
A Notation and Preliminaries

We establish some notation and review some elements of representation theory. For a comprehensive
review of representation theory, please see [52, 53]. The identity element of any group G will be
denoted as e. A subgroup H of G will be denoted as H ✓ G. We will always work over the field R
unless otherwise specified.

A.0.1 Group Actions

Let ⌦ be a set. A group action � of G on ⌦ is a map � : G⇥ ⌦! ⌦ which satisfies

Identity: 8! 2 ⌦, �(e,!) = ! (3)
Compositionality: 8g1, g2 2 G, 8! 2 ⌦, �(g1g2,!) = �(g1,�(g2,!))

We will often suppress the � function and write �(g,!) = g · !.

⌦ ⌦0
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�
0
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Figure 7: Commutative Diagram For G-equivariant function: Let �(g, ·) : G⇥ ⌦! ⌦ denote the
action of G on ⌦. Let �0(g, ·) : G⇥⌦0 ! ⌦0 denote the action of G on ⌦0. The map  : ⌦! ⌦0 is
G-equivariant if and only if the following diagram is commutative for all g 2 G.

Let G have group action � on ⌦ and group action �0 on ⌦0. A mapping  : ⌦ ! ⌦0 is said to be
G-equivariant if and only if

8g 2 G, 8! 2 ⌦,  (�(g,!)) = �0(g, (!)) (4)

Diagrammatically,  is G-equivariant if and only if the diagram A.0.1 is commutative.

A.0.2 Induced and Restricted Representations

Let V be a vector space over C. A representation (⇢, V ) of G is a map ⇢ : G ! Hom[V, V ] such that

8g, g0 2 G, 8v 2 V ⇢(g · g0)v = ⇢(g) · ⇢(g0)v

Restricted Representation Let H ✓ G. Let (⇢, V ) be a representation of G. The restricted
representation of (⇢, V ) from G to H is denoted as ResG

H
[(⇢, V )]. Intuitively, ResG

H
[(⇢, V )] can be

viewed as (⇢, V ) evaluated on the subgroup H . Specifically,

8v 2 V, ResG
H
[⇢](h)v = ⇢(h)v (5)

Note that the restricted representation and the original representation both live on the same vector
space V .

Induced Representation The induction representation is a way to construct representations of a
larger group G out of representations of a subgroup H ✓ G. Let (⇢, V ) be a representation of H .
The induced representation of (⇢, V ) from H to G is denoted as IndG

H
[(⇢, V )]. Define the space of

functions

F = { f | f : G ! V, 8h 2 H, f(gh) = ⇢(h�1)f(g) }

Then the induced representation is defined as (⇡,F) = IndG
H
[(⇢, V )] where the induced action ⇡

acts on the function space F via

8g, g0 2 G, 8f 2 F (⇡(g) · f)(g0) = f(g�1g0)
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Induced Representation for Finite Groups There is also an equivalent definition of the induced
representation for finite groups that is slightly more intuitive [54]. Let G be a group and let H ✓ G.
The set of left cosets of G/H form a partition of G so that

G =

|G/H|[

i=1

giH

where {gi}|G/H|
i=1

are a set of representatives of each unique left coset. Note that the choice of left
coset representatives is not unique. Now, left multiplication by the element g 2 G is an automorphism
of G. Left multiplication by g 2 G must thus permute left cosets of G/H so that

8g 2 G, g · gi = gjg(i)hi(g)

where jg : {1, 2, ...,m} ! {1, 2, ...,m} 2 Sm is a permutation of left coset representatives. The
hi(g) 2 H is an element of subgroup H . The map jg(i) and group element hi(g) 2 H satisfy a
compositionality property. Specifically, we have that

8g, g0 2 G, jg0 � jg = jg0g, hi(g
0g) = hjg(i)

(g0) · hi(g)

which can be seen by acting on the left cosets with g followed by g0 versus acting on the left cosets
with g0g. Note that

e · gi = gi · e = gje(i)hi(e)

holds so je = e and hi(e) = e holds. Now, let (⇢, V ) be a representation of the group H . Let us
define the vector space W as

W =

|G/H|M

i=1

giV(i)

where the (standard albeit somewhat confusing) notation giV(i) denotes an independent copy of the
vector space V . This notation is simply a labeling and all copies of giV H

