the before-oh part of the trajectory, and after oh-part.
Under the condition

Eoh from ρT∼Dexp
TV
(
Qh(oh),Q

⊗
h (oh)

)
≤ εmix(τobs),

which measures how close the before- and after-oh parts of the trajectory are to being conditionally
independent, one can leverage Lemma J.9 to show that

TV(Dπ⋆ ,Dexp) ≤ Hεmix(τobs)

Lemma J.6 corresponds to the special when when εmix = 0.

Proof of Lemma J.6. We prove each part in sequence

Part (a). follows from the fact that all random variables are in real vector spaces, and thus Polish
spaces. Hence, we can invoke the existence of regular conditional probabilities by Theorem 7.

Part (b). This follows by marginalization and Markovianity of the dynamics. Specifically, let
(ρ⋆

T , a
⋆
1:H be a trajectory and composite actions induced by the chunking policy π⋆, and let

(ρT , a1:H) be the same induced by Dexp. Let o⋆h denote observation chunks of ρ⋆
T , and let oh

observation chunks of ρT (length τobs − 1); similarly, denote by s⋆h and sh the respective trajectory
chunks (length τchunk ≥ τobs).
We argue inductively that the trajectory chunks s⋆h and sh are identically distribued for each h. For
h = 1, s⋆1 and s1 are identically distributed according to Dx1

. Now assume we have show that s⋆h
and sh are identically distributed. As observation chunks are sub-chunks of trajectory chunks, this
means that o⋆h and oh are identically distributed. By part (a), it follows that (o⋆h, a

⋆
h) and (oh, ah)

are identically distributed. In particular, (x⋆
th
, a⋆h) and (xth , ah) are identically distributed, where

x⋆
th

(resp xth ) these denote the th-th control state under π⋆ (resp. Dexp). By Markovianity of the
dynamics, s⋆h+1 and sh+1 are functions of (x⋆

th
, a⋆h) and (xth , ah), respectively, s⋆h+1 and sh+1 are

identically distributed, as needed.
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Part (c). When Dexp has τ -bounded memory and τ ≤ τobs, then we have the almost-sure equality

PDexp [ah ∈ · | x1:th ,u1:th ] = PDexp [ah ∈ · | oh] = π⋆
h(oh)[ah ∈ ·].

Finally, xth+1:th+1
,uth:th+1−1 are determined by xth and ah, this inductively establishes equality

of the joint-trajectory distributions.

Part (d) That the distributions of õh = ϕo(̃sh) under the construction in part (d) is absolutely
continuous with respect to õh under Dexp coincide is immediate from the condition of Wh. The
second part follows from part (a).

J.7.2 Concentration and TVC of Gaussian Smoothing.

We now include two easy lemmata necessary for the proof. The first shows that pr is small when r
is Θ(σ) by elementary Gaussian concentration:

Lemma J.7. Suppose that γ ∼ N (0, σ2I) is a centred Gaussian vector with covariance σ2I in Rd

for some σ > 0. Then for all p > 0, it holds with probability at least 1− p that

||γ|| ≤ 2σ ·

√
2d log(9) + 2 log

(
1

p

)
≤ 2σ ·

√
5d+ 2 log

(
1

p

)
Moreover, for r ≥ 4σ

√
d log(9), P[||γ||] ≥ r] ≤ exp(−r2/16σ2).

Proof. We apply the standard covering based argument as in, e.g., Vershynin [71, Section 4.2]. Note
that

||γ|| = sup
w∈Sd−1

⟨γ,w⟩ ,

where Sd−1 is the unit sphere in Rd. Let U denote a minimal (1/4)-net on Sd−1 and observe that a
simple computation tells us that

sup
w∈Sd−1

⟨γ,w⟩ ≤ 2 ·max
w∈U
⟨w,γ⟩ .

A classical volume argument (see for example, Vershynin [71, Section 4.2]) tells us that |U| ≤ 9d.
A classical Gaussian tail bound tells us that for any w ∈ Sd−1, it holds that for any r > 0,

P (⟨w,γ⟩ > r) ≤ e−
r2

2σ2 .

Thus by a union bound, we have

P (||γ|| > r) ≤ |U| ·max
w∈U

P
(
||γ|| > r

2

)
≤ 9d · e−

r2

8σ2 .

Inverting concludes the proof.

The second lemma shows that the relevant smoothing kernel is TVC:
Lemma J.8. For any σ > 0, let ϕo and Wσ be as in Definition J.1 kernel, then Wσ is γTVC-TVC for
with respect to dTVC (as defined in Appendix D.2)

γTVC(u) =
u
√
2τobs − 1

2σ
.

Proof. Recall that ϕo denotes projection onto the O-component of the direct decomposition in Def-
inition H.1, i.e. projects onto the observation chunk oh. We apply Pinsker’s inequality [52]: Then,
for for s, s′ ∈ Rp, we have

TV (ϕo ◦Wσ(s), ϕo ◦Wσ(s
′)) ≤

√
1

2
·DKL (ϕo ◦Wσ(s) ∥ ϕo ◦Wσ(s′)).
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Note that for s = sh with corresponding observation chunk oh ϕo ◦Wσ(s) ∼ N (oh, σ
2I). Similarly,

for o′h corresponding to s′, ϕo ◦Wσ(s
′) ∼ N (o′h, σ

2I). Hence,

DKL (ϕo ◦Wσ(s) ∥ ϕo ◦Wσ(s
′)) ≤ ||oh − o′h||

2

2σ2
.

Thus, we conclude TV (ϕo ◦Wσ(s), ϕo ◦Wσ(s
′)) ≤ ||oh−o

′
h||

2σ . Finally, we upper bound the Eu-
clidean norm ||oh − o′h|| of vectors consistening of 2τobs − 1 sub-vectors via dTVC (which is the
maximum Euclidean norm of these subvectors) via ||oh − o′h|| ≤

√
2τobs − 1dTVC(s, s

′).

J.7.3 Total Variation Telescoping

Lemma J.9 (Total Variation Telescoping). Let Y1, . . . ,YH ,YH+1 be Polish spaces. Let P1 ∈
∆(Y1), and let Qh,Q

′
h ∈ ∆(Yh | X ,Y1:h−1), h > 1. Define P′1 = P1, and recursively define

Ph = law(Qh;Ph−1), P′h = law(Q′h;P
′
h−1), h > 1.

Then,

TV(PH+1,P
′
H+1) ≤

H∑
h=1

EY1:h∼Ph
TV(Qh+1(· | Y1:h),Q′h+1(· | Y1:h))

Moreover, there exists a coupling of µ ∈ C (PH+1,P
′
H+1) over Y1:H+1 ∼ PH+1 and Y1:H+1] ∼

P′H+1 such that

Pµ[Y1 = Y ′1 ] = 1, Pµ[Y1:H+1 ̸= Y ′1:H+1] ≤
H∑

h=1

EY1:h∼Ph
TV(Qh+1(· | Y1:h),Q′h+1(· | Y1:h)).

Proof. To prove the first part of the lemma, define Q′i,j for 2 ≤ i ≤ j ≤ H + 1 by Q′i,i = Qi define
Q′i,j by appending Q′i,j to Q′i,j−1. and law(Q′i,j ; (·)) = law(Q′j ; law(Qi,j−1; (·))′). We now define

P(i) = law(Q′i+1,H+1;Pi),

with the convenction law(Q′H+2,H+1;PH+1) = PH+1. Note that P(H+1) = PH+1, and P(1) =

P′H+1. Then, because TV distance is a metric,

TV(PH+1,P
′
H+1) ≤

H∑
h=1

TV(P(i),P(i+1))

Moreover, we can write P(i) = law(Q′i+2,H+1; law(Q
′
i+1;Pi)) and Pi+1 = law(Qi+1;Pi). Thus,

TV(P(i),P(i+1)) = TV(law(Q′i+2,H+1; law(Q
′
i+1;Pi)), law(Q

′
i+2,H+1; law(Qi+1;Pi))

(Lemma F.4)

= TV(law(Q′i+1;Pi), law(Qi+1;Pi)

= EY1:i∼Pi
TV(Q′i(Y1:i),Qi(Y1:i)). (Corollary F.1)

This completes the first part of the demonstration (noting symmetry of TV). The second part follows
from Corollary F.1, by letting Y ← Y1, and X ← Y2:H+1 in that lemma.

K Stability in the Control System

This section proves our various stability conditions. Precisely, we establish the following guarantee:
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Proposition K.1. Let cγ, cξ, c̄β, c̄γ, Lβ be the constants defined in Assumption 3.1. In terms of
these, define

α = c̄β(4c̄γmin{cγ, cξ/4c̄γ}+ cξ)

c1 := 4c̄γc̄β(2 + αLstab + 2Rdyn)

c2 := max{1, c1)−1 min{cγ, cξ/2c̄γ}

c3 :=
1

Lβ
log(2ec̄β)

c4 := cξ/2

c5 := 2c̄β

For actions a = (κk)1≤k≤τchunk
where κk(x) = ūk + K̄k(x− x̄k) are affine primitive controllers,

define dmax(a, a
′) := max1≤k≤τchunk

(∥ūk − ū′k∥+ ∥x̄k − x̄′k∥+ ∥K̄k − K̄′k∥), and let

dA(a, a
′) := c1dmax(a, a

′) · I∞{dmax(a, a
′) ≤ c2}

Then, if τchunk ≥ c3/η, the policy π⋆ as defined in Definition J.3 satisfies (rIPS, γIPS,TVC, γIPS,S , dIPS)-
restricted IPS (Definition H.9) with dA as above, and with

rIPS = c4, γIPS,TVC(u) = c5u exp(−η(τchunk − τobs)/Lstab), γIPS,S(u) = c5u.

Appendix K.1 proves Proposition K.1, based on a lemma whose proof is given in Appendix K.2.

In what follows, we justify our assumption of a stabilizing synthesis oracle, Assumption 3.1. First,
Appendix K.4 shows that if the system dynamics are smooth, than time-varying affine controllers
whose gains stabilize the Jacobian linearization of the given system satisfy Definition 3.1. This
result is stated in Appendix K.3, along with the requisite assumptions, and proven in Appendix K.4
, based on a lemma whose proof is given in Appendix K.5.

Finally, Appendix K.6 shows how a synthesis oracle can produce gains which stabilize the linearized
dynamics can obtained by solving the Riccati equation, assuming sufficient dynamical regularity.
Finally, Appendix K.7 gives the solutions to various scalar recursions used in the proofs throughout.

K.1 Proof of Proposition K.1

We now translate the incremental stability guarantee about into the IPS guarantee needed by Propo-
sition K.1. The core technical ingredient is the following lemma, whose proof we defer to Ap-
pendix K.2.
Lemma K.2 (Trajectory-tracking via t-ISS). Consider a given sequence (x̃th), and suppose that
ah = κth:th+1−1 is local-t-ISS at x̃th for each 1 ≤ h ≤ H (with parameters as in Definition 3.1.
Consider consistent trajectories (x1:T+1,u1:T ), (x′1:T+1,u1:T ) satisfying

ut = κt(xt), u′t+1 = κ′t(x
′
t), x1 = x′1, max

h
∥x̃th − xth∥ ≤ r ≤ cξ/2

Further, define the sequence (x̃t) by setting, for each h,

x̂th := x̃th , x̂th+i := f(x̂th+i, κt(x̂th+i−1)), i ∈ {1, 2, . . . , τchunk − 1} (K.1)

Then, the following guarantees hold

(a) ∥xth+i − x̂th+i∥ ≤ β(r, i) for i ∈ {0, 1, 2, . . . , τchunk − 1} and h ∈ [H].

(b) Suppose that ε > 0 satisfies

γ−1(β(2γ(ε), τchunk) ≤ ε ≤ min{cγ,γ−1(cξ/4)}
and that one of the following hold

max
1≤t≤T

sup
∥δx∥≤α(ε)

∥κt(xt + δx)− κ′t(xt + δx)∥ ≤ ε, α(ε) := 2β(2γ(ε), 0), or(K.2)

max
1≤t≤T

sup
∥δx∥≤α(ε)+β(r,0)

∥κt(x̂t + δx)− κ′t(x̂t + δx)∥ ≤ ε, (K.3)

Then for all h ∈ [H], i ∈ {0, 1, . . . , τchunk}, and t ∈ [T ],

∥ut − u′t∥ ≤ ε ≤ α ∥xth+i − x′th+i∥ ≤ β(2γ(ε), i) + γ(ε) ≤ α
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As a consequence, we derive the following reduction from IPS and input-stability in the composite
MDP to t-ISS.
Definition K.1 (Instantiation of the composite MDP for general primitive controllers). In this sec-
tion, we summarize the instantiation of the MDP in Appendix J:

• States sh = sh and dS , dTVC, dIPS are just as in Appendix D. Moreover, oh = ϕo ◦ sh.

• The kernel Wσ(·) is the same as (J.1) in Appendix J, applying N (0, σ2I) noise in the
coordinates in oh.

• Actions ah are sequences of affine primitive controllers κ1:τchunk .

• π⋆ = (π⋆
h) be the policy induced by the conditional distribution of a | oh as constructed in

Definition J.3 in Appendix J.

Lemma K.3. Instantiate the composite MDP as in Definition K.1, with π⋆ as in Definition J.3.
Furthermore, suppose that under (ρT , a1:H) ∼ Dexp with ρT = (x1:T+1,uT ), the following both
hold with probability one:

• Each action ah satisfies our notion of incremental stability (Definition 3.1) with moduli
γ(·),β(·, ·), constants cγ, cξ

• xt ∈ X0 for some set X0 ⊂ Rdx , and κt ∈ K0 for some set of primitive controllers
K0 ⊂ K.13

Finally, let ε0 > 0 satisfy (E.1), that is:

γ−1(β(2γ(ε0), τchunk) ≤ ε0 ≤ min{cγ,γ−1(cξ/4)}, (K.4)

For given α > 0, let Dα(a, a
′) be a function which, for all composite actions a = κ1:τchunk satisfying

κi ∈ K0 all arbitrary composite actions a′ = κ1:τchunk ∈ Kτchunk , satisfies

Dα(a, a
′) ≥ sup

x∈X0

sup
δx:∥δx∥≤α

max
1≤i≤τchunk

∥κi(xi + δx)− κ′i(xi + δx)∥.

and let

d̄A(a, a;α) := ψ(Dα(a, a
′)) · I∞ {Dα(a, a

′) ≤ ε0} , ψ(u) := 2β(2γ(u), 0).

Then, the following hold:

(a) π⋆ is input-stable with respect to dS , dTVC as defined in Appendix D

dA(a, a
′) = d̄A(a, a

′;ψ(ε)),

(b) For any rIPS ≤ cξ/2, π⋆ is (rIPS, γIPS,TVC, γIPS,S , dIPS)- restricted-IPS (Definition H.9) with

dA(a, a
′) = d̄A(a, a

′;ψ(ε) + β(rIPS, 0)), γIPS,TVC(r) = β(r, τchunk − τobs), γIPS,S(r) = β(r, 0),

Note that the above lemma holds for general forms of incremental stability. Let us now instantiate it
for the form of incremental stability of the form established in Proposition K.6.
Corollary K.1. Suppose that γ(ε) = c̄γ · ε and β(ε, k) = c̄γϕ(k) · ε. Then, as long as we take

2ϕ(τchunk)c̄β ≤ 1, ε0 := min{cγ, cξ/4c̄γ},

and setting ψ(ε) = ε, we have that

(a) π⋆ is input-stable with dA(a, a′) = d̄A(a, a′; 4c̄γc̄βε0).

(b) For any rIPS = cξ, π⋆ is (rIPS, γIPS,TVC, γIPS,S , dIPS)- restricted-IPS (Definition H.9) with

dA(a, a
′) = 4c̄βc̄γd̄A(a, a

′; c̄β(4c̄γε0 + r)), γIPS,TVC(r) = c̄βϕ(τchunk − τobs)r, γIPS,S(r) = c̄βr

We are now ready to prove the main result of this appendix.
13This can be directly generalized to a constraint on the composite states sh and composite actions ah.
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Proof of Proposition K.1. Note that, by assumption, we are in the regime of Corollary K.1, with
ϕ(k) = e−Lβ(k−1) and ε0 := min{cγ, cξ/4c̄γ}. We note that, under our assumption Lβ ≤ 1,

ϕ(k) = eLβe−Lβ(k−1) ≤ e · e−Lβ(k−1). (K.5)

Hence, 2ϕ(τchunk)c̄β ≤ 1 for τchunk ≥ c3 = log(2ec̄β)/Lβ.

Next, we develop Dα. Express the primitive controllers κi = (ūi, x̄i, K̄i) and κ′i = (ū′i, x̄
′
i, K̄

′
i).

Recall

dmax(a, a
′) = max

1≤i≤τchunk

max{∥ūi − ū′i∥+ ∥x̄i − x̄′i∥+ ∥K̄i − K̄′i∥}.

By assumption, the expert distribution Dexp ensures that ∥xt∥ ≤ Rdyn and that ∥K̄t∥ ≤ RK.
Moreover, it also ensures ∥x̄t∥ ≤ Rdyn, since under the expert distribution, x̄t = xt. Thus, to find
an upper upper bound on the distance Dα(a, a

′), it suffices to take X0 = {x : ∥x∥ ≤ Rdyn} and
bound the following quantity for all a = κ1:τchunk and a′ = κ′1:τchunk for which κi = (ūi, x̄i, K̄i)

satisfies ∥x̄i∥ ≤ Rdyn and ∥K̄i∥ ≤ RK:

sup
x:∥x∥≤Rdyn

sup
δx:∥δx∥≤α

max
1≤t≤τchunk

∥κt(xt + δx)− κ′t(xt + δx)∥

= sup
x:∥x∥≤Rdyn

sup
δx:∥δx∥≤α

max
1≤t≤τchunk

∥ūt − ū′t + (K̄t − K̄′t)(xt + δx) + K̄tx̄t − K̄′tx̄
′
t∥

≤ max
1≤t≤τchunk

∥ūt − ū′t∥+ ∥K̄t − K̄t)∥(α+ sup
x:∥x∥≤Rdyn

∥x∥) + ∥K̄t(x̄t − x̄′t)∥) + ∥(K̄t − K̄t)x̄
′
t∥

max
1≤t≤τchunk

∥ūt − ū′t∥+ ∥K̄t − K̄t)∥(α+Rdyn) +RK∥x̄t − x̄′t∥) + ∥K̄t − K̄t∥∥x̄′t∥

(∥K̄t∥ ≤ RK)

≤ max
1≤t≤τchunk

∥ūt − ū′t∥+ ∥K̄t − K̄t)∥(α+ 2Rdyn + ∥x̄t − x̄′t∥) +RK∥x̄t − x̄′t∥

(∥x̄t∥ ≤ Rdyn)

≤ dmax(a, a
′)(1 +RKα+ 2Rdyn + dmax(a, a

′));

that is, we can take

Dα(a, a
′) = dmax(a, a

′)(1 +RKα+ 2Rdyn + dmax(a, a
′)).

Now, set α = 4c̄βc̄γε0 + c̄βrIPS = c̄β(4c̄γmin{cγ, cξ/4c̄γ} + cξ). For c1 = 4c̄γc̄β(2 + αRK +
2Rdyn) and c2 = max{1, c1}−1 min{cγ, cξ/4c̄γ}. Then if dmax(a, a

′) ≤ c2, then,

Dα(a, a
′) ≤ dmax(a, a

′)(2 +RKα+ 2Rdyn) ≤ min{cγ, cξ/4c̄γ}.

and, in particular,

d̄A(a, a
′ | α) ≤ 4c̄βc̄γ((2 +RKα+ 2Rdyn)dmax(a, a

′)) = c1dmax(a, a
′)

Hence, unconditionally,

d̄A(a, a
′ | α) ≤ c1dmax(a, a

′)I∞{dmax(a, a
′) ≤ c2}

Thus, π⋆ satisfies (rIPS, γIPS,TVC, γIPS,S , dIPS)- restricted-IPS (Definition H.9) with rIPS = cξ/2 = c4

dA(a, a
′) = c1dmax(a, a

′)I∞{(dmax(a, a
′) ≤ c2}

γIPS,TVC(r) = c̄β · ϕ(k), γIPS,S(r) = c̄βr

Using (K.5) and recalling c5 = ec̄β, we conclude (rIPS, γIPS,TVC, γIPS,S , dIPS)- restricted-IPS (Defini-
tion H.9) with rIPS = cξ/2 = c4 and

dA(a, a
′) = c1dmax(a, a

′)I∞{dmax(a, a
′) ≤ c2}

γIPS,TVC(r) = c5e
−Lβ(τchunk−τobs), γIPS,S(r) = c5r.

This concludes the proof.
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K.1.1 Proof of Lemma K.3

Let’s prove Lemma K.3(a). Let (s1:H+1, a1:H) be drawn from the distribution induces by π⋆, and let
a′1:H be some other sequences of actions. The primitive controllers and states under the instantiation
of the composite MDP for a1:H , a1:H s1:H+1 respectively be κ1:T , κ′1:T and x1:T+1. Note that, by
Lemma J.6(b), each xt has the same marginals as under the expert distribution Dexp and similarly
so does ah, so by the assumption of the lemma, xt ∈ X0 and κt ∈ K0 with probability one. Thus,

sup
x∈X0

sup
δx:∥δx∥≤α

max
th≤t≤th+1−1

∥κt(xt + δx)− κ′i(xt + δx)∥ ≤ Dα(a, a
′).

In particular if ε ≤ ε0 and Dα(a, a
′) ≤ ε, then

sup
x∈X0

sup
δx:∥δx∥≤α

max
th≤t≤th+1−1

∥κt(xt + δx)− κ′i(xt + δx)∥ ≤ ε ≤ ε0,

By Lemma K.2, and the fact that β(ε, i) is non-increasing in i, we find maxh dS(sh, s′h) =
maxt{∥xt − x′t∥, ∥ut − u′t∥} ≤ ψ(ε), as needed.

To prove Lemma K.3(b), let (s1:H+1, s̃1:H+1, a1:H) be as in the definition of restricted
IPS (Definition H.9), let a′1:H be an alternative sequence of composite actions, and un-
pack these into (x1:T+1,u1:T ), (x̃1:T+1, ũ1:T ), κ1:T and κ1:T as above. We let õh =
(x̃th−τobs+1:th , ũth−τobs+1:th) = ϕo◦ s̃h denote the observation-chunk associated with s̃h. It follows
from Lemma J.6(d) and the construction in (Definition H.9) that the distribution (õh, ah) under this
construction is absolutely continuous w.r.t. the distribution of (oh, ah) under Dexp. In particular,
this implies that ah = κth:th+1−1 satisfies the incremental stability condition on x̃th , as well as the
following property: let ŝh+1 = Fh(̃sh, ah), which concretely are states (x̂th:th+1

, ûth:th+1−1) corre-
ponding to the dynamics induced by rolling out ah = κth:th+1−1 from x̂th , depicted in (K.1). Then,
absolute continuity of (õh, ah) with respect to its analogues underDexp implies that x̂th:th+1

is abso-
lutely continuous w.r.t. the distribution of xth:th+1

under Dexp. Hence, x̂t ∈ X0 for th ≤ t ≤ th+1.
By a similarly argument, we also have κt ∈ K0 with probability one.Thus, we have

sup
x∈X0

sup
∥δx∥≤α

max
th≤t≤th+1−1

∥κt(x+ δx)− κ′t(x+ δx)∥ ≤ Dα(ah, a
′
h),

Hence, whenever Dα(ah, a
′
h) ≤ ε for α = ψ(ε) + β(r, 0), then

max
1≤t≤T

sup
x∈X0

sup
∥δx∥≤ψ(ε)+β(r,0)

∥κt(x+ δx)− κ′t(x+ δx)∥ ≤ ε ≤ ε0, (K.6)

then we find (using x̂t ∈ X0)

max
1≤t≤T

sup
∥δx∥≤ψ(ε)+β(r,0)

∥κt(x̂t + δx)− κ′t(x̂t + δx)∥ ≤ ε ≤ ε0

Thus when (K.6) is true for all h, Lemma K.2 again implies maxh dS(sh, s′h) = maxt{∥xt −
x′t∥, ∥ut − u′t∥} ≤ ψ(ε) (again, using β(·, i) being non-increasing in i). This concludes the proof.

K.2 Proof of Lemma K.2

We begin with the following simplifying observation, which follows from considering the definition
of local t-ISS with δut ≡ 0 at time t = 0:
Observation K.4. β(m,u) ≥ u for any u ∈ [0, cξ).

The inequality ∥xth+i − x̂′th,i∥ ≤ β(r, i) is an imediate consequence of local-t-ISS of ah at x̂th,0.
Note further that this means that

∥xth+i − x̂′th,i∥ ≤ β(r, i) ≤ β(r, 0) ≤ r ≤ cξ/2. (K.7)

Let us prove ∥xth+i − x′th+i∥ ≤ β(2γ(ε), i) + γ(ε). Next, define δut = κ′t(x
′
t) − κt(x

′
t) and

δxt = x′t − xt. We begin by fixing a chunk h and arguing along the lines of Pfrommer et al. [50,
Proposition 3.1].In what follows, we assume either (K.2) or (K.3), restated here for convenience:

max
1≤t≤T

sup
∥δx∥≤α(ε)

∥κt(xt + δx)− κ′t(xt + δx)∥ ≤ ε, α(ε) := 2β(2γ(ε), 0), or (K.8)

max
1≤t≤T

sup
∥δx∥≤α(ε)+β(r,0)

∥κt(x̂t + δx)− κ′t(x̂t + δx)∥ ≤ ε, (K.9)
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Claim K.5. Fix c0 > 0. Suppose that, at a given step h, ∥δxth∥ ≤ c0 ≤ cξ/2, and that β(c0, 0) +
γ(ε) ≤ α. Then, for all 0 ≤ i ≤ τchunk − 1, ∥δuth+i∥ ≤ ε ≤ α and

∀0 ≤ i ≤ τchunk, ∥δxth+i∥ ≤ β(c0, i) + γ(ε) ≤ α

Proof. We perform induction over t ≥ th. Assume inductively that ∥δxt∥ ≤ β(c0, t − th) +
γ(ε) ≤ α and max1≤s≤t−1 ∥δus∥ ≤ ε; note that this base case t = th holds as β(c0, 0) ≤ α by
Observation K.4 and our assumption on c0. From the inductive hypothesis and the condition (K.8),

∥δut∥ = ∥κ′t(x′t)− κt(xt)∥ ≤ max
th≤t≤th+1−1

sup
∥δx∥≤α

∥κt(xt + δx)− κ′t(xt + δx)∥ ≤ ε.

Note that by (K.7), (K.9) also suffices for the above to hold. Hence, in either case
max1≤s≤t ∥δus∥ ≤ ∆h. As ∥xth − x′th∥ ≤ cξ/2, the triangle inequality and (K.7) imply
∥x′th − x̂th∥ ≤ cξ. This, and the fact that ε ≤ cγ, allows us to invoke our definition of incre-
mental stabiity in Definition 3.1, implying

∥δxt+1∥ ≤ β(c0, t+ 1− th) + γ(ε),

as needed.

To conclude, we argue inductively on h that we can take c0 = 2γ(ε) in the above claim. First note
that 2γ(ε) ≤ cξ/2 by assumption. Thus, from Observation K.4, γ(ε) = 1

2 · 2γ(ε) ≤
1
2β(2γ(ε), 0).

Hence, for c0 = 2γ(ε) β(c0, 0) + γ(ε) ≤ 3
2β(2γ(ε), 0) ≤ α. Moreover, by assumption δx1 = 0,

the bound ∥δxth∥ ≤ 2γ(ε) holds trivially for step h = 1. Assuming it holds for h, Claim K.5 yields

∀0 ≤ i ≤ τchunk, ∥δxth+i∥ ≤ β(c0, i) + γ(ε) ≤ β(c0, 0) + γ(ε) ≤ α,

where the final inequality follows from the computation above. Moreover, by taking i = τchunk,

∥δxth+1
∥ = ∥δxth+τchunk∥ ≤ β(2γ(ε), τchunk) + γ(ε) ≤ 2γ(ε),

where the last inequality is by the assumption of the lemma.

K.3 Synthesized Linear Controllers are Incrementally Stabilizing

In this section, we give a sufficient condition for incremental stability of affine primitive controllers.
Recal our notation of a length-K control trajectory is denoted ρ = (x1:K+1, u1:K) ∈ PK =
(Rdx)K+1 × (Rdu)K . Given such a trajectory, the Jacobian linearizations are denoted

Ak(ρ) :=
∂

∂x
fη(xk,uk), Bk(ρ) :=

∂

∂u
fη(xk,uk)

for k ∈ [K]. Recalling our dynamics map f(·, ·), and step size η > 0, we say that ρ is feasible if,
for all k ∈ [K],

xk+1 = f(xk,uk), where f(x,u) = x+ ηfη(x,u).

We now introduce a nother of regularity on the dynamics, which essentially enforces boundedness
and smoothness.

Definition K.2 (Trajectory Regularity). A control trajectory ρ = (x1:K+1,u1:K) is
(Rdyn, Ldyn,Mdyn)-regular if for all k ∈ [K] and all (x′k,u

′
k) ∈ Rdx × Rdu such that ∥x′k −

xk∥ ∨ ∥uk − u′k∥ ≤ Rdyn,14

∥∇fη(x′k,u′k)∥op ≤ Ldyn, ∥∇ 2fη(x
′
k,u
′
k)∥op ≤Mdyn.

We also recall the definitions around Jacobian stabilization. We start with a definition of Jacobian
stabilization for feedback gains, from which we then recover the definition of Jacobian stabilization
for primitive controllers given in the body.

14Here, ∥∇ 2fη(x
′
t,u

′
t)∥op denotes the operator-norm of a three-tensor.
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Definition K.3 (Jacobian Stability). Consider RK, Lstab, Bstab ≥ 1. Consider sequence of gains
K1:K ∈ (Rdu×du)K and trajectory ρ = (x1:K+1,u1:K) ∈ PK . We say that (ρ,K1:K)-is
(RK, Bstab, Lstab)-Jacobian Stable if maxk ∥Kk∥op ≤ Bstab, and if the closed-loop transition
operators defined by

Φcl,k,j := (I+ ηAcl,k−1) · (I+ ηAcl,k−2) · (. . . ) · (I+ ηAcl,j)

with Acl,k = Ak(ρ) +Bk−1(ρ)Kk−1 satisfies the following inequality

∥Φcl,k,j∥op ≤ Bstab(1−
η

Lstab
)k−j .

The following proposition is proven in Appendix K.4, establishing incremental stability of affine
gains.
Proposition K.6 (Incremental Stability of Affine Primitive Controller). Suppose that ρ̄ =
(x̄1:K+1, ū1:K) is (Rdyn, Ldyn,Mdyn) regular, and suppose (ρ̄, K̄1:K) is (RK, Bstab, Lstab) sta-
ble. Suppose that η ≤ Lstab/2, that RK ≥ 1, define the constants

cξ,1 =
1

4RKBstab
min

{
1,

1

4LstabMdynRKBstab

}
cξ,2 = min

{
1

96BstabMdynR2
K

,
Rdyn

32RK

}
cξ = min{cξ,1, cξ,2/2}

cγ = min

{
1

48BstabMdynR2
K

,
Rdyn

16LstabRK

}
c̄β := 16Bstab

c̄γ := 8LstabBstabLdyn

and set

β(u, k) = c̄β

(
1− η

Lstab

)k−1
· u, γ(u) := c̄γ · u

Then, the controllers κk(x) = K̄k(x − x̄k) + ūk are incrementally stabilizing in the sense of
Definition 3.1 with moduli γ(·) and β(·, ·) and constants cξ, cγ as above.

K.4 Proof of Proposition K.6 (incremental stability of affine gains)

We require the following lemma, proven in the section below.
Lemma K.7 (Stability to State Perturbation). Let ρ̄ = (x̄1:K+1, ū1:K) ∈ PK be an
(Rdyn, Ldyn,Mdyn)-regular and feasible path, and let K1:K be gains such that (ρ̄,K1:K) is
(RK, Bstab, Lstab)-stable. Assume that RK ≥ 1, Lstab ≥ 2η. Fix another x1 and define another
trajectory ρ via

uk = ūk +Kk(xk − x̄k), xk+1 = x̄k + ηfη(xk,uk)

Then, if

∥x1 − x̄1∥ ≤ cξ,1 :=
1

4RKBstab
min

{
1,

1

4LstabMdynRKBstab

}
,

then

• ∥xk+1 − x̄k+1∥ ≤ 2Bstab∥x1 − x̄1∥βk
stab.