(i)
are isomorphic to V H ,

V ⇠= g1V1
⇠= g2V2

⇠= ... ⇠= g|G/H|V|G/H|

so that the space W ⇠=
L|G/H|

i=1
V is just |G/H| independent copies of V . The induced representation

lives on this vector space, (⇡,W ) = IndG
H
[(⇢, V )]. The induced action ⇡ = IndG

H
⇢ acts on the

vector space W via

8g 2 G, 8w =

|G/H|X

i=1

givi 2 W, ⇡(g) · w =

|G/H|X

i=1

�(hi(g))vjg(i) 2 W

where vi 2 V(i) is in the i-th independent copy of the vector space V . Using the compositionality prop-
erty of jg and hi(g), it is easy to see that this is a valid group action so that (⇡,W ) = IndG

H
[(⇢, V )]

is a valid representation. Note that the induced action ⇡ acts on the vector space W by permuting and
left action by the H-representation ⇢(h). There is a natural geometric interpretation of the induced
representation which we discuss in a later section K.

A.0.3 G-Intertwiners

Let (⇢, V ) and (�,W ) be two G-representations. The set of all G-equivariant linear maps between
(⇢, V ) and (�,W ) will be denoted as

HomG[(⇢, V ), (�,W )] = { � | � : V ! W, s.t. 8g 2 G, �(⇢(g)v) = �(g)�(v) }
HomG is a vector space over C. A linear map � 2 HomG[(⇢, V ), (�,W )] is said to intertwine
the representations (⇢, V ) and (�,W ). Pictorially, an intertwiner � is a map that makes the A.0.3
diagram commutative.

Figure 8: Commutative Diagram For G-intertwiner. The map  2 HomG[(⇢, V ), (�,W )] if and
only if the following diagram is commutative for all g 2 G.

Computing a basis for the vector space HomG[(⇢, V ), (�,W )] is one of the triumphs of classical
group theory [53, 52]. The weights of Steerable CNNs are intertwiners between representations [9].
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A.0.4 (H ✓ G)-Intertwiners

We will also consider another definition of intertwiners between different groups. Let H ✓ G. Let
(⇢, V ) be a H-representation. Let (�,W ) be a G-representation. We define the vector space of
intertwiners of (⇢, V ) and (�,W ) as
HomH [(⇢, V ),ResG

H
[(�,W )]] = { � | � : V ! W, s.t. 8h 2 H, �(⇢(h)v) = �(h)�(v) }

We say that a linear map � : V ! W is an (H ✓ G)-intertwiner of the H-representation (⇢, V ) and
the G-representation (�,W ) if � 2 HomH [(⇢, V ),ResG

H
[(�,W )]]. The induction and restriction

operations are adjoint functors [37]. By the Frobinous reciprocity theorem [37],
HomH [(⇢, V ),ResG

H
[(�,W )]] ⇠= HomG[Ind

G

H
[(⇢, V )], (�,W )]

and so for every � : V ! W which intertwines (⇢, V ) and ResG
H
[(�,W )] over H there is a unique

�" : IndG
H
[V ] ! W that intertwines IndG

H
[(⇢, V )] and (�,W ) over G. Not every H-representation

can be realized as the restriction of a G-representation. Thus, the universe of (H ✓ G)-intertwiners is
a proper subset of the universe of H-intertwiners. As explained in the main text, (SO(2) ✓ SO(3))-
intertwiners arise naturally when trying to design SO(3)-equivarient neural networks for image
data.

(⇢, V ) (�,W )

(⇢, V ) (�,W )

⇢(h)

�

�(h) �(g)

�

Figure 9: Commutative Diagram For (H ✓ G)-intertwiner. � : V ! W . The map
� 2 HomH [(⇢, V ),ResG

H
[(�,W )]] ⇠= HomG[Ind

G

H
[(⇢, V )], (�,W )] if and only if the following

diagram is commutative for all h 2 H . Note that the group G also has �(g) action on the vector
space W .

A map � : V ! W is a (H ✓ G)-intertwiner if and only if the diagram in A.0.4 is commutative.

B Additional Experiments

ModelNet10-SO(3) Results The first dataset, ModelNet10-SO(3) [33], is composed of rendered
images of synthetic, untextured objects from ModelNet10 [55]. The dataset includes 4,899 object
instances over 10 categories, with novel camera viewpoints in the test set. Each image is labelled
with a single 3D rotation matrix, even though some categories, such as desks and bathtubs, can have
an ambiguous pose due to symmetry. For this reason, the dataset presents a challenge to methods that
cannot reason about uncertainty over orientation.