• (ρ,K1:K) is (RK, 2Bstab, Lstab)-stable.

• ∥Bk(ρ)∥ ≤ Ldyn, and in addition, the trajectory ρ is (Rdyn/2, Ldyn,Mdyn)-regular.

This lemma is proven in Appendix K.5 just below. Now, set βstab = (1 − η/Lstab), and define
δxk = x′k − xk. Let At =

∂
∂xfη(x, u)

∣∣
(x,u)=(xk,uk)

x′t+1 = xk + ηfη(x
′
k, κk(x

′
k) + δuk), xt+1 = xk + ηfη(xk, κk(xk))
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This means that

δxt+1 = (I+ η(Ak +BkK̄k))︸ ︷︷ ︸
=Acl,k

δxk + ηBkδuk + ηremk,

where remk = fη(x
′
k, κk(x

′
k) + δuk)− fη(xk, κk(xk))− (Ak +BkK̄k)δxk −Bkδuk. Defining

Φcl,k,j := Acl,t−1Acl,t−2 . . .Acl,s and unfolding the recursion,

δxt+1 = η

t∑
s=1

Φcl,k+1,j+1(Bsδuk + remk) +Φcl,k+1,1δx1

Define εk = ∥δxk∥ and εu := max1≤t≤T ∥δuk∥. Then, we have

εt+1 ≤ η
k∑

j=1

∥Φcl,k+1,j+1∥(Ldynεu + ∥remk∥) + ∥Φcl,k+1,1∥ε1

(i)

≤ 2Bstab

η k∑
j=1

βk−j
stab(Ldynεu + ∥remk∥) + βk

stabε1


(ii)

≤ 2Bstab

η k∑
j=1

βk−j
stab(Ldynεu +Mdyn((1 + 2R2

K)ε2k + 2ε2u)) + βt
stabε1


(iii)

≤ 2Bstab

η k∑
j=1

βk−j
stab(2Ldynεu +Mdyn(1 + 2R2

K)ε2k) + βt
stabε1


where we in (i) ∥Φcl,k,j∥ ≤ 2Bstabβ

t−s
stab, and (ii) follows by Claim K.8, stated and proven below,

and the following inductive hypothesis

max
1≤j≤k

εk ≤ C ′ =
Rdyn

4RK
, (Inductive Hypothesis)

and (ii) uses the assumption εu ≤ Ldyn

2Mdyn
. Setting ∆1 = 2Bstabε1,∆2 = 4BstabLdynεu and

C = 2BstabMdyn(1 + 2R2
K) ≤ 6BstabMdynR

2
K, Lemma K.17 implies

εk ≤ 4∆1β
k−1
stab + 2Lstab∆2 = 8Bstabε1β

k−1
stab︸ ︷︷ ︸

β(ε1,k)

+8LstabBstabLdynεu︸ ︷︷ ︸
γ(εu)

provided that that ∆2 ≤ min
{

1
8CL ,

C′

4L

}
and ∆1 ≤ min

{
1

16CL ,
C′

8

}
for L = Lstab. Subsituting

in relevant quantities and keeping the shorthand L = Lstab, it suffices that

min

{
1

16CL
,
C ′

8

}
≥ min

{
1

96BstabMdynR2
K

,
Rdyn

32RK

}
︸ ︷︷ ︸

=cξ,2/2

≥ ε1

min

{
1

8CL
,
C ′

4L

}
≥ min

{
1

48BstabMdynR2
K

,
Rdyn

16LstabRK

}
︸ ︷︷ ︸

=cγ

≥ εu.

Claim K.8. Suppose that εu ≤ Rdyn

4 and εk ≤ Rdyn

4RK
. Then, ∥remk∥ ≤Mdyn((1+2R2

K)ε2k+2ε2u).

Proof. Define uk = κk(xk) and δu′k = κk(x
′
k)δuk − uk. We have that δu′k = δuk + κk(x

′
k) −

κ(xk) = δuk+K̄k(x
′
k−xk). We bound ∥δu′k∥ ≤ ∥δuk∥+∥K̄k(x

′
k−xk)∥ ≤ ∥δuk∥+RK∥δxk∥,

where we recall ∥K̄k∥ ≤ RK and δxk = x′k − x. By assumption and definition, ∥δuk∥ ≤ εu and
by definition of εk we conclude that

∥δxk∥ ≤ εk, ∥δu′k∥ ≤ (1 +RK)εk + εu (K.10)
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Consider a curve xk(s) = xk + sδxk and uk(s) = δu
′
k + uk. With these definition

remk = fη(xk(1),uk(1))− fη(xk(0),uk(0))− (Ak +BkK̄k)δxk −Bkδuk

= fη(xk(1),uk(1))− fη(xk(0),uk(0))−Akxk +Bkδu
′
k

=
∂

∂s
(fη(xk(s),uk(s)))−Akδxk +Bkδu

′
k︸ ︷︷ ︸

=0

+

∫ s

0

(1− s)2 ∂
2

∂s2
(fη(xk(s),uk(s)))

⊤∣∣
s=0

(δxk, δu
′
k)ds

Thus,

∥remk∥ ≤ ∥
1

2
sup

s∈[0,1]

∂2

∂s2
(fη(xk(s),uk(s)))∥ ≤Mdyn sup

s
∥ ∂
∂s

(xk(s),uk(s)∥2

(i)

≤ Mdyn(∥δxk∥2 + ∥δu′k∥2)
≤Mdyn((1 + 2R2

K)ε2k + 2ε2u), ((K.10) and Am-GM)

To justify inequality (i), we observe that ρ = (x1:K+1,u1:K) is (Rdyn/2, Ldyn,Mdyn) regular.
Note tat sups ∥xk(s)− xk∥ = ∥δxt∥ and sups ∥uk(s)− uk∥ = ∥δu′t∥. Hence, by the definition of
trajectory regularity (Definition K.2), (i) holds as long as we check that ∥δxk∥ ∨ ∥δu′k∥ ≤ Rdyn/4.
As ∥δxk∥∨ ∥δuk∥ ≤ max{RKεk + εu, εk} and as we take RK ≥ 1, it suffices that εu ≤ Rdyn

4 and
εk ≤ Rdyn

4RK
, which is ensured by the claim.

K.5 Proof of Lemma K.7 (state perturbation)

Define ∆̄x,k = xk − x̄k. Then

∆̄x,k+1 = ∆̄x,k + η
(
fη(xk, ūk + K̄k(xk − x̄k)− fη(x̄k, ūk)

)
= ∆̄x,k + η(Ak(ρ̄) +Bk(ρ̄)Kk)∆x,k + remk, (K.11)

where

remk = fη(xk, ūk +Kk(xk − x̄k))− fη(x̄k, ūk)− (Ak(ρ̄) +Bk(ρ̄)Kk)∆̄x,k.

Claim K.9. Take RK ≥ 1, and suppose ∥∆̄x,k∥ ≤ Rdyn/2RK. Then,

∥x̄k − xk∥ ∨ ∥ūk − uk∥ ≤ Rdyn/2, (K.12)

and ∥remk∥ ≤MdynR
2
K∥∆̄x,k∥2.

Proof. Let uk = ūk +Kk(xk − x̄k). The conditions of the claim imply ∥uk − ūk∥∨ ∥xk ∨ x̄k∥ ≤
Rdyn/2. From Taylor’s theorem and the fact that ρ̄ is (Rdyn, Ldyn,Mdyn)-regular imply that

∥fη(xk,uk)− fη(x̄k, ūk)∥ ≤
1

2
Mdyn(∥xk − x̄k∥2 + ∥uk − ūk∥)

≤ 1

2
(1 +R2

K)Mdyn∥xk − x̄k∥2 ≤ R2
KMdyn∥∆̄x,k∥2,

where again use RK ≥ 1 above.

Solving the recursion from (K.11), we have

∆̄x,k+1 = η

k∑
j=1

Φcl,k+1,j+1remk +Φcl,k+1,1∆̄x,1.
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Set βstab := (1 − η
Lstab

), so that M := η

β−1
stab−1

= Lstab. By assumption, ∥Φcl,k,j∥ ≤ Bstabβ
k−j
stab,

so using Claim K.9 implies that, if maxj∈[k] ∥∆̄x,j∥ ≤ Rdyn/2RK for all j ∈ [k],

∥∆̄x,k+1∥ ≤ η
k∑

j=1

BstabMdynR
2
Kβ

k−j
stab∥∆̄x,j∥2 +Bstabβ

k
stab∥∆̄x,1∥.

Appling Lemma K.15 with α = 0, C1 = BstabMdynR
2
K, and C2 = Bstab ≥ 1 and M = Lstab

(noting βstab ≥ 1/2), it holds that for ∥∆̄x,1∥ = ε1 ≤ 1/4MC1C3 = 1/4LstabMdynR
2
KB

2
stab,

∥∆̄x,k+1∥ ≤ 2Bstab∥∆̄x,1∥(1−
η

Lstab
)k.

To ensure the inductive hypothesis that maxj∈[k] ∥∆̄x,j∥ ≤ RdynRK, it suffices to ensure that
2Bstab∥∆̄x,1 ≤ Rdyn/2RK, which is assumed by the lemma. Thus, we have shown that, if

∥∆̄x,1∥ ≤ min

{
Rdyn

2RKBstab
,

1

8LstabMdynR2
KB

2
stab

}
,

it holds that ∥∆̄x,k+1∥ ≤ 2Bstab∥∆̄x,1∥(1− η
Lstab

)k ≤ R0 for all k.

Next, we adress the stability of the gains for the perturbed trajectory ρ. Using (Rdyn, Ldyn,Mdyn)-
regularity of ρ̄ and (K.12),

∥Ak(ρ) +Bk(ρ)Kk −Ak(ρ̄) +Bk(ρ̄)Kk∥

=

∥∥∥∥[Ak(ρ)−Ak(ρ̄) B̂k(ρ)−Bk(ρ̄)
] [ I

Kk

]∥∥∥∥
=

∥∥∥∥(∇fη(x̂k,uk)−∇fη(x̄k, ūk))

[
I
Kk

]∥∥∥∥
≤Mdyn ∥(xk − x̄k,Kk(xk − x̄k)∥

∥∥∥∥[ I
Kk

]∥∥∥∥
=Mdyn∥xk − x̄k∥

∥∥∥∥[ I
Kk

]∥∥∥∥2 ≤Mdyn∥xk − x̄k∥(1 + ∥Kk∥2op)

=Mdyn∥xk − x̄k∥
∥∥∥∥[ I

Kk

]∥∥∥∥2 ≤Mdyn∥xk − x̄k∥(1 + ∥Kk∥2op)

≤ 2R2
KMdyn∥xk − x̄k∥

≤ 4BstabR
2
KMdyn∥x1 − x̄1∥βk−1

stab , βstab = (1− η

Lstab
).

Invoking Lemma K.18 with βstab ≥ 1/2, ∥Φ̂cl,k,j∥ ≤ 2Bstabβ
k−j
stab for all j, k pro-

vided that 4BstabR
2
KMdyn∥x1 − x̄1∥ ≤ 1/4BstabLstab, which requires ∥x1 − x̄1∥ ≤

1/16B2
stabR

2
KLstabMdyn.

The last part of the lemma uses (Rdyn, Ldyn,Mdyn)-regularity of ρ̄ and (K.12).

K.6 Ricatti synthesis of stabilizing gains.

In this section, we show that under a certain stabilizability condition, it is always possible to syn-
thesize primitive controllers satisfying Jacobian stability, Definition K.3, with reasonable constants.
We begin by defining our notion of stabilizability; we adopt the formulation based on Jacobian lin-
earizations of non-linear systems the discrete analogue of the senses proposed in which is consistent
with [51, 76].
Definition K.4 (Stabilizability). A control trajectory ρ = (x1:K+1,u1:K) ∈PK isLS/O -Jacobian-
Stabilizable if maxk Vk(ρ) ≤ LS/O , where for k ∈ [K + 1], Vk(ρ) is defined by

Vk(ρ) := sup
ξ:∥ξ≤1

 inf
ũ1:s

∥x̃K+1∥2 + η

K∑
j=k

∥x̃j∥2 + ∥ũj∥2


s.t. x̃k = ξ, x̃j+1 = x̃j + η (Aj(ρ)x̃j +Bj(ρ)ũj) ,
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Here, for simplicity, we use Euclidean-norm costs, though any Mahalanobis-norm cost induced by
a positive definite matrix would suffice. We propose to synthesize gain matrices by performing a
standard Ricatti update, normalized appropriately to take account of the step size η > 0 (see, e.g.
Appendix F in [51]).
Definition K.5 (Ricatti update). Given a path ρ ∈Pk with Ak = Ak(ρ), Bk = Bk(ρ) we define

Pric
K+1(ρ) = I, Pric

k (ρ) = (I+ ηAcl,k(ρ))
⊤Pric

k+1(ρ)(I+ ηAcl,k(ρ)) + η(I+Kk(ρ)Kk(ρ)
⊤)

Kric
k (ρ) = (I+ ηB⊤k P

ric
k+1(ρ)Bk)

−1(B⊤k Pk+1(ρ))(I+ ηAk)

Aric
cl,k(ρ) = Ak +BkKk(ρ).

The main result of this section is that the parameters (RK, Bstab, Lstab) in Definition K.3 can be
bounded in terms of Ldyn in Definition K.2, and the bound LS/O defined above.

Proposition K.10 (Instantiating the Lyapunov Lemma). Let Ldyn, LS/O ≥ 1, and let ρ =

(x1:K+1,u1:K) be (Rdyn, Ldyn,Mdyn)-regular and LS/O -Jacobian Stabilizable. Suppose further
that η ≤ 1/5L2

dynLS/O . Then, (ρ,Kric
1:K)-is (RK, Bstab, Lstab)-Jacobian Stable, where

RK =
4

3
LS/OLdyn, Bstab =

√
5LdynLS/O , Lstab = 2LS/O

Proposition K.10 is proven in Appendix K.6.1 below. A consequence of the above proposition is
that, given access to a smooth local model of dynamics, one can implement the synthesis oracle
by computing linearizations around demonstrated trajectories, and solving the corresponding Ricatti
equations as per the above discussions to synthesize the correct gains.

K.6.1 Proof of Proposition K.10 (Ricatti synthesis of gains)

Throughout, we use the shorthand Ak = Ak(ρ) and Bk = Bk(ρ), recall that ∥ · ∥ denotes the
operator norm when applied to matrices. We also recall our assumptions that Ldyn, LS/O ≥ 1.
We begin by translating our stabilizability assumption (Definition K.4) into the the P-matrices in
Definition K.5. The following statement recalls Lemma F.1 in [51], an instantiation of well-known
solutions to linear-quadratic dynamic programming (e.g. [7]).
Lemma K.11 (Equivalence of stabilizability and Ricatti matrices). Consider a trajectory
(x1:K ,u1:K), and define the parameter Θ := (Ajac(x̄k, ūk),Bjac(x̄k, ūk))k∈[K]. Then, for all
k ∈ [K],

∀k ∈ [K], Vk(ρ) = ∥Pk(Θ)∥op
Hence, if ρ is LS/O -stabilizable,

max
k∈[K+1]

∥Pk(Θ)∥op ≤ LS/O .

Lemma K.12 (Lyapunov Lemma, Lemma F.10 in [51]). Let X1:K ,Y1:K be matrices of appropriate
dimension, and let Q ⪰ I and Yk ⪰ 0. Define Λ1:K+1 as the solution of the recursion

ΛK+1 = Q, Λk = X⊤k Λk+1Xk + ηQ+Yk

Define the operator Φj+1,k = Xj ·Xj−1, · · ··Xk, with the convention Φk,k = I. Then, if maxk ∥I−
Xk∥op ≤ κη for some κ ≤ 1/2η,

∥Φj,k∥2 ≤ max{1, 2κ} max
k∈[K+1]

∥Λk∥(1− ηα)j−k, α :=
1

maxk∈[K+1] ∥Λ1:K+1∥
.

Claim K.13. If ρ is (0, Ldyn,∞)-regular, then for all k, Ak = Ak(ρ) and Bk = Bk(ρ) satisfy
maxk∈[K] max{∥Ak∥, ∥Bk∥} ≤ Ldyn.

Proof. For any k ∈ [K],

max{∥Ak∥, ∥Bk∥} = max

{∥∥∥∥ ∂∂xf(x̄k, ūk)

∥∥∥∥ ,∥∥∥∥ ∂∂uf(x̄k, ūk)

∥∥∥∥} ≤ ∥∇f(x̄k, ūk)∥ ≤ Ldyn,

where the last inequality follows by regularity.
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Claim K.14. Recall Kric
k (ρ) = (I + ηB⊤k P

ric
k+1(ρ)Bk)

−1(B⊤k P
ric
k+1(ρ))(I + ηAk). Then, if ρ is

LS/O -stabilizable and (0, Ldyn,∞)-regular, and if η ≤ 1/3Ldyn,

∥Kric
k (ρ)∥ ≤ 4

3
LS/OLdyn

Proof. We bound

∥Kric
k (ρ)∥ ≤ ∥Bk∥∥Pric

k+1(ρ)∥(1 + η∥Ak∥)
≤ Ldyn(1 + ηLdyn)∥Pric

k+1(ρ)∥ (Claim K.13)
≤ LS/OLdyn(1 + ηLdyn) (Lemma K.11, LS/O ≥ 1)

≤ 4

3
LS/OLdyn (η ≤ 1/3Ldyn.)

Proof of Proposition K.10. We want to show that Kric
1:K(ρ) is (RK, Bstab, Lstab)-

stabilizing.Claim K.14 has already established that maxk∈[K] ∥Kric
k (ρ)∥ ≤ RK = 4

3LS/OLdyn.

To prove the other conditions, we apply Lemma K.12 with Yk = Kk(Θ)Kk(Θ), Q = I, and
Xk = I + ηAcl,k(Θ). From Definition K.5, let have that the term Λk in Lemma K.12 is precise
equal to Pk(Θ). From Lemma K.11,

max
k∈[K+1]

∥Pk(Θ)∥op = max
k∈[K+1]

Vk(ρ) ≤ LS/O .

This implies that if maxk ∥Xk − I∥ ≤ κη ≤ 1/2, we have

∥Φcl,j,k(Θ)∥2 = ∥(Xj ·Xj−1 · . . .Xk)∥ ≤ max{1, 2κ}LS/O

(
1− η

LS/O

)j−k

.

It suffices to find an appropriate upper bound κ. We have

∥Xk − I∥ = ∥ηAcl,k(Θ)∥ ≤ η(∥Ak∥+ ∥Bk∥∥Kk(Θ)∥)
≤ ηLdyn(1 + ∥Kk(Θ)∥)

≤ ηLdyn(1 +
4

3
LdynLS/O ) (Claim K.14)

≤ 7

3
ηL2

dynLS/O (LS/O , Ldyn ≥ 1)

Setting κ = 7
3L

2
dynLS/O ., we have that as η ≤ 1

5L2
dynLS/O

≤ min{ 3
14L2

dynLS/O
, 1
3Ldyn

} (recall

Ldyn, LS/O ≥ 1), we can bound

max{1, 2κ} ≤ max

{
1,

14

3
L2
dynLS/O

}
≤ max

{
1, 5L2

dynLS/O
}
= 5L2

dynL
2
S/O ,

where again recall LS/O , Ldyn ≥ 1. In sum, for η ≤ 1
5L2

dynLS/O
, we have

∥Φcl,j,k∥2 ≤ 5L2
dynL

2
S/O

(
1− η

LS/O

)j−k

.

Hence, using the elementary inequality
√
1− a ≤ (1− a/2),

∥Φcl,j,k∥ ≤
√
5LdynLS/O

(
1− η

LS/O

)(j−k)/2

≤
√
5LdynLS/O

(
1− η

2LS/O

)j−k

,

which shows that we can select Bstab =
√
5LdynLS/O and Lstab = 2LS/O .
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K.7 Solutions to recursions

This section contains the solutions to various recursions.
Lemma K.15 (First Key Recursion). Let C1 > 0, C2 ≥ 1/2, βstab ∈ (0, 1), and suppose ε1, ε2, . . .
is a sequence satisfying ε1 ≤ ε̄1, and

εk+1 ≤ C2β
k
stabε̄1 + C1η

k∑
j=1

βk−j
stabε

2
j

Then, as long as C1 ≤ β(1− β)/2η, it holds that εk ≤ 2C2β
k−1
stab ε̄1 for all k.

Proof. Consider the sequence νk = 2C2β
k−1
stab ε̄1. Since C2 ≥ 1/2, we have ν1 ≥ ε̄1 ≥ ε1.

Moreover,

C2β
k
stabε̄1 + C1

k∑
j=1

βk−j
stabνj = C2β

k
stabε̄1 + 2C1C2

k∑
j=1

βk+j−2
stab ε̄1

= C2β
k
stabε̄1

1 +
2C1

β

k−1∑
j=0

βj
stab


≤ C2β

k
stabε̄1

(
1 +

2C1η

β(1− β)

)
Hence, for C1 ≤ β(1−β)/2η, we have C2β

k
stabε̄1+C1

∑k
j=1 β

k−j
stabνj ≤ 2C2ε̄1β

k
stab ≤ νk+1. This

shows that the (νk) sequence dominates the (εk) sequence, as needed.

Lemma K.16 (Second Key Recursion). Let c,∆, η > 0, βstab ∈ (0, 1) and let ε1, ε2, . . . satisfy
ε1 ≤ c and

εk+1 ≤ cβk
stab + cη∆βk−1

stab

k∑
j=1

εj .

Then, if ∆ ≤ β(1−β)
2cη , εk+1 ≤ 2cβk

stab for all k.

Proof. Consider the sequence νk = 2cβk−1
stab . Since ε1 ≤ c, ν1 ≥ ε1. Moreover,

cβk
stab + cη∆βk−1

stab

k∑
j=1

νj ≤ cβk
stab + 2c2η∆βk−1

stab

k∑
j=1

βj−1
stab

≤ cβk
stab + 2c2η∆βk−1

stab

1

1− β

≤ cβk
stab

(
1 + 2c∆

η

β(1− β)

)
.

Hence, for ∆ ≤ β(1−β)
2cη , the above is at most 2cβk

stab ≤ νk+1. This shows that the (νk) sequence
dominates the (εk) sequence, as needed.

Lemma K.17 (Third Key Recursion). Let η > 0, β = (1− η
L ), L ≥ 2η, and let C,C ′,∆2,∆1 > 0.

Suppose that ε1, ε2, . . . satisfies,

εt+1 ≤ η
t∑

s=1

βt−s(∆2 + Cε2s)) + βt∆1

whenever max1≤s≤t εt ≤ C ′. Suppose that

∆2 ≤
1

max{8CL, 4LC ′}
, ∆1 ≤

1

max{16CL, 8C ′}
Then, for all t,

εt ≤ 4∆1β
t−1 + 2L∆2.
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Proof. Consider ε̄t = α1β
t−1 +α2, with α1 ≥ ∆1 and α2 > 0. As long as α1 +α2 ≤ C ′, we have

ε̄t ≤ C ′ for all t. To show ε̄t ≥ εt, it suffices that ε̄t ≥ η
∑t

s=1 β
t−s(∆2 +Cε̄2s)) + βt∆1. To have

this occur, we need

η

t∑
s=1

βt−s(∆2 + Cε̄2s)) + βt∆1

≤ η
t∑

s=1

βt−s(∆2 + 2Cα2
1β

2(s−1) + 2Cα2
2) + βt∆1

≤ η
t∑

s=1

βt−s(∆2 + 2Cα2
1β

2(s−1) + 2Cα2
2) + βt∆1

= (∆2 + 2Cα2
2) · (η

t∑
s=1

βt−s) + 2Cα2
1 · (η

t∑
s=1

βt−sβ2(s−2)) + βt∆1

= (∆2 + 2Cα2
2) · (η

t∑
s=1

βt−s) + βt−1(2Cα2
1 · (η

t∑
s=1

βs−1) + ∆1)

≤ L(∆2 + 2Cα2
2) + βt−1(2Cα2

1L+∆1),

where the last step upper bounds the geometric series with η = (1− η/L). Assuming η ≤ L/2, the
above is at most

L(∆2 + 2Cα2
2) + 2βt(2Cα2

1L+∆1).

Matching terms, it is enough that
α2 ≥ L(∆2 + 2Cα2

2), α1 ≥ 2(2Cα2
1L+∆1), α1 + α2 ≤ C ′

Let’s choose α2 = 2L∆2 and α1 = 4∆1. Then, it is enough that

L∆2 ≥ 8CL2∆2
2, 2∆1 ≥ 32C∆2

1L, (2L∆2 + 4∆1) ≤
1

C ′

For this, it suffices that ∆2 ≤ 1
max{8CL,4LC′} and ∆1 ≤ 1

max{16CL,8C′} .

Lemma K.18 (Matrix Product Perturbation). Define matrix products
Φk,j = Xk−1 ·Xk−2 · · ·Xj , Φ′k,j = X′k−1 ·X′k−2 · · ·X′j .

Let η,∆, c > 0 and βstab ∈ (0, 1). If (a) Φk,j ≤ βk−j
stab for all j ≤ k, (b) ∥Xj −X′j∥ ≤ η∆β

j−1
stab for

all j ≥ 1 and (c) ∆ ≤ β(1−β)
2cη , then, for all j ≤ k, ∥Φ′k,j∥ ≤ 2cβk−j

stab.

Proof. Without loss of generally, take j = 1. Then, letting ∆k = (X′k −Xk),
Φ′k+1,1 = X′k ·X′k−2 · · ·X′1

= X′k ·Φ
′
k,1

= ∆kΦ
′
k,1 +XkΦ

′
k,1

= ∆kΦ
′
k,1 +Xk∆k−1Φ

′
k−2,1 +XkXk−1Φ

′
k−2,1

= Φk+1,k+1∆kΦ
′
k,1 +Φk+1,k∆k−1Φ

′
k−2,1 +Φk+1,kΦ

′
k−2,1

=

k∑
j=1

Φk+1,j+1∆jΦ
′
j,1 +Φk+1,1.

Thus,

∥Φ′k+1,1∥op ≤ cη
k∑

j=1

βk−j
stab∥Xj −X′j∥∥Φ

′
j,1∥+ cβk

stab

≤ cηβk−1
stab∆

k∑
j=1

∥Φ′j,1∥+ cβk
stab. (∥Xj −X′j∥ ≤ η∆β

j−1
stab)

Define εj = ∥Φ′j,1∥. Then, ε1 = 1 ≤ c, so Lemma K.16 implies that for ∆ ≤ (1−β)β
2η , ∥Φ′k,1∥ :=

εk ≤ 2cβk
stab for all k.
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L Sampling and Score Matching

In this section, we provide a rigorous guarantee on the quality of sampling from the learned DDPM
under Assumption C.1. We begin by recalling the basic motivation for Denoising Diffusion Prob-
abilistic Models (DDPMs) and explain how we train them. We then apply results from Chen et al.
[18] to show that if we have learned the conditional score function, then sampling can be done
efficiently. While Block et al. [13] demonstrated that unconditional score learning can be learned
through standard statistical learning techniques, we generalize these results to the case of condi-
tional score learning and conclude the section by proving that with sufficiently many samples, we
can efficiently sample from a distribution close to our target.

We organize the section as follows:

• We then state the main result of the section, Theorem 13, which provides a high probability
upper bound on the number of samples n required in order to sample from DDPM trained on
a given score estimate such that the sample is close in our optimal transport metric to the
target distribution.

• In particular, in (L.1), we give the exact polynomial dependence of the sampling parameters
α and J on the parameters of the problem.

• Before embarking on the proof, Appendix L.1 introduces simplifying notation; notably,
dropping the dependence on subscript h, replacing the score dependence on j with a class
Θj , and denoted Dσ,h,[t] as simply q[t].

• We break the proof of Theorem 13 into two sections. First, in Appendix L.2, we recall a
result of Chen et al. [18], Lee et al. [41] that shows that it suffices to accurately learn the
score in the sense that if the score estimate is accurate in the appropriate sense, then the
DDPM will adequately sample from a distribution close to the target.

• In Remark L.4, we emphasize the conditions that would be required to sample in total
variation and explain why they do not hold in our setting.

• Then, in Appendix L.3, we apply statistical learning techniques, similar to those in Block
et al. [13], to show that with sufficiently many samples, we can effectively learn the score.
We detail in Remark L.8 how the realizability part of Assumption C.1 can be relaxed.

• Finally, we conclude the proof of Theorem 13 by combining the two intermediate results
detailed above.

To begin, we define our notion of statistical complexity:

We now state the main result of this section.
Theorem 13. Fix 1 ≤ h ≤ H , let q denote Dσ,h, d denote dA, and suppose that (ai, oh,i) ∼ q are
independent for 1 ≤ i ≤ n. Suppose that the projection of q onto the first coordinate has support (as
defined in Definition F.3) contained in the euclidean ball of radius R ≥ 1 in Rd. For ε > 0, set

J = c
d3R4(R+

√
d)4 log

(
dR
ε

)
ε20

, α = c
ε8

d2R2(R+
√
d)2

. (L.1)

for some universal constant c > 0. Suppose that for all 1 ≤ j ≤ J , the following hold:

• There exists a function class Θj containing some θ∗j such that s⋆(·, ·, jα) = sθ∗
j
(·, ·, jα) =

∇ log q[jα](·|·), where q[·] is defined in Section 2.

• The following holds for some δ > 0:

sup
θ,θ′∈Θj

||a||∨||a′||≤R+
√

d log( 2nd
δ )

||oh||≤R

||sθ(a, oh, t)− sθ′(a′, oh, t)|| ≤ c
d2(R+

√
d log

(
2nd
δ

)
)2

ε8
.

• Assumption C.1 holds and thus, for all j ∈ [J ], it holds that Rn(Θj) ≤ CΘα
−1n−1/ν for

some ν ≥ 2 and all n ∈ N and, moreover, the linear growth condition is satisfied.
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• The parameter θ̂ = θ̂1:J is defined to be the empirical minimizer of LDDPM from Section 3.

If

n ≥ c

(
CΘα

−1dR(R ∨
√
d) log(dn)

ε4

)4ν

∨

(
d6(R4 ∨ d2 log3

(
ndR
δε

)
)

ε24
d2

)4ν

,

then with probability at least 1− δ, it holds that

Eoh∼qoh

[
inf

µ∈C (DDPM(s
θ̂
,oh),q(·|oh))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε)
]
≤ 3ε.

Remark L.1. We emphasize that the exact value of the polynomial dependence (and in particular
its pessimism) stem from the guarantees of Chen et al. [18], Lee et al. [41] regarding the quality of
sampling with DDPMs. We remark below that the learning process itself does not incur such poor
polynomial dependence except via these guarantees. Furthermore, we do not expect the sampling
guarantees of those two works to be tight in any sense and such a poor polynomial dependence is
not observed in practice. Rather, we include the bounds of Chen et al. [18], Lee et al. [41] so as to
provide a fully rigorous end-to-end guarantee showing that polynomially many samples suffice to
do imitation learning under our assumptions.

Remark L.2. A subtle difference between the presentation in the body and that here is the depen-
dence of the complexity of Θ on the parameter α. We phrase the complexity guarantee as we did in
the body in order to emphasize the dependence on the algorithmic parameter. If we let C ′Θ denote a
constant such thatRn(Θ) ≤ C ′Θ(α/n)−1/ν , then the sample complexity above becomes

n ≥ c
(
C ′Θ log(dn)

α

)4ν

∨

(
d2(R2 ∨ d2 log3

(
ndR
εδ

)
)

α2ε16

)4ν

.

Critically, the guarantee of the quality of our DDPM is not in TV, but rather an optimal transport
distance tailored to the problem at hand. As discussed in Remark C.2, it is precisely this weaker
guarantee that makes the problem challenging.

L.1 Simplifying Notation

We substantially simplify the notation in this appendix to suppress all dependence on h. In particular,
we fix some h ∈ [H] and consider oh ∼ Dσ,h,[0]. We let q denote Dσ,h and d denote dA. We further
fix some σ > 0 and let q[t] denote the law of a | oh according to Dσ,h,[t] for the sake of notational
simplicity. Furthermore, to emphasize that our analysis of the statistical learning theory decomposes
accross DDPM time steps, we denote by Θj the function class sθ(·, ·, αj). We (redundantly) keep
the dependence on t in the function evaluation for the sake of clarity. All other notation is defined in
situ.