ModelNet10-SO(3) Results
The performance on the ModelNet dataset is reported in Table 4. Our induction layer outputs signals
on S2, and naturally allows for capturing uncertainty as a distribution over SO(3). Both our method
and [12] use equivariant layers to improve generalization but our method slightly under-performs
[12] on the ModelNet dataset. ModelNet-10 is a synthetic dataset consisting of totally opaque objects
and it seems that the image formation model used in [12] is a good approximation to the true image
formation model.

A major concern of many of the reviewers was that the performance of our architecture was worse that
[12] on the ModelNet-SO(3) [33]. In some ways, this may be expected as the [12] assumes that the
correct image formation model is an orthographic projection, which is the true image formation model
used in the data generation of the ModelNet-SO(3) dataset[33]. Our architecture needs to learn the
correct image formation model. By including additional biases about the image formation model, we
can achieve state of the art results on the ModelNet-SO(3) dataset. We added a ’residual’ connection
to our induction/restriction layer that is an orthographic projection. This reflects the assumption that
for the ModelNet-SO(3) model, the true image formation model is close to orthographic projection,
which is common for pinhole camera models [2]. With this additional bias, our model achieves
SOTA when averaged over each ModelNet-SO(3) category. It should be specifically noted that the
induction/restriction layer gives large improvement in the bathtub category, this makes sense as the
bathtubs are the most rotationally symmetric object in the dataset.
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Table 4: Rotation prediction on ModelNet-SO(3). First column is the average over all categories.
Median rotation error in degrees (#)

avg bathtub bed chair desk dresser monitor stand sofa table toilet

Mohlin et al. [47] 17.1 89.1 4.4 5.2 13.0 6.3 5.8 13.5 4.0 25.8 4.0
Prokudin et al. [35] 49.3 122.8 3.6 9.6 117.2 29.9 6.7 73.0 10.4 115.5 4.1
Deng et al. [34] 32.6 147.8 9.2 8.3 25.0 11.9 9.8 36.9 10.0 58.6 8.5
Liao et al. [33] 36.5 113.3 13.3 13.7 39.2 26.9 16.4 44.2 12.0 74.8 10.9
Brégier [32] 39.9 98.9 17.4 18.0 50.0 31.5 18.7 46.5 17.4 86.7 14.2
Zhou et al. [31] 41.1 103.3 18.1 18.3 51.5 32.2 19.7 48.4 17.0 88.2 13.8
Murphy et al. [14] 21.5 161.0 4.4 5.5 7.1 5.5 5.7 7.5 4.1 9.0 4.8
Klee et al. [12] 16.3 124.7 3.1 4.4 4.7 3.4 4.4 4.1 3.0 7.7 3.6
Ours 17.8 123.7 4.6 5.5 6.9 5.2 6.1 6.5 4.5 12.1 4.9
Ours (with residual) 15.1 111.8 3.0 4.5 4.8 3.3 4.6 4.2 3.3 7.6 3.8

B.1 Post-Mortem Linear Layer:

We include one additional numerical experiment that illustrates the geometric idea presented in our
paper. We replaced the induction/restriction layer with a linear layer and trained on the SYMSOL
I dataset [14]. We chose the SYMSOL dataset as it is a relatively simple dataset that consists of
rotated solids and any model that performs well on SYMSOL should be approximately equivarient.
We choose the spherical layer to have fibers transforming in the ⇢sphere =

L
6

`=0
D` representation.

Post-training, we then tested the SO(2)-equivarience properties of the output spherical layer we found
a percentage error of about %18 with output representation approximately ResSO(3)

SO(2)
[⇢sphere]. This

simple numerical experiment shows that the trained linear layer approximately satisfies the geometric
constraint derived in the main text.
Table 5: Comparison of linear-layer and induction/restriction layer on SYMSOL I. EE denotes the
equivarience error in percentage. On each class (i.e. cone,cyl.,tet.,cube,ico.) a higher score is better.
Avg is the average of each SYMSOL I class score.

avg cone cyl. tet. cube ico. EE

Linear-Layer 2.92 2.91 2.86 4.11 2.97 1.75 18.1
Ours 5.11 4.91 4.22 6.10 5.73 4.69 0.0

A similar phenomena was observed in [23], where the 2d images were encoded into a SO(3) group latent space.