We emphasize that while our theoretical analysis treats each sθ,h separately, empirically one sees
better success in training the score estimates jointly; on the other hand, the focus of this paper is
not on sampling and score estimation and so we make the simplifying assumption for the sake of
convenience.

L.2 Denoising Diffusion Probabilistic Models

We begin by motivating the sampling procedure described in (2.2), which is derived by fixing a
horizon T and considering the continuum limit as α ↓ 0 and J = T

α . More precisely, consider a
forward process satisfying the stochastic differential equation (SDE) for 0 ≤ t ≤ T :

dat = −atdt+
√
2dBt, a0 ∼ q,

where Bt is a Brownian motion on Rd and a0 is sampled from the target density. Applying the
standard time reversal to this process results in the following SDE:

daT−t← =
(
at← + 2∇ log qT−t(a

t
←)
)
dt+

√
2dBt, a0← ∼ qT ,
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where qt is the law of at. Because the forward process mixes exponentially quickly to a standard
Gaussian, in order to approximately sample from q, the learner may sample ã0← ∼ N (0, I) and
evolving ãt← according to the SDE above. Note that the classical Euler-Maruyama discretization of
the above procedure is exactly (2.2), but with the true score ∇ log qT−t replaced by score estimates
sθ(·, T − t) : Rd → Rd; we may hope that if sθ(·, T − t) ≈ ∇ log qT−t as functions, then the
procedure in (2.2) produces a sample close in law to q. Indeed, the following result provides a
quantitative bound:
Theorem 14 (Corollary 4, Chen et al. [18]). Suppose that a distribution q on Rd is supported on
some ball of radius R ≥ 1. Let C be a universal constant, fix ε > 0, and let α, J be set as in (L.1).
If we have a score estimator sθ : Rd × [τ ]→ Rd such that

max
j∈[J]

Ea∼q[αj]

[∣∣∣∣sθ(a, j)−∇ log q[αj](a)
∣∣∣∣2] ≤ ε4,

then

sup
f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼Law(aJ ) [f(â)]− Ea∗∼q [f(a
∗)] ≤ ε2,

where aJ is sampled as in (2.2).
Remark L.3. As a technical aside, we note that Chen et al. [18, Corollary 4] applies to an “early
stopped” DDPM, in the sense that the denoising is stopped in slightly fewer than J steps. On the
other hand, for the choice of α given above, Chen et al. [18, Lemma 20 (a)] demonstrates that this
distribution is ε2-close in Wasserstein distance to the sample produced by using all J steps and so
by multiplying C above by a factor of 2 the guarantee is preserved. Because in practice we do not
stop the DDPM early, we phrase Theorem 14 in the way above as opposed to the more complicated
version with the early stopping.
Remark L.4. While [18, 41] show that if sθ is close to the s⋆,h in L2(q[αj]) and q satisfies mild reg-
ularity properties, then the law of aJh will be close in total variation to q. Unfortunately, the required
regularity of q, that the score is Lipschitz, is too strong to hold in many of our applications, such as
when the data lie close to a low-dimensional manifold. In such cases, Chen et al. [18] provided guar-
antees in a weaker metric on distributions. We emphasize that even with full dimensional support,
the Lipschitz constant of ∇ log q is likely large and thus the dependence on this constant appearing
in Chen et al. [18, Theorem 2] is unacceptable. In particular, this subtle point is what necessitates
the intricate construction of our paper; as remarked in Section 3, if we could expect the score to
be sufficiently regular and producing a sample close in total variation to the target distribution were
feasable, the problem would be trivial.

While Theorem 14 applies to unconditional sampling, it is easy to derive conditional sampling guar-
antees as a corollary.

Corollary L.1. Suppose that q is a joint distribution on actions a and observations oh ∈ Rd′
. Further

assume that the marginals over Rd are fully supported in a ball of radius R ≥ 1. Then there exists a
universal constant C such that for all small ε > 0, if J and α are set as in (L.1) and

Eoh∼qoh

[
max
j∈[J]

Ea∼q[αj](·|oh)
[∣∣∣∣sθ(a, j, oh)−∇ log q[αj](a|oh)

∣∣∣∣2]] ≤ ε4, (L.2)

then

Eoh∼qoh

[
inf

µ∈C (DDPM(sθ,oh),q(·|oh))
P(̂a,a∗)∼µ (||â− a∗|| ≥ ε)

]
≤ 3ε

Proof. We begin by showing an intermediate result,

Eoh∼qoh

[
sup

f : ||f ||∞∨||||∇f ||||∞≤1
Eâ∼DDPM(sθ,oh) [f(â)]− Ea∗∼q(·|oh) [f(a

∗)]

]
≤ 3ε2. (L.3)

using Theorem 14. Let

A =

{
max
j∈[J]

Ea∼q[αj](·|oh)
[∣∣∣∣sθ(a, j, oh)−∇ log q[αj](a|oh)

∣∣∣∣2] ≤ ε2} .
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By Markov’s inequality and (L.2), it holds that

Poh∼qoh (Ac) ≤ ε4

ε2
= ε2

and thus

Eoh∼qoh

[
sup

f : ||f ||∞∨||||∇f ||||∞≤1
Eâ∼DDPM(sθ,oh) [f(â)]− Ea∗∼q(·|oh) [f(a

∗)]

]

= Eoh∼qoh

[
I[A] sup

f : ||f ||∞∨||||∇f ||||∞≤1
Eâ∼DDPM(sθ,oh) [f(â)]− Ea∗∼q(·|oh) [f(a

∗)]

]

+ Eoh∼qoh

[
I[Ac] sup

f : ||f ||∞∨||||∇f ||||∞≤1
Eâ∼DDPM(sθ,oh) [f(â)]− Ea∗∼q(·|oh) [f(a

∗)]

]

≤ Eoh∼qoh

[
I[A] inf

q′∈∆(Rd)
W2(q(·|oh), q′) + TV (q′,Law(πτ ))

]
+ 2ε2.

For each oh, we may apply Theorem 14 and observe that for oh ∈ A,

sup
f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,oh) [f(â)]− Ea∗∼q(·|oh) [f(a
∗)] ≤ ε2,

which proves (L.3). Now, for any fixed oh, by Markov’s inequality and the definition of Wasserstein
distance,

inf
µ∈C (DDPM(sθ,oh),q(·|oh))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε) ≤ W1(DDPM(sθ, oh), q(·|oh))
ε

.

The result follows.

Note that the guarantee in Corollary L.1 is precisely what we need to control the one step imitation
error in Theorem 4; thus, the problem of conditional sampling has been reduced to estimating the
score. In the subsequent section, we will apply standard statistical learning techniques to provide a
nonasymptotic bound on the quality of a score estimator.

L.3 Score Estimation

In the previous section we have shown that conditional sampling can be reduced to the problem of
learning the conditional score. While there exist non-asymptotic bounds for learning the uncondi-
tional score [13], they apply to a slightly different score estimator than is typically used in practice.
Here we upper bound the estimation error in terms of the complexity of the space of parameters Θ.

Observe that in order to apply Corollary L.1, we need a guarantee on the error of our score estimate
in L2(q[αj]) for all j ∈ [J ]. Ideally, then, for fixed oh and t = αj, we would like to minimize

Ea∼q[t]

[∣∣∣∣sθ(a, oh, t)−∇ log q[t](a|oh)
∣∣∣∣2], where the inner norm is the Euclidean norm on Rd.

Unfortunately, because q[t] itself is unkown, we cannot even take an empirical version of this loss.
Instead, through a now classical integration by parts [32, 74, 62], this objective can be shown to be
equivalent to minimizing

LDDPM(θ, a, o, t) = Ea∼q[t]

[∣∣∣∣∣∣∣∣sθ (e−ta+√1− e−2tγ, oh, t
)
+

1√
1− e−2t

γ

∣∣∣∣∣∣∣∣2
]
.

Because we are really interested in the expectation over the joint distribution (a, oh), we may take the
expectation over oh and recover (4.1) as the empirical approximation. We now prove the following
result for a single time step t:

Proposition L.1. Suppose that q is a distribution such that q(·|oi) is supported on a ball of radius R
for q-almost every oh. For fixed j ∈ [J ] and α from (L.1), let t = jα and suppose that there is some
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θ∗ ∈ Θj such that s⋆(·, ·, t) = sθ∗(·, ·, t) = ∇ log q[t](·|·), i.e., sθ is rich enough to represent the
true score at time t. Suppose further that the class of functions {sθ|θ ∈ Θj} satisfies for all θ ∈ Θj ,

sup
θ,θ′∈Θj

||a||∨||a′||≤R
||oh||≤R

||sθ(a, oh, t)− sθ′(a′, oh, t)|| ≤ c
d2(R+

√
d log

(
2nd
δ

)
)2

ε8

for some universal constant c > 0. Recall the Rademacher term Rn(Θj) defined in Definition C.2,
and let

θ̂ ∈ argmin
θ∈Θ

n∑
i=1

LDDPM(θ, ai, oi, t)

for independent and identically distributed (ai, oi) ∼ q. Then it holds with probability at least 1− δ
over the data that

E(at,oh)∼q[t]

[∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](at|oh)
∣∣∣∣2]

≤ c ·
√

log (dn)

1− e−2t

Rn(Θ) +
d2(R+

√
d log

(
2nd
δ

)
)2

ε8
·

√
d log

(
4dn
δ

)
n

 .

Remark L.5. We note that while we assume a linearly growing score function for the sake of
simplicity, our analysis easily handles any polynomial growth with a mild resulting change in the
constants, omitted for the sake of simplicity.

Before we provide a proof, we recall the following result:
Lemma L.2. Suppose that q is supported in a ball of radius R and let t ≥ α for α as in (L.1). Then
∇ log q[t](·|·) is L-Lipschitz with respect to the first parameter for

L =
dR2(R ∨

√
d)2

ε8
.

In particular,

sup
||a||∨||a′||≤R

oh

∣∣∣∣∇ log q[t](a|oh)−∇ log q[t](a
′|oh)

∣∣∣∣ ≤ 2LR

and there exists some assignment of Θ and sθ that satisfies the boundedness condition in Proposi-
tion L.1.

Proof. The first statement follows from eplacing the ε in Chen et al. [18, Lemma 20 (c)] by ε2. The
second statement follows immediately from the first.

Remark L.6. Note that a slight variation of this result is what leads to the dependence on α in the
growth parameter in Assumption C.1 allowing for realizability. Indeed, by Chen et al. [18, Lemma
20], it holds that the true score of q[α] is

L =
1

1− e−2α
∨
∣∣1− e−2α(1 +R2)

∣∣
(1− e−2α)2

Lipschitz, which is O(α−1) for α≪ 1.

We also require the following standard result:
Lemma L.3. IfRn(Θj) is defined as in Definition C.2, then

Eγ1,...,γn

 sup
θ∈Θj

1≤j≤J

1

n
·

n∑
i=1

⟨sθ(a, oi, j),γi⟩

 ≤√π log(dn) · Rn(Θj)
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Proof. This statement is classical and follows immediately from the fact that the norm of a Gaussian
is independent from its sign as well as the fact that E [maxi,j(γi)j ] ≤

√
π log(dn) by classical

Gaussian concentration. See Van Handel [69] for more details.

Proof of Proposition L.1. Let Pn denote the empirical measure on n independent samples
{(ai, oi,γi)} and let ati = e−tai+

√
1− e−2tγi. LetCt =

√
1− e−2t and observe that by definition

and realizability,

Pn

(∣∣∣∣Ctsθ̂(a
t, oh, t)− γ

∣∣∣∣2) ≤ ·Pn

(∣∣∣∣Ct∇ log q[t](a
t|oh)− γ

∣∣∣∣2) . (L.4)

We emhasize that by Lemma L.2, realizability does not make the result vaccuous. Adding and
subtracting Ct∇ log q[t](a

t|oh) from the left hand inequality, expanding and rearranging, we see
that

C2
t Pn

(∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](a
t|oh)

∣∣∣∣2) ≤ 2Ct · Pn

(〈
sθ̂(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)
≤ 2Ct · Pn

(
sup
θ∈Θj

〈
sθ(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)
.

We now claim that with probability at least 1− δ, it holds that

Pn

(
sup
θ∈Θ

〈
sθ(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)
≤ E

[
Pn

(
sup
θ∈Θj

〈
sθ(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)]

+B ·

√
d log

(
2d
δ

)
n

,

where

B = c
d2(R+

√
d log

(
2nd
δ

)
)2

ε8
(L.5)

for some universal constant c > 0. To see this, we claim that with probability at least 1 − δ
2 , it

holds that ||ati|| ≤ c

(
R+

√
d log

(
2nd
δ

))
for all 1 ≤ i ≤ n. Indeed, this follows by Gaussian

concentration in Jin et al. [34, Lemmata 1 & 2]. We may now apply Lemma L.2 to a bound on the
osculation of sθ − ∇ log q[t] in the ball of the above radius. Conditioning on the event that ||ati|| is
bounded by the above, we may argue as in Wainwright [75, Theorem 4.10] that if we let the function

G = G(a1, o1, . . . , an, on) = Pn

(
sup
θ∈Θj

〈
sθ(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)
,

then for any i, on the event of bounded norm, replacing (ai, oi) with (a′i, o
′
i) and leaving other terms

unchanged changes ensures that |G−G′| ≤ 2B
n γi. Thus by Jin et al. [34, Corollary 7] and a union

bound, the claim holds. Because γ is mean zero, we have

E
[
Pn

(
sup
θ∈Θ

〈
sθ(a

t, oh, t)−∇ log q[t](a
t|oh),γ

〉)]
≤ E

[
Pn

(
sup
θ∈Θ

〈
sθ(a

t, oh, t),γ
〉)]

≤
√
π log(dn) · Rn(Θj),

where the last inequality follows by Lemma L.3 and the fact that t = jJ . Summing up the argument
until this point and rearranging tells us that with probability at least 1− δ, it holds that

Pn

(∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](a
t|oh)

∣∣∣∣2) ≤ 2

Ct

√
π log(nd) · Rn(Θ) +

B

Ct
·

√
d log

(
2nd
δ

)
n

,

with B given in (L.5). We now use a uniform norm comparison between population and empirical
norms to conclude the proof. Indeed, it holds by Rakhlin et al. [54, Lemma 8.i & 9] that there exists
a critical radius

rn ≤ cB log3(n)Rn(Θj)
2
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such that with probability at least 1− δ,

E(at,oh)∼q[t]

[∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](a
t|oh)

∣∣∣∣2]
≤ 2 · Pn

(∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](a
t|oh)

∣∣∣∣2)+ crn + c
log
(
1
δ

)
+ log log n

n
,

where again c is some universal constant. Combining this with our earlier bound on the empirical
distance and a union bound, after rescaling δ, we have that

E(at,oh)∼q[t]

[∣∣∣∣sθ̂(at, oh, t)−∇ log q[t](a
t|oh)

∣∣∣∣2] ≤ 4

Ct

√
π log(nd) · Rn(Θj) +

2B

Ct
·

√
d log

(
4nd
δ

)
n

+ cB log3(n) · R2
n(Θj) + c

log
(
2
δ

)
+ log log(n)

n

with probability at least 1− δ. This concludes the proof.

Remark L.7. For the sake of simplicity, in the proof of Proposition L.1 we applied uniform de-
viations and recovered the “slow rate” of Rn(Θ), up to logarithmic factors. Indeed, if we were to
further assume that the score function class is star-shaped around the true score, we could recover
a faster rate, as was done in the case of unconditional sampling in Block et al. [13] with a slightly
different loss. While in our proof the appeal to Rakhlin et al. [54] to control the population norm by
the empirical norm could be replaced with a simpler uniform deviations argument because we have
already given up on the fast rate, such an argument is necessary in the more refined analysis. As the
focus of this paper is not on the sampling portion of the end-to-end analysis, we do not include a
rigorous proof of the case of fast rates for the sake of simplicity and space.
Remark L.8. While we assumed for simplicity that the score was realizable with respect to our
function class for every time t = αj, this condition can be relaxed to approximate realizability in a
standard way. In particular, if the score is ε-far away from some function representable by our class
in a pointwise sense, then we can add an ε to the right hand side of (L.4) with minimal modification
to the proof.

With Proposition L.1, and a union bound, we recover the following result:
Proposition L.4. Suppose that the conditions on sθ in Proposition L.1 continue to hold. Suppose
further that ||sθ(a, oh, t)|| ≤ Cgrow(1+||a||+||oh||) for all a and some universal constantCgrow > 0.
Let J and α be as in (L.1) and suppose that α ≤ 1

2 . Then, with probability at least 1− δ over D′, it
holds that

Eoh∼qoh

[
max
j∈[J]

Ea∼q[αj](·|oh)
[∣∣∣∣sθ(a, j, oh)−∇ log q[αj](a|oh)

∣∣∣∣2]]

≤ cd(R ∨
√
d)2 log(dn)

ε4
Rn(Θ) + c

d3
(
(R ∨

√
d)2 + d log

(
ndR
δε

))
ε12

√
d log

(
4dnR
δε

)
n

In particular if

Rn(Θj) ≤ CΘn
−1/ν

for some ν ≥ 2 and all j ∈ [J ], then for

n ≥ cCgrow

(
CΘα

−1d(R ∨
√
d)2 log(dn)

ε4

)4ν

∨

(
d6(R4 ∨ d3 log3

(
ndR
δε

)
)

ε24
d2

)4ν

it holds that with probability at least 1− δ,

Eoh∼qoh

[
max
j∈[J]

Ea∼q[αj](·|oh)
[∣∣∣∣sθ(a, j, oh)−∇ log q[αj](a|oh)

∣∣∣∣2]] ≤ ε4.
Proof. We begin by proving the result on the event that ||a||∨||oh|| ≤ C(R∨

√
d) log

(
Jn(R∨

√
d)

δε

)
.

Note that

1− e−2t ≥ 1− e−2α ≥ α

96



because 2α ≤ 1. We now apply Proposition L.1 and take a union bound over j ∈ [J ]. All that
remains is to demonstrate that the contribution of the event that aj is outside the above defined ball
is negligable. To do this, observe that by Lee et al. [41, Lemma 4.15], there is some C > 0 such
that aj is C(R ∨

√
d)-subGaussian. By the sublinearity of the growth of sθ in a, as well as the

Lipschitzness of q[αj] following from Chen et al. [18, Lemma 20], bounding a maximum by a sum,
and the elementary computation in Lemma L.5, we have that the expectation of this term on this
event is bounded by CCgrow

n . The result follows.

We note that in our simplified analysis, we have assumed that Naug = 1, i.e., for each sample,
we take a single noise level from the path. In practice, we use many augmentations per sample.
Again, as the focus of our paper is not on score estimation and sampling, we treat this as a simple
convenience and leave open to future work the problem of rigorously demonstrating that multiple
augmentations indeed help with learning. Finally, for a discussion on bounding Rn(Θ), see Wain-
wright [75].

Proof of Theorem 13. We note that the proof follows immediately from combining Corollary L.1
with Proposition L.4.

We conclude the section with the following elementary computation used above:
Lemma L.5. Suppose that X is a σ-subGaussian random variable on R. Then for any r ≥ 1,

E [|X| · I[|X| > r]] ≤ Cσ
r
· e−

r2

2σ2

Proof. This is an elementary computation. Indeed,

E [|X| · I[|X| > r]] =

∫ ∞
r

P (|X| > t) dt ≤ C
∫ ∞
r

e−
t2

2σ2 dt

≤ C ·
∫ ∞
r

t

r
e−

t2

2σ2 dt

≤ Cσ
r
· e−

r2

2σ2 .

The result follows.

M Proofs for Generic Incrementally Stable Primitive Controllers

This section proves Theorems 5 and 6, gneeralizing our guarantees to general primitive controllers.
Note that, in this more general setting, we can no longer expect to bound the norm of the difference
between two controllers evaluated at some point x κt(x)− κt(x′) by differences in their parameter
values. Instead, we opt for the more local notion of distance considered in Theorems 5 and 6, via
the localized distance dloc,α considered in Definition E.1. To this end, Appendix M.1 begins by
generalizing the analysis of the composite MDP to allow the distance dA take an additional state-
argument (in order to capture the localization of the distance in dloc,α). Appendix M.2 then converts
our assumption of incremental stability, Assumption 3.1b, into the IPS stability conditioned required
in the composite MDP. Finally, we conclude of our intended results in Appendix M.3, following the
same arguments as for affine primitive controllers in Appendix J.

M.1 Generalization of analysis in the composite MDP

Here, we consider a generalization of the analysis of the composite MDP where we allow dA to
depend on state. Our analysis follows Appendix H.3 and the proof of Theorem 9. All notation here
borrows from that section. Formally, we consider

dA;S(·, · | ·) : (A×A)× S → R≥0.

We recall the direct decomposition in Definition H.1 of S = Z ⊕S/O, where we recall that Z is the
component that coincides with the ‘oh’ component of the state in our instantiation. Further, recall
that ϕo is the projection onto the Z component.
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Condition M.1 (Measurability). We require that dA;S is measurable, and that, for all s, the set
{(a′, a) : dA;S(a′, a; s) > ε} is open. and that (a′, a, s) 7→ dA;S(a′, a; s) is measurable. We also
assume that dA;S(a′, a; s) only depends on s through ϕo(s).

We re-define a state-conditioned input stability as follows

Definition M.1. We say that a sequence (s1:H+1, a1:H) is state-conditioned input-stable with respect
to an auxilliary sequence s̃1:H+1 if

dS(s
′
h+1, sh+1) ∨ dTVC(s

′
h+1, sh+1) ≤ max

1≤j≤h
dA;S

(
a′j , aj | s̃j

)
, ∀h ∈ [H]

We now define a one-step error which is state dependent (allowing for dA;S ). To simplify the
exposition, we define marginal gaps which ignore the now-state-dependent dA;S .

Definition M.2 (Modified Imitation Gaps). Define the state

dos,S,ε(π̂h(s), π
⋆
h(s) | s′) := inf

µ2

Pµ2
[dA;S(âh, a

⋆
h | s′) ≤ ε] ,

where the infinum is over couplings (a⋆h, âh) ∼ µ2 ∈ C (π̂h(s), π
⋆
h(s)). Further define

Γmarg,S,ε := inf
µ1

Pµ1

[
max
h∈[H]

max{dS(s⋆h+1, ŝh+1) > ε

]
, Γjoint,S,ε := max

h∈[H]
inf
µ1

Pµ1 [dS(s
⋆
h+1, ŝh+1) > ε]

where above µ1 ranges over the same couplings as in Definition D.1.

Guarantees under TVC of π̂ . We now generalize Proposition D.2 under the assumption that π̂
is TVC.

Proposition M.1 (Generalization of Proposition D.2). Let π⋆ be state-conditioned input-stable w.r.t.
(dS , dA;S) and let π̂ be γ-TVC. Then, for all ε > 0,

Γjoint,S,ε(π̂ ∥ π⋆) ≤ Hγ(ε) +
H∑

h=1

Es⋆h∼P⋆
h
dos,S,ε(π̂h(s

⋆
h) ∥ π⋆

h(s
⋆
h) | s⋆h).

Proof Sketch. The proof is nearly identical to the proof of Proposition D.2 in Appendix G. The only
difference is that, when we measure the distance between a⋆h ∼ π⋆

h(s
⋆
h) and âinterh ∼ π̂h(s

⋆
h), this

distance is specified at s⋆h. Hence, we replace dA(âinterh , a⋆h) with dA(âinterh , a⋆h | s⋆h). This leads to
use replacing dos,ε(π̂h(s

⋆
h) ∥ π⋆(s⋆h)). with dos,S,ε(π̂h(s⋆h) ∥ π⋆

h(s
⋆
h) | s⋆h) in the final bound.

Guarantees with smoothing kernel. Next, we turn to the generalization of Theorems 4 and 9 to
allow for state-conditioned action distances.

Definition M.3. Given non-decreasing maps γIPS,TVC, γIPS,S : R≥0 → R≥0 a pseudometric
dIPS : S × S → R (possibly other than dS or dTVC), and rIPS > 0, we say a policy π is
(γIPS,TVC, γIPS,S , dIPS, rIPS)-state-conditioned-restricted IPS if it satisfies the conditions of Defini-
tion H.9, with the only modification that for the constructed s1:H+1, a1:H , s̃1:H , the condition that
s1:H+1, a1:H is input-stable is replaced with “state-conditioned input stable with respect to the se-
quence s̃1:H .” More precisely, the condition is met if the following holds for any r ∈ [0, rIPS].
Consider any sequence of kernels W1, . . . ,WH : S → ∆(S) satisfying

max
h,s∈S

Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, ∀s, ϕo ◦Wh(sh)≪ ϕo ◦ P⋆
h.

and define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼ πh(s̃h), and sh+1 := Fh(sh, ah). Then, almost
surely,

(a) the sequence (s1:H+1, a1:H) is state-conditioned input stable with respect to the sequence
s̃1:H

(b) maxh∈[H] dTVC(Fh(̃sh, ah), sh+1) ≤ γIPS,TVC(r) and (c) maxh∈[H] dS(Fh(̃sh, ah), sh+1) ≤
γIPS,S(r).
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Theorem 15. Consider the setting of Theorem 9, but with π⋆ satisfies (γIPS,TVC, γIPS,S , dIPS, rIPS)-
state-conditioned-restricted IPS (Definition M.3) rather than (standard) restricted IPS (Defini-
tion H.9). Again, let ε > 0 and r ∈ (0, 12rIPS], and efine

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r], ε′ := ε+ γIPS,S(2r)

Then, for any policy π̂, both Γjoint,S,ε(π̂ ◦ Wσ ∥ π⋆
rep) and Γmarg,S,ε′(π̂ ◦ Wσ ∥ π⋆) are upper

bounded by

H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
H∑

h=1

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,S,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec,h(s̃
⋆
h) | s⋆h).

Proof. The proof follows by modifying Theorem 8, and hence Theorem 9 as a consequence. The
key change is that we replace the event Best,h =

{
dA(â

tel,inter
h , atelh ) > ε

}
15 in Definition H.6 with

Best,h =
{
dA(â

tel,inter
h , atelh | s̃telh ) > ε

}
, (M.1)

and replace the event QIS in Definition H.8 with

QIS :=
{
srep1:H+1, a

rep
1:H is state-conditioned input-stable w.r.t. s̃rep1:H

}
We also define the following event

Q′IS,h :=
{
srep1:h+1, a

rep
1:h is state-conditioned input-stable w.r.t. s̃tel1:h

}
,

which considers input stability for h ≤ H steps and shifts the reference sequence from s̃rep1:h to s̃tel1:h.
What changes as a result of these argument is as follows:

• We check that Lemma H.7 goes through:

C̄all,h+1 ⊂ Qall ∩ C̄all,h ∩ B̄all,h.

The first modification here is that, when srep1:H+1, a
rep
1:H is input stable with respect to s̃rep1:H ,

dS (̂sh+1, s
rep
h+1) ∨ dTVC(ŝh+1, s

rep
h+1) ≤ max

1≤j≤h
dA;S

(
âj , a

rep
j | s̃repj

)
, ∀h ∈ [H]

Since dA;S(a, a′ | s) depends only on s through ϕo(s), then when⋂
1≤j≤h

Btel,j :=
{
arepj = atelj , ϕo(̃s

rep
j ) = ϕo(s̃

tel
j )
}
,⊂ B̄all,h,

holds, we have

max
1≤j≤h

dA;S
(
âj , a

rep
j | s̃repj

)
= max

1≤j≤h
dA;S

(
âj , a

tel
j | s̃telj

)
, ∀h ∈ [H]

Finally, on B̄all,h, we have â = âtel,inter, so we get

max
1≤j≤h

dA;S
(
âj , a

rep
j | s̃repj

)
= max

1≤j≤h
dA;S

(
âtel,interj , atelj | s̃telj

)
, ∀h ∈ [H],

which is at most ε under our second definition of Best,h.

• Lemma H.8 goes unchanged

• We check that Lemma H.9 goes through. This follows from the defintion of state-
conditioned input-stable, using srep1:H+1, a

rep
1:H , s̃

rep
1:H as s1:H+1, a1:H , s̃1:H , so that when

Pµ[Qc
IS ∩Qclose] = 0.16

15This is the special case of Best,h =
{
d⃗A(âtel,interh , atelh ) ̸⪯ ε⃗

}
with d⃗A being scalar valued (i.e. all coor-

dinate identical).
16Here, we replace pIPS in that lemma with failure probability 0.
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• Recall that dA;S(a, a′; s) depends only on s through ϕo(s). Hence, under the event⋂
1≤j≤h

Btel,j :=
{
arepj = atelj , ϕo(̃s

rep
j ) = ϕo(s̃

tel
j )
}
,⊂ B̄all,h

we have that QIS implies Q′IS,h.

• Lemma H.10 replaces dos,ε(π̂σ,h(̃s
tel
h ) ∥ π⋆

rep,h(̃s
tel
h )) with dos,S,ε(π̂σ,h(̃stelh ) ∥

π⋆
rep,h(̃s

tel
h ) | s̃telh ), i.e. the state-conditioned one-step error (that we condition on s̃telh comes

from our re-definition of Best,h in (M.1). Thus, we get Γjoint,S,ε(π̂ ◦ Wσ ∥ π⋆
rep) and

Γmarg,S,ε′(π̂ ◦Wσ ∥ π⋆) are upper bounded by

H (2pr + 3γσ(max{ε, γIPS,TVC(2r)})) +
H∑

h=1

Es̃telh
dos,S,ε(π̂σ,h(s̃

tel
h ) ∥ π⋆

rep,h(̃s
tel
h ) | s̃telh ).

(M.2)

• Because s̃telh has marginal s⋆h ∼ P⋆
h, we can replace the terms Es̃telh

dos,S,ε(π̂σ,h(̃stelh ) ∥
π⋆
rep,h(̃s

tel
h ) | s̃telh ) with Es⋆h∼P⋆

h
dos,S,ε(π̂σ,h(s⋆h) ∥ π⋆

rep,h(s
⋆
h) | s⋆h).

• Using the same data-processing argument as in the proof as in Theorem 8, we can bound

Es⋆h∼P⋆
h
dos,S,ε(π̂σ,h(s

⋆
h) ∥ π⋆

rep,h(s
⋆
h) | s⋆h) ≤ Es⋆h∼P⋆

h
Es̃⋆h∼Wσ(s⋆h)

dos,S,ε(π̂h(̃s
⋆
h) ∥ π⋆

dec,h(̃s
⋆
h) | s⋆h).

M.2 State-Conditioned Input-Stability and IPS in the Composite MDP via t-ISS

Lemma K.3 reduced IPS in the composite MDP to incremental stability in a form that applies pri-
marily to affine primitive controllers. In this section, we generalize the lemma further to depend on a
more localized distance reflecting the state-conditioned distance dA;S(·, ·; ·) in the composite MDP.
Recall the local-distance between composite actions a = κ1:τchunk , a

′ = κ′1:τchunk
∈ A at state x and

scale α > 0, defined in Definition E.1 as

dloc,α(a, a
′ | x) := max

1≤i≤τchunk
sup

δx:∥δx∥≤α
∥κi(xi + δx)− κ′i(xi + δx)∥,

where above x1 = x, xt+1 = f(xt, κt(x)) with a = κ1:τchunk .
Lemma M.2. Instantiate the composite MDP as in Definition K.1, with π⋆ as in Definition J.3.
Furthermore, suppose that under (ρT , a1:H) ∼ Dexp with ρT = (x1:T+1,uT ), the following both
hold with probability one:

• Each action ah satisfies our notion of incremental stability (Definition 3.1) with moduli
γ(·),β(·, ·), constants cγ, cξ > 0 (i.e. Assumption 3.1b holds)

Finally, let ε0 > 0 satisfy (E.1), that is:

γ−1(β(2γ(ε0), τchunk) ≤ ε0 ≤ min{cγ,γ−1(cξ/4)},
Further, given s̃ ∈ S = Pτchunk

with last-step x̃τchunk
, consider the distance-like function

d̄A(a, a;α, s̃) := ψ(dloc,α(a, a
′ | x̃τchunk)) · I∞ {dloc,α(a, a′ | x̃τchunk) ≤ ε0} , ψ(u) := 2β(2γ(u), 0).