C Image to R3 ⇥ S2 for 6DoF-Pose Estimation

The goal in 6DoF-pose estimation is to estimate the location of an object in three-dimensional space and the
orientation of said object. Orientation estimation is a sub-problem of pose estimation where the goal is to
estimate just the orientation of an object and disregard the objects position in three-dimensional space.

Let us see how induced and restriction representations arise naturally in the design of neural architectures for
6DoF-pose estimation. Let V and V

" be vector spaces.

Image inputs We first describe F the space of image input signals. Let F be the vector space of all V -valued
signals defined on the plane

F = { f | f : R2 ! V }.

Elements of F are referred to as SE(2)-steerable feature fields [20].

The group SE(2) = R2 o SO(2) of 2D translations and rotations acts on F via representation ⇡. Each
h 2 SE(2) has a unique factorization h = h̄hc where h̄ 2 R2 is a translation and hc 2 SO(2) is a rotation.
Then ⇡ is defined

r 2 R2
, 8f 2 F , h 2 SE(2), ⇡(h) · f(r) = ⇢(hc)f(h

�1
r)

where (⇢, V ) is an SO(2)-representation describing the transformation of the fibers of f and (⇡,F) =

IndSE(2)

SO(2)
[(⇢, V )] so that (⇡,F) gives a representation of the group SE(2) [9].

6DoF Pose outputs In pose estimation tasks, the output of our neural network will be functions from
R3 ⇥ S

2 into the vector space V
". Let F" be the vector space of all such outputs defined as

F" = { f | f : R3 ⇥ S
2 ! V

" }
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The group SE(3) = R3 o SO(3) acts on the vector space F" via

8f" 2 F"
, 8(p, n̂) 2 R3 ⇥ S

2
, 8g = ḡgc 2 SE(3), ⇡

"(g) · f"(p, n̂) = ⇢
"(gc)f

"(g�1
p, g

�1

c n̂)

where ⇢
"(gc) is a representation of SO(3). Elements of F" are referred to as SE(3)-steerable feature fields

[20].

Analogous to the argument presented in the main text. We would like to characterize all maps from F to F"

that preserve SE(2)-equivarience. Consider the space of linear maps � : F ! F" that intertwine (⇡,F) and
(⇡"

,F"). The map � : F ! F" must satisfy the relation

8h 2 SE(2), 8f 2 F , �(⇡(h) · f) = ResSE(3)

SE(2)
[⇡"](h) · �(f)

where ResSE(3)

SE(2)
[⇡"] is the restriction of the SE(3)-representation (⇡"

,F") to a SE(2) subgroup.

C.0.1 Kernel Constraint for Image to 6DoF Pose

The most general linear map � : F ! F" between (⇡,F) and (⇡"
,F") can be written as

8(p, n̂) 2 R3 ⇥ S
2
, [�(f)](p, n̂) =

Z

r2R2
dr (p, n̂ : r)f(r)

where  : (R3 ⇥ S
2)⇥ R2 ! Hom[V, V "]. Let us enforce the (H ✓ G)-equivariance condition

8h 2 SE(2), ⇡
"(h) · �(f) = �(⇡(h) · f)

This constraint places a restriction on the allowed space of kernels. We have that

8h 2 SE(2), �[⇡(h) · f ] =
Z

r2R2
dr (p, r)[⇡(h) · f(r)] =

Z

r2R2
dr (p, n̂ : r)⇢(hc)f(h

�1
r)

Now, making the change of variables r ! hr gives

8h 2 SE(2), �[⇡(h) · f ] =
Z

r2R2
dr (p, n̂ : h · r)⇢(hc)f(r)

Now, by assumption �(f) 2 (⇡"
,F") so

8h 2 SE(2), ⇡
"(h) · �(f) =

Z

r2R2
dr ⇢

"(hc)(h
�1

p, h
�1

n̂ : r)f(r)

Thus, the kernel  satisfies the constraint

8h 2 SE(2), ⇢
"(hc)(h

�1 · p, h�1
n̂ : r) = (p, n̂ : h · r)⇢(hc)

We can write this in the more compact form as

8h 2 SO(2), (h · p, h · n̂ : h · r) = ⇢
"(hc)(p, n̂ : r)⇢(h�1

c )

This constraint is linear and solutions  form a vector space over R. We reduce this constraint to the steerable
kernel constraint considered in [7, 21, 9, 8].