Then, the following hold:

(a) π⋆ is state-conditioned input-stable (Definition M.1) with respect to dS , dTVC as defined in
Appendix D

dA(a, a
′; s) = d̄A(a, a

′;ψ(ε), s),

(b) For any rIPS ≤ cξ/2, π⋆ is (rIPS, γIPS,TVC, γIPS,S , dIPS)-state-conditioend restricted-IPS (Def-
inition M.3) with

dA(a, a
′; s) = d̄A(a, a

′;ψ(ε) + β(rIPS, 0), s), γIPS,TVC(r) = β(r, τchunk − τobs), γIPS,S(r) = β(r, 0),
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Proof of Lemma M.2. The proof is nearly identical to that of Lemma K.3, based on Lemma K.2.
The only difference is that, rather than using the worst-case bound xt ∈ X0, we condition on the
relevant states. For part (a), we consider (s1:H+1, a1:H) be drawn from the distribution induces by
π⋆, and let a′1:H be some other sequences of actions, and measure dA;S(ah, ah; sh). Thus the relevant
control-state to condition on is xth in the construction of Lemma K.2. For verifying (b), we instead
condition on x̃th because, as in Definition M.3, we measure the input-state stability condition for
restricted-state-conditioned-IPS with sequence to the states s̃1:H .

M.3 Concluding the proof of Theorems 5 and 6

M.3.1 Proof of Theorem 6

The result is a direct consequence of the following points. First, with our instantition of the com-
posite MDP, we can bound Lmarg,ε(π̂) ≤ Γmarg,S,ε(π̂ ∥ π⋆) ≤ Γjoint,S,ε(π̂ ∥ π⋆) by the same
argument in Lemma J.117; by a similar argument, we have Ljoint,ε(π̂) ≤ Γjoint,S,ε(π̂ ∥ π⋆) when
Dexp has τ ≤ τobs-bounded memory. The bound now follows from Proposition M.1, the fact that
Lemma M.2 verifies the input-stability property (with ε, τchunk satisfies (E.1)).

M.3.2 Proof of Theorem 5

We begin with a lemma that upper bounds the imitation gaps by ∆ISS,σ,h(π̂; ε, α(ε)+2β(2r, 0)) and
other relevant terms. Essentially, the following lemma combines the general imitation guarantee in
Theorem 15 with the incremental stability analysis in Lemmas K.2 and M.2.

Lemma M.3. Consider the instantiation of the composite MDP as in Definition K.1, let r ≤ cξ/4,
and recall α(ε) = 2β(2γ(ε), 0). Further suppose that ε satisfy Eq. (E.1). Then, the the modi-
fied imitation gaps (whose definition we recall Definition M.2) Γjoint,S,α(ε)(π̂ ◦ Wσ ∥ π⋆

rep) and
Γmarg,S,α(ε)+β(2r,0)(π̂ ◦Wσ ∥ π⋆) are bounded above by

H (4pr + 3γσ (max{α(ε),β(2r, τchunk − τobs)})) +
H∑

h=1

∆ISS,σ,h(π̂; ε, α(ε) + 2β(2r, 0)).

Before proving the lemma, lets quickly show how it implies the desired theorem. We bound

Lmarg,2β(2γ(ε),0)+2β(2r,0) ≤ Lmarg,2β(2γ(ε),0)+β(2r,0)

= Lmarg,α(ε)+β(2r,0)(π̂) ≤ Γmarg,S,α(ε)+β(2r,0)(π̂ ◦Wσ ∥ π⋆),

where the last inequality is due to as in the proof of Theorem 6, the intermediate inequality uses
the definition of α(ε), and the first inequality uses anti-monotonicity of Lmarg,ε in ε. Moreover, as
shown in the proof of Theorem 2 in (J.4) and (J.5), we can take γσ(u) = u

√
2τobs−1
2σ and for pr ≤ p

when r = σωp, ωp := 2

√
5dx + 2 log

(
1
p

)
and Wσ(·) is the Gaussian Kernel in (J.1). Hence, we

conclude that if σ ≤ cξ/4ωp,

Lmarg,ε1(p) ≤ H
(
4p+

3
√
2τobs − 1

2σ
(max {ε2,β(2σωp, τchunk − τobs)})

)
+

H∑
h=1

∆ISS,σ,h(π̂; ε, ε1(p)),

where above ε1(p) = 2β(2γ(ε), 0) + 2β(2σωp, 0) and ε2 = 2β(2γ(ε), 0), as needed. Since

γ(ε) ≤ 2σ, in we can choose p = γ(ε)
σ2 and upper bound ωp ≤ ω(ε) := 2

√
5dx + 2 log

(
2σ
γ(ε)

)
.

The bound now follows from this upper bound and the bound 4p = 4 2·2γ(ε)
σ8 ≤ 4 2β(2γ(ε),0)

σ8 ≤ ε2
2σ ,

the first inequality follows from Observation K.4.

17Here, Γmarg,S,ε,Γjoint,S,ε are defined in in Definition M.2. The only difference between these the standard
gaps Γmarg,ε,Γjoint,ε consider in Definition M.2 is that they drop the closesness on composite actions, which
is immaterial for Lmarg,ε(π̂).
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Proof of Lemma M.3. Recall the replica and deconvolution kernels W⋆
dec,h(·),Wrep,h(·) defined in

Definition H.5. We have that
Es⋆h∼P⋆

h
Es̃⋆h∼Wσ(s⋆h)

dos,S,α(π̂h(s̃
⋆
h) ∥ π⋆

dec,h(̃s
⋆
h) | s⋆h) = Es⋆h∼P⋆

h
Es̃⋆h∼Wσ(s⋆h)

inf
µ

Pµ[dA;S(a
′, a | s⋆h) > α]

(M.3)

where infµ is over all couplings ah ∼ π⋆
dec,h(̃s

⋆
h), a

′
h ∼ π̂(̃s⋆h). By the gluing lemma (Lemma F.2),

each coupling in µ is equivalent to a coupling µ̂ over (s⋆h, s̃
⋆
h, ŝ

⋆
h, a, a

′) where

• s⋆h ∼ P⋆
h, s̃⋆h ∼Wσ(s

⋆
h)

• ŝ⋆h | s̃⋆h ∼W⋆
dec,h(̃s

⋆
h) for the deconvolution kernel defined in

• ah ∼ π⋆
h(̂s

⋆
h) and a′h ∼ π̂(̃s⋆h)

For couplings µ̂ of this form, and for r > 0, then, we can bound (M.3) via
inf
µ̂

Pµ̂[dA;S(a
′
h, ah | s⋆h) ≤ α]

= inf
µ̂

Eµ̂I{dA;S(a
′
h, ah | s⋆h) ≤ α}

= inf
µ̂

Eµ̂

[
I

{
sup

ŝ:dIPS(s,̂s⋆h)≤2r
dA;S(a

′
h, ah | ŝ) > α

}
+ I{dIPS(s

⋆
h, ŝ

⋆
h) > 2r}

]
.

Because for any µ̂, ŝ⋆h | s̃⋆h ∼ W⋆
dec,h(̃s

⋆
h), we see that the joint distribution s⋆h, ŝ

⋆
h is independent

of the coupling µ̂ and follows the replica distribution: ŝ⋆h | s⋆h ∼ Wrep,h(s
⋆
h). Consequently, by the

Bayesian concentration lemma Lemma H.5, the expected value of the term I{dIPS(s
⋆
h, ŝ

⋆
h) > 2r} is

at most 2pr. Hence,

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,S,α(π̂h(̃s
⋆
h) ∥ π⋆

dec,h(s̃
⋆
h) | s⋆h) ≤ 2pr + inf

µ̂
Eµ̂

[
I

{
sup

ŝ:dIPS(s,̂s⋆h)≤2r
dA;S(a

′
h, ah | ŝ) > α

}]
Again, marginalizing over s⋆h and using the form of the conditions, the right hand side of the above

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,S,α(π̂h(̃s
⋆
h) ∥ π⋆

dec,h(s̃
⋆
h) | s⋆h) ≤ 2pr + inf

µ̂
Pµ̂

[
sup

ŝ:dIPS(s,̂s⋆h)≤2r
dA;S(a

′
h, ah | ŝ) > α

]
(M.4)

Next, we recall the function ψ(u) := 2β(2γ(u), 0), instantiate α = ψ(ε), α′ = α + β(2r, 0),
rIPS = 2r, and set dA;S(a′h, ah | s) to be

dA;S(a
′
h, ah | s) = ψ(dloc,α(a, a′ | x̃τchunk)) · I∞ {dloc,α(a, a′ | x̃τchunk) ≤ ε0} ,

Using that dIPS measures the Euclidean distance between the last control state of composite-state,
we

Pµ̂

[
sup

s:dIPS(s,̂s⋆h)≤2r
dA;S(a

′
h, ah | s) > α

]
= Pµ̂

[
sup

s:dIPS (̂s,̂s⋆h)≤2r
dloc,α′(ah, a

′
h | x̂th) > ε

]

= Pµ̂

[
sup

x̂th
:∥xth

−x̂th
∥≤2r

dloc,α′(ah, a
′
h | x̂th) > ε

]

= Pµ̂

[
sup

x̂th
:∥xth

−x̂th
∥≤2r

max
0≤i<τchunk

sup
δx:∥δx∥≤α′

∥(κth+i − κ′th+i)(x̂th+i)∥ > ε

]

≤ Pµ̂

[
sup

x̂th
:∥xth

−x̂th
∥≤2r

max
0≤i<τchunk

sup
δx:∥δx∥≤α′′

∥(κth+i − κ′th+i)(xth+i)∥ > ε

]
(the inequality just replaces α′ with α′′)

= Pµ̂

[
sup

x̂th
:∥xth

−x̂th
∥≤2r

dloc,α′′(ah, a
′
h | xth) > ε

]
,

(M.5)
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x̂th is the first state in ŝ, and xth the first state in ŝ⋆h, x̂th:th+τchunk−1 = rollout(ah; x̂th),
x̂⋆
th:th+τchunk−1 = rollout(ah; x̂

⋆
th
), and finally,

α′′ := α′︸︷︷︸
=α+β(rIPS,0)

+ ∆, ∆ := sup
x̂th

:∥xth
−x̂th

∥≤2r
sup

0≤i<τchunk

∥x̂th:th+τchunk−1 − xth:th+τchunk−1∥.

(M.6)

Now, we see that µ̂ ranges all couplinigs of the form

• ŝ⋆h ∼ P⋆
h and s̃⋆h ∼Wσ (̂s

⋆
h) (by inverting the deconvolution)

• a′h ∼ s̃⋆h and ah ∼ π⋆
h(ŝ

⋆
h),

which we can see (under our instantiation of the composite MDP under Appendices D and J) is
equivalently to µ̂ ranging over all couplings in C σ,h(π̂). Hence, by Assumption 3.1b (i.e. t-ISS of
ah at ah), we can bound ∆ in (M.6) (using r ≤ cξ/4) by ∆ ≤ β(2r, 0). Hence, we can bound
α′′ ≤ α+ 2β(2r, 0), and thus we conclude (from (M.5) and (M.4)) that

Es⋆h∼P⋆
h
Es̃⋆h∼Wσ(s⋆h)

dos,S,α(π̂h(s̃
⋆
h) ∥ π⋆

dec,h(̃s
⋆
h) | s⋆h) ≤ 2pr + inf

µ̂∈Cσ,h(π̂)
Pµ̂ [dloc,α′′(ah, a

′
h | rollout(ah;xth) > ε]

= 2pr +∆ISS,σ,h (π̂; ε, α+ 2β(2r, 0)) ,

where the last equality is by definition of ∆ISS,σ,h (π̂; ε, α+ 2β(2r, 0)). Consequently, from Theo-
rem 15, for any policy π̂, both Γjoint,S,α(π̂ ◦Wσ ∥ π⋆

rep) and Γmarg,S,α+γIPS,S(2r)(π̂ ◦Wσ ∥ π⋆) are
upper bounded by

H (4pr + 3γσ(max{α, γIPS,TVC(2r)})) +
H∑

h=1

∆ISS,σ,h (π̂; ε, α+ 2β(2r, 0)) .

Subsituting in γIPS,TVC(r) = β(r, τchunk − τobs), γIPS,S(r) = β(r, 0), we conclude that

Γjoint,S,α(π̂ ◦Wσ ∥ π⋆
rep) ∨ Γmarg,S,α+β(2r,τchunk−τobs)(π̂ ◦Wσ ∥ π⋆)

≤ H (4pr + 3γσ(max{α,β(2r, 0)})) +
H∑

h=1

∆ISS,σ,h (π̂; ε, α+ 2β(2r, 0)) .

Substituting in γIPS,TVC(r) ≤ β(r, τchunk − τobs), γIPS,S(r) ≤ β(r, 0) from Lemma M.2, as well as
α = ψ(ε) = 2β(2γ(ε), 0) concludes.

N Extensions and Further Results

N.1 Removing the necessity for minimal chunk length via stronger synthesis oracle

Theorem 16. Support we replace Assumption 3.1 in Theorem 1 with the assumption that our trajec-
tory oracle produces entire sequences of gains κ1:T which satisfy time-varying incremental stability
(Definition 3.1) on the whole trajectory. Then,

• The conclusion of Theorem 1 holds

• we no longer need the condition τchunk ≥ c3; taking τchunk = 1 suffices.

• The constants c1, c2 depend only on cγ and c̄γ. That is, cξ and terms associated with β can
be vaucuously large.

Analogoues, if we replace Assumption 3.1b in Theorem 6 with the assumption that κ1:T satisfies
the time-varying incremental stability condition, then

• The conclusion of Theorem 6 holds

• We no longer need the condition τchunk ≥ c3; taking τchunk = 1 suffices. Moreover, we
can replace the condition (E.1) of ε with the simpler condition ε ≤ cγ.
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• Lastly, one can replace ε1 = 2β(2γ(ε), 0) in (E.2) with the term ε1 = γ(ε).

The proof of Theorem 16 follows by replacing Lemma K.2 with the following simpler lemma that
recapitulates Pfrommer et al. [50, Proposition 3.1], and propogating the argument through the proof.

Lemma N.1. Consider two consistent trajectories (x1:T+1,u1:T ) and (x′1:T+1,u
′
1:T ), as well as

sequences of primitive controller κ1:T , κ′1:T , such that x1 = x′1, and ut = κt(xt), u′t = κ′t(x
′
t).

Suppose that

max
t

sup
x:∥x−xt∥≤γ(ε)

∥κt(x)− κ′t(xt)∥ ≤ ε.

Then, maxt ∥ut − u′t∥ ≤ ε and maxt ∥xt − x′t∥ ≤ γ(ε)

N.2 Noisy Dynamics

We can directly extend our imitation guarantees in the composite MDP to settings with noise:

sh+1 ∼ F noise
h (sh, ah,wh), wh ∼ Pnoise,h, (N.1)

where the noises are idependent of states and of each other. Indeed, (N.1) can be directly reduced
to the no-noise setting by lifting “actions” to pairs (ah,wh), and policies π to encompass their
distribution of actions, and over noise.

Another approach is instead to condition on the noises w1:H first, and treat the noise-conditioned
dynamics as deterministic. Then one can take expectation over the noises and conclude. The ad-
vantage of this approach is that the couplings constructed thereby is that the trajectories experience
identical sequences of noise with probability one.

Extending the control setting to incorporate noise is doable but requires more effort:

• If the demonstrations are noiseless, then one can still appeal to the synthesis oracle to
synthesis stabilizing gains. However, one needs to (ever so slightly) generalize the proofs
of the various stability properties (e.g. IPS in Proposition D.1) to accomodate system noise.

• If the demonstrations themselves have noise, one may need to modify the synthesis oracle
setup somewhat. This is because the synthesis oracle, if it synthesizes stabilizing gains,
will attempt to get the learner to stabilize to a noise-perturbed trajectory. This can perhaps
be modified by synthesizing controllers which stabilize to smoothed trajectories, or by
collecting demonstrations of desired trajectories (e.g. position control), and stabilizing to
the these states than than to actual states visited in demonstrations.

N.3 Robustness to Adversarial Perturbations

Our results can accomodate an even more general framework where there are both noises as well
adversarial perturbations. We explain this generalization in the composite MDP.

Specifical, consider a space E of adversarial perturbations, as well asW of noises as above. We may
posite a dynamics function F adv : S ×A×W ×A → S, and consider the evolution of an imitator
policy π̂ under the adversary

ŝh+1 = F adv
h (̂sh, âh,wh, eh), wh ∼ Pnoise,h

âh ∼ π̂h(sh)
eh ∼ πadvh (ŝ1:h, a1:h,w1:h, e1:h−1),

ŝ1 ∼ πadv0 (s1), s1 ∼ Pinit.