First, note that the SE(2) action does not mix the z-component of [�(f)](n̂, x, y, z). Thus, the most general
linear map can be written as

[�(f)](n̂, x, y, z) =

Z

(rx,ry)2R2
drxdry (n̂, x� rx, y � ry, z)f(rx, ry)

where for each fixed z, the kernel  is an intertwiner of ResSO(3)

SO(2)
[(⇢", V ")] and (⇢, V ) and satisfies

8h 2 SO(2), (h · n̂, h · r : z) = ⇢
"(h)(n̂, r : z)⇢(h�1)

Let simplify this constraint further. The set of spherical harmonics form an orthonormal basis for functions on
S

2. We can expand the kernel  as

(n̂, r : z) =
1X

`=0

`X

k=�`

F
k

` (r, z)Y
k

` (n̂)

where F
k

` (r, z) : R2 ⇥ R ! Hom[V, V "]. The kernel constraint places additional restrictions on the set of
allowed F

k

` (r, z). We have that,

8h 2 SO(2), (h · n̂, h · r : z) =
1X

`=0

`X

k=�`

F
k

` (h · r, z)Y k

` (h · n̂) =
1X

`=0

`X

k=�`

F
k

` (h · r, z)D`

kk0(h)Y k
0

` (n̂)
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Figure 10: Right: Diagram of an Equivariant Image to Sphere Convolution. At each point p =
(x, y, z) 2 R3 and each unit vector n̂ 2 S2 the kernel (n̂, p : p0) is dependent on the image point
p0 = (x0, y0) 2 R2. Equivariant constraints put restrictions on the allowed form of (n̂, p : p0) C.0.1.
Similar to a standard convolution, the kernel  has a user defined receptive field.

and,

8h 2 SO(2), ⇢
"(h)(n̂, z : r)⇢(h�1) =

1X

`=0

`X

k=�`

⇢
"(h)F k

` (r, z)⇢(h
�1)Y k

` (n̂)

Thus, the functions F k

` (r, z) : R2 ⇥ R ! Hom[V, V "] must satisfy,

8h 2 SO(2), ⇢
"(h)F k

` (r, z)⇢(h
�1) =

`X

k0=�`

F
k
0

` (h · r, z)D`

k0k(h)

Now, the Wigner D-matrices are unitary and the above constraint is equivalent to

8h 2 SO(2), F
k

` (h · r, z) = ⇢
"(h)

+`X

k0=�`

F
k
0

` (r, z)⇢(h�1)D`

k0k(h
�1) = ⇢

"(h)
+`X

k0=�`

F
k
0

` (r, z)[D`

k0k(h)⇢(h)]
�1

Now, let us vectorize the matrix valued functions F k

` (r, z) as

F`(r, z) =
⇥
F

`

` (r, z), F
`�1

`
(r, z), ... F

�`+1

`
(r, z), F

�`

`
(r, z)

⇤
2 Hom[V ⌦W

`
, V

"]

Let us define the tensor product representation of (⇢, V ) and ResSO(3)

SO(2)
[(D`

,W
`)] as

(⇢`, V `) = (⇢, V )⌦ ResSO(3)

SO(2)
[(D`

,W
`)]

which is a SO(2)-representation. Then the functions F`(r) : R2 ! Hom[V ⌦W
`
, V

"] satisfy the constraint

8h 2 SO(2), F`(h · r, z) = ⇢
"(h)F`(r, z)⇢

`(h�1)

For fixed z, this is exactly the constraint on an SO(2)-steerable kernel with input representation (⇢`, V `) =

(⇢, V )⌦ResSO(3)

SO(2)
[(D`

,W
`)] and output representation ResSO(3)

SO(2)
[⇢", V ")]. [20, 8] give a complete classification

of kernel spaces that satisfy this constraint. Note that by demanding that SE(3) has action on the space
(⇡"

,F") we have added additional constraints to the set of allowed kernels. Specifically, instead of mapping
arbitrary SO(2)-input representation to arbitrary SO(2)-output representation, the allowed input and output
representations must satisfy additional constraints. Specifically, not every representation can be realized as the
restriction of an SE(3) to SE(2) representation. The induction and restriction operations of SO(2) ⇢ SO(3) on
irreducible representations are shown in 2.
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In practice, once the multiplicities of the input SO(2)-representation and the output SO(3)-representation are
specified, the SO(2)-steerable kernels can be explicitly constructed using numerical programs defined in [20].
To summarize, all equivariant linear maps between a function f : R2 ! V and a function f

" : R3 ⇥ S
2 ! V

"

can be written as

f
"(n̂, x, y, z) =

1X

`=0

(F`,z ? f)(x, y) · Y`(n̂) =
1X

`=0

Z

(x0,y0)2R2
dx

0
dy

0
f(x0

, y
0)F`,z(x� x

0
, y � y

0) · Y`(n̂)

where for each fixed z, F`,z(x, y) is a SO(2)-steerable kernel that takes input representation (⇢`, V `) =

(⇢, V )⌦ResSO(3)

SO(2)
[(D`

,W
`)] to output representation ResSO(3)

SO(2)
[(⇢", V ")]. Once the coefficients of the spherical

harmonics

C`(x, y, z) = (F`,z ? f)(x, y) =

Z

(x0,y0)2R2
dx

0
dy

0
f(x0

, y
0)F`,z(x� x

0
, y � y

0)

are computed, the resultant function f
"(n̂, x, y, z) =

P1
`=0

C
T

` (x, y, z)Y `(n̂) is defined on a homogeneous
space of SE(3) and we can utilize SE(3)-steerable CNNs to make predictions about 6DoF poses [21, 56, 57].

D Plane to Space for Object Reconstruction

Another problem of interest in single view geometric construction is monocular density reconstruction (also
sometimes called monocular depth estimation). The goal in monocular density reconstruction problems is to
build a three-dimensional model of the world given a single two-dimensional images [58, 59]. Monocular depth
reconstruction tasks are of specific interest in endoscopy [60] and autonomous driving [61, 62].

Volume Outputs In monocular reconstruction tasks, the output of our neural network will be a density map
which is a function from R3 into a vector space V

". Let F" be the vector space of all such outputs,

F" = { f | f : R3 ! V
" }

The group R3 o SO(3) acts on the vector space F" via

8f" 2 F"
, 8g 2 SE(3), ⇡

"(g) · f"(r) = ⇢
"(gc)f

"(g�1
r)

where ⇢
"(gc) is a representation of SO(3). F" are often refered to as SE(3)-steerable features. Now, consider

the space of linear maps � : F ! F" that intertwine (⇡,F) and (⇡"
,F"). The map � : F ! F" must satisfy

the relation

8h 2 SE(2), 8f 2 F , �(⇡(h)f) = ⇡
"(h)�(f)

by definition of the restricted representation this is equivalent to

8h 2 SE(2), 8f 2 F , �(⇡(h)f) = ResGH [⇡"](h)�(f)

where ResSO(3)

SO(2)
[(⇡"

,F")] is the restriction of the SE(3)-representation (⇡"
,F") to a SE(2) subgroup.

D.1 Kernel Constraint for Object Reconstruction

Similar to C, the most general linear map between (⇡,F) and (⇡"
,F") can be written as

8p 2 R3
, (k · f)(p) =

Z

r2R2
dr (p, r)f(r)

where  : R3 ⇥ R2 ! Hom[V, V "] satisfies the constraint

8h 2 SE(2), ⇢
"(hc)(h

�1 · p, r) = (p, h · r)⇢(hc)

We can write this in the more compact form

8h 2 SO(2), (h · p, h · r) = ⇢
"(hc)(p, r)⇢(hc)

Note that the SO(2) action does not mix the z-component of [�(f)](x, y, z). Thus, the most general linear map
can be written as

[�(f)](x, y, z) =

Z

r2R2
drxdry (x� rx, y � ry, z)f(rx, ry) = (z ? f)(x, y)

where for each fixed z, the kernel  is an intertwiner of ResSO(3)

SO(2)
[(⇢", V ")] and (⇢, V ) and satisfies

8h 2 SO(2), (g · r, z) = ⇢
"(h)(r, z)⇢(h�1)
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To summarize, a function f : R2 ! V can be mapped into a function

f
"(x, y, z) = �(f)(x, y, z) =

Z

r2R2
dr k(x� x

0
, y � y

0
, z)f(x0

, y
0) = [z ? f ](x, y)

where for fixed z, z is an SO(2)-steerable kernel with input representation (⇢, V ) and output representation
ResSO(3)

SO(2)
[(⇢", V ")].