By constrast, we can model the demonstrator trajectory as arising from noisy, but otherwise unper-
turbed trajectories:

s⋆h+1 ∼ F adv
h (s⋆h, a

⋆
h,wh, 0), wh ∼ Pnoise,h, a⋆h ∼ π⋆

h(s
⋆
h), s⋆1 ∼ Pinit.

To reduce the composite-MDP in Appendix D, we can view the combination of adverary πadv and
imitator π̂ as a combined policy, and the π⋆ with zero augmentation as another policy; here, we
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would them treat actions as ã = (a, e). Then, one can consider modified senses of stability which
preserve trajectory tracking, as well as a modification of dA to a function measuring distances be-
tween ã = (a, e) and ã′ = (a′, e′). The extension is rather mechanical, and we fit details. Note
further that, by including a πadv0 (s1), we can modify the analysis to allow for subtle differences in
initial state distribution. This would in turn require strengthening our stability asssumptions to allow
stability to initial state (e.g., the definition of incremental stability as exposited by [50]).

N.4 Deconvolution Policies and Total Variation Continuity

While our strongest guarantees hold for the replica policies, where we add noise both as a data
augmentation at training time and at test time, many practitioners have seen some success with the
deconvolution policies where noise is only added at training time. We note that Proposition D.2
holds when the learned policy is TVC; without noise at training time this certainly will not hold
when the expert policy is not TVC. We show here that the deconvolution expert policy is TVC under
mild assumptions, which lends some credence to the empirical success of deconvolution policies.

Precisely, we show that, under reasonable conditions, deconvolution is total variation continuous. In
particular, suppose that µ ∈ ∆(Rd) is a Borel probabilty measure and p is a density with respect to
µ. Further suppose that Q is a density with respect to the Lebesgue measure on Rd. Suppose that
x ∼ p, w ∼ Q, and let x̃ = x +w. Denote the deconvolution measure of x given x̃ as p(·|x̃). We
show that this measure is continuous in TV.

Proposition N.2. Let x,x′ ∈ Rd be fixed, let p : Rd → R denote a probability density, and let
Q : Rd → R denote a function such that∇2Q and ∇ logQ exist and are continuous on the set

X = {(1− t)x̃+ tx̃′ − x|x ∈ supp p and t ∈ [0, 1]}

Then it holds that

TV (p(·|x̃), p(·|x̃′)) ≤ ||x̃− x̃′|| · sup
x∈X
||∇ logQ(x)|| .

By Lemma F.4, any policy composed with the total variation kernel is thus total variation continuous
with a linear γTVC; moreover, the Lipschitz constant is given by the maximal norm of the score
of the noise distribution. For example, if Q is the density of a Gaussian with variance σ2, then
γTVC(u) ≤ supX ||x||

σ2 is dimension independent.

Remark N.1. Note that our notation is intentionally different from that in the body to emphasize
that this is a general fact about abstract probability measures. We may intantiate the guarantee in the
control setting of interest by letting x = oh and consider Q to be a Gaussian (for example) kernel.
In this case, we see that the deconvolution policy of Definition C.1 is automatically TVC.

To prove Proposition N.2, we begin with the following lemma:

Lemma N.3. Let x̃ ∈ Rd be fixed and suppose that∇ logQ(x̃−x) exists for all x ∈ supp p. Then,
for all x ∈ supp p, it holds that∇x̃p(x|x̃) exists. Furthermore,∫

||∇p(x|x̃)|| dµ(x) ≤ 2 sup
x∈supp p

||∇ logQ(x̃− x)|| ,

where the gradient above is with respect to x̃.

Proof. We begin by noting that if∇ logQ(x̃− x) exists, then so does∇Q(x̃− x). By Bayes’ rule,

p(x|x̃) = p(x)Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

.

We can then compute directly that

∇p(x|x̃) = p(x)∇Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

−
p(x)Q(x̃− x) ·

∫
∇Q(x̃− x′)p(x′)dµ(x′)(∫

Q(x̃− x′)p(x′)dµ(x′)
)2 ,
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where the exchange of the gradient and the integral is justified by Lebesgue dominated convergence
and the assumption of differentiability of Q and thus existence is ensured. We have now that

||∇p(x|x̃)|| = p(x)Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

·
∣∣∣∣∣∣∣∣∇ logQ(x̃− x)−

∫
∇Q(x̃− x′)p(x′)dµ(x′)∫
Q(x̃− x′)p(x′)dµ(x′)

∣∣∣∣∣∣∣∣
=

p(x)Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

·
∣∣∣∣∣∣∣∣∇ logQ(x̃− x)−

∫
(∇ logQ(x̃− x′)) ·Q(x̃− x)p(x′)dµ(x′)∫

Q(x̃− x′)p(x′)dµ(x′)

∣∣∣∣∣∣∣∣
≤
(

sup
x∈supp p

||∇ logQ(x̃− x)||
)
· p(x)Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
·
(
1 +

∫
Q(x̃− x)p(x′)dµ(x′)∫
Q(x̃− x)p(x′)dµ(x′)

)
=

(
2 sup
x∈supp p

||∇ logQ(x̃− x)||
)
· p(x)Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
.

Now, integrating over x makes the second factor 1, concluding the proof.

We will now make use of the theory of Dini derivatives ([25]) to prove a bound on total variation.

Lemma N.4. For fixed x̃, x̃′ and 0 ≤ t ≤ 1, let the upper Dini derivative

D+ TV(p(·|x̃), p(·|x̃t)) = lim sup
h↓0

TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))

h
,

where

x̃t = (1− t)x̃+ tx̃′.

If ∇ logQ(x̃t − x) exists and is finite for all x ∈ supp p and t ∈ [0, 1], then

TV(p(·|x̃), p(·|x̃′)) ≤
∫ 1

0

D+ TV (p(·|x̃), p(·|x̃t)) dt. (N.2)

Proof. We compute:

2 |TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))| =
∣∣∣∣∫ |p(x|x̃)− p(x|x̃t+h)| − |p(x|x̃)− p(x̃t)| dµ(x)

∣∣∣∣
≤
∫
|p(x|x̃t+h)− p(x|x̃t)| dµ(x). (N.3)

Observe that by the assumption on Q and Lemma N.3, p(x|x̃t) is differentiable and thus continuous
in x̃t. We therefor see that the function

t 7→ TV(p(·|x̃), p(·|x̃t))

is continuous as x̃t is linear in t. By Hagood and Thomson [25, Theorem 10], (N.2) holds.

We now bound the Dini derivatives:

Lemma N.5. Let x̃, x̃′ ∈ Rd such that for all t ∈ [0, 1]it holds that

sup
x∈supp p

∣∣∣∣ d2dt2 (p(x|x̃t))

∣∣∣∣ = C <∞,

where the derivative is applied on x̃t. If the assumptions of Lemmas N.3 and N.5 hold, then

D+ TV(p(·|x̃), p(·|x̃t)) ≤ ||x̃− x̃′|| · sup
x∈supp p
t∈[0,1]

||∇ logQ(x̃t − x)|| .

Proof. By definition,

D+ TV(p(·|x̃), p(·|x̃t)) = lim sup
h↓0

TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))

h
.
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(a) PushT Enviroment [19]. The
blue circle is the manipulation
agent, while the green area is the
target position which the agent
must push the blue T block into.

(b) Can Pick-and-Place Environ-
ment [42]. The grasper must pick
up a can from the left bin and place
it into the correct bin on the right
side.

(c) Square Nut Assembly Environ-
ment [42]. The grasper must pick
up the square nut (the position of
which is randomized) and place it
over the square peg.

Figure 11: Environment Visualizations.

Fix some t and some small h. By (N.3), it holds that

|TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))| ≤
1

2
·
∫
|p(x|x̃t+h)− p(x|x̃t)| dµ(x).

By Taylor’s theorem, it holds that

p(x|x̃t+h)− p(x|x̃t) = h · d
dt

(p(x|x̃t)) + h2 · d
2

dt2
(p(x|x̃t′))

for some t′ ∈ [0, 1]. By the chain rule, we have

d

dt
(p(x|x̃t)) = ⟨x̃′ − x̃,∇p(x|x̃t)⟩ ,

and thus,

|p(x|x̃t+h)− p(x|x̃t)| ≤ h · ||x̃− x̃′|| · ||∇p(x|x̃t)||+ h2C

Now, applying Lemma N.3 and plugging into the previous computation concludes the proof.

We are finally ready to state and prove our main result:

Proof of Proposition N.2. Note that

d2

dt2
(p(x|x̃t)) = (x̃− x̃′)

T ∇2p(x|x̃t)(x̃− x̃′)

and thus is bounded if and only if∇2p(x|x̃t) is bounded. An elementary computation shows that if
∇2Q exists and is continuous on X , then ∇2p(x|x̃t) is bounded in operator norm on X . Thus the
assumption in Lemma N.5 holds. Applying Lemma N.4 then concludes the proof.

O Experiment Details

O.1 Compute and Codebase Details

Code. For our experiments we build on the existing PyTorch-based codebase and standard envi-
ronment set provided by Chi et al. [19] as well as the robomimic demonstration dataset Mandlekar
et al. [42]. 18

18The modified codebase with instructions for running the experiments is available at the following anony-
mous link: https://www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0. We will
provide a public github repository for the final release.
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Compute. We ran all experiments using 4 Nvidia V100 GPUs on an internal cluster node. For
each environment running all experiments depicted in Figure 6 took 12 hours to complete with
20 workers running simultaneously for a total of approximately 10 days worth of compute-hours.
Between all 20 workers, peak system RAM consumption totaled about 500 GB.

O.2 Environment Details

For simplicity the stabilizatin oracle synth is built into the environment so that the diffusion policy
effectively only performs positional control. See Appendix O for visualizations of the environments.

PushT. The PushT environment introduced in [19] is a 2D manipulation problem simulated using
the PyMunk physics engine. It consists of pushing a T-shaped block from a randomized start position
into a target position using a controllable circular agent. The synthesis oracle runs a low-level
feedback controller at a 10 times higher to stabilize the agent’s position towards a desired target
position at each point in time via acceleration control. Similar to Chi et al. [19], we use a position-
error gain of kp = 100 and velocity-error gain of kv = 20. The observation provided to the DDPM
model consists of the x,y oordinates of 9 keypoints on the T block in addition to the x,y coordinates
of the manipulation agent, for a total observation dimensionality of 20.

For rollouts on this environment we used trajectories of length T = 300. Policies were scored based
on the maximum coverage between the goal area and the current block position, with > 95 percent
coverage considered an “successful” (score = 1) demonstration and the score linearly interpolating
between 0 and 1 for less coverage. A total of 206 human demonstrations were collected, out of
which we use a subset of 90 for training.

Can Pick-and-Place. This environment is based on the Robomimic [42] project, which in turn
uses the MuJoCo physics simulator. For the low-level control synthesis we use the feedback con-
troller provided by the Robomimic package. The position-control action space is 7 dimensional,
including the desired end manipulator position, rotation, and gripper position, while the observation
space includes the object pose, rotation in addition to position and rotation of all linkages for a total
of 23 dimensions. Demonstrations are given a score of 1 if they successfully complete the pick-and-
place task and a score of 0 otherwise. We roll out 400 timesteps during evaluation and for training
use a subset of up to 90 of the 200 “proficient human" demonstrations provided.

Square Nut Assembly. For Square Nut Assembly, which is also Robomimic-based [42], we use
the same setup as the Can Pick and Place task in terms of training data, demonstration scoring,
and low-level positional controller. The observation, action spaces are also equivalent to the Can
Pick-and-Place task with 23 and 7 dimensions respectively.

2D Quadcopter. The 2D quadcopter system is described by the state vector: (x, z, ϕ, ẋ, ż, ϕ̇),with
input u = (u1, u2), and dynamics:

ẍ = −u1 sin(ϕ)/m,
z̈ = u1 cos(ϕ)/m− g,
ϕ̈ = u2/Ixx.

The specific constants we use are m = 0.8, g = 9.8, and Ixx = 0.5. We integrate these dynamics
using forward Euler with step size τ = 0.01. The task is to move the quadcopter to the origin state.
The cost function we used for the MPC expert is:

c((x, z, ϕ, ẋ, ż, ϕ̇), (u1, u2)) = x2 + z2 + ϕ2 + ẋ2 + ż2 + ϕ̇2 + 0.5(u1 −mg)2 + 0.1u22.

We constructed a per-timestep reward function using this cost function:

r((x, z, ϕ, ẋ, ż, ϕ̇), (u1, u2))) = exp(−c((x, z, ϕ, ẋ, ż, ϕ̇), (u1, u2))),

such that the MPC cost minimization corresponds to maximizing the reward used to benchmark the
trained models.
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O.3 Gain Synthesis

For the quadcopter gain-diffusion experiments, we synthesize stabilizing gains for each (xt, ut) pair
in our training data by analytically differentiating the dynamics xt+1 = f(xt, ut) given in O.2 at
xt, ut and applying infinite-horizon LQR to the linearized system xt+1 = A(xt− xt)+B(ut− ūt)
where A = ∂xf(xt, ut), B = ∂uf(xt, ut). In particular, we solve the discrete time algebraic Ricatti
equation:

P = A⊤PA− (A⊤PB)(R+B⊤PB)−1 +Q,

where for simplicity we used identity matrices for R,Q. Using P we computed the gains:

K = −(R+B⊤PB)−1B⊤PA.

Since the timesteps of the simulator are small, we experimentally find that this is sufficient in order
to stabilize the system over the diffused chunks and produces significantly less variance in the gains
than performing time-varying discrete LQR over the chunks to synthesize the gains.

O.4 DDPM Model and Training Details.

PushT, Can-Pick-and-Place, Square Nut Assembly. For these experiments we use the same
1-D convolutional UNet-style [56] architecture employed by [19], which is in turn adapted from
Janner et al. [33]. This principally consists of 3 sets of downsampling 1-dimensional convolution
operations using Mish activation functions [46], Group Normalization (with 8 groups) [77], and skip
connections with 64, 128, and 256 channels followed by transposed convolutions and activations in
the reversed order. The observation and timestep were provided to the model with Feature-wise
Linear Modulation (FiLM) [49], with the timestep encoded using sin-positional encoding into a 64
dimensional vector.

During training and evaluation we utilize a squared cosine noise schedule [47] with 100 timesteps
across all experiments. For training we use the AdamW optimizer with linear warmup of 500 steps,
followed by an initial learning rate of 1 × 10−4 combined with cosine learning rate decay over the
rest of the training horizon. For PushT models we train for 800 epochs and evaluate test trajectories
every 200 epochs while for Can Pick-and-Place and Square Nut Assembly we evaluate performance
every 250 epochs and train for a total of 1500 epochs.

The diffusion models are conditioned on the previous two observations trained to predict a sequence
of 16 target manipulator positions, starting at the first timestep in the conditional observation se-
quence. The 2rd (corresponding to the target position for the current timestep) through 9th gener-
ated actions are emitted as the τc = 8 length action sequence and the rest is discarded. Extracting a
subsequence of a longer prediction horizon in this manner has been shown to improve performance
over just predicting the H = 8 action sequence directly [19].

2D Quadcopter. For the 2D quadcopter experiments, we used a 5 layer MLP with hidden feature
dimensions of 128, 128, 64, and 64 for all experiments, with sine-positional encoding of dimension
64 and FiLM to condition on the diffusion timestep and observation chunk. We use the same opti-
mizer setup as the PushT, Pick-and-Place, and Square Assembly experiments with a batch size of 64
and a total of 200 epochs or 20,000 training iterations, whichever is larger.

We predict sequences of 8 control inputs, conditioned on two previous observations, where the 2nd
control input in this sequence corresponds to the current timestep. For gain diffusion experiments,
this includes a sequence of 8 control inputs, reference states, and gains. Similar to our other experi-
ments, the 2nd through 5th generated actions of this sequence are emitted.

Augmentation Procedure. For σ > 0 we generate new perturbed observations per training it-
eration, effectively using Naug = Nepoch augmentations. We find this to be easier than generating
and storing Naug augmentations with little impact on the training and validation error. Noise is
injected after the observations have been normalized such that all components lie within [−1, 1]
range. Performing noise injection post normalization ensures that the magnitude of noise injected is
not affected by different units or magnitudes.
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