E Image to SO(3) for Rotation Estimation

Instead of inducing from signals on the plane to signals on the S
2 as in 4, we can induce directly from image to

SO(3).

Rotation Outputs Let F" be the vector space of all SO(3) valued functions

F" = { f | f : SO(3) ! V
" }

The group SO(3) acts on the vector space F" via

8f" 2 F"
, 8g, g0 2 SO(3), ⇡

"(g) · f"(g0) = ⇢
"(g)f"(g�1

g
0)

where ⇢
"(g) is a representation of SO(3). Now, consider the space of linear maps � : F ! F" that intertwine

(⇡,F) and (⇡"
,F"). The map � : F ! F" must satisfy the relation

8h 2 SO(2), 8f 2 F , �(⇡(h)f) = ResSO(3)

SO(2)
[⇡"](h)�(f) = ⇡

"(h)�(f)

where ResSO(3)

SO(2)
[⇡"] is the restriction of the SO(3)-representation (⇡"

,F") to a SO(2) subgroup.

E.1 Kernel Constraint for Image to SO(3)

Using an argument similar to C, the most general linear equivariant map from functions on R2 to functions on
the SO(3) is

8g 2 SO(3), [�(f)](g) =

Z

(x,y)2R2
dA (g, x, y)f(x, y)

where the map  : SO(3)⇥ R2 ! Hom[V, V "]. The kernel  satisfies

8h 2 SO(2), (h�1
g, h

�1
r) = ⇢

"(h)(g, r)⇢(h�1)

The set of Wigner D-matrices form an orthonormal basis for functions on SO(3) and we can uniquely expand 

as

(g, x, y) =
1X

`=0

`X

k,k0=�`

F
kk

0
` (x, y)D`

kk0(g)

where F
kk

0
` (x, y) : R2 ! Hom[V, V "] are matrix valued coefficients. The kernel constraint places restrictions

on the allowed form of F kk
0

` (x, y). Let us define the SO(2)-representations

(⇢`, V`) = (⇢, V )⌦ ResSO(3)

SO(2)
[(D`

,W
`)], (⇢"

`
, V

"
`
) = ResSO(3)

SO(2)
[(⇢", V ")⌦ (D`

,W
`)]

Then, the kernel constraint holds only if

8h 2 SO(2), 8r 2 R2
, F

`

kk0(h · r) = ⇢
"(h)[

`X

nn0=�`

D
`

kn(h)F
`

nn0(r)D`

n0k0(h�1)]⇢(h�1)

We can reduce this constraint to a standard SO(2)-kernel constraint by considering the F`(r)kk0 = F
`

kk0 as a
larger matrix. Then, the matrixed F`(x, y) : R2 ! Hom[V ⌦W

`
, V

" ⌦W
`] are constrained to satisfy

8h 2 SO(2), F`(h · r) = ⇢
"
`
(h)F`(r)⇢`(h

�1)

so that each F`(x, y) is an SO(2)-steerable kernel with input representation (⇢`, V`) = (⇢, V ) ⌦
ResSO(3)

SO(2)
[(D`

,W
`)] and output representation (⇢"

`
, V

"
`
) = ResSO(3)

SO(2)
[(⇢", V ") ⌦ (D`

,W
`)]. The type of

F` is determined by the Clebsch-Gordon coefficients and the branching/induction rules of SO(2) and SO(3).
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E.2 Ablation Study: Image to S2 vs Image to SO(3)

We rerun the experiments in the main text using an induction layer that maps images directly to SO(3). The
direct induction to SO(3) slightly outperforms the induction to S

2 on the ModelNet dataset.

Table 6: Rotation prediction on ModelNet-SO(3). First column is the average over all categories.
Median rotation error in degrees (#)

avg bathtub bed chair desk dresser monitor stand sofa table toilet

S
2-Method 17.8 123.7 4.6 5.5 6.9 5.2 6.1 6.5 4.5 12.1 4.9

SO(3)-Method 17.3 117.3 4.3 5.6 6.8 5.2 5.8 5.8 6.3 11.8 4.3

On both the SYMSOL and PASCAL3D+ datasets, the induction to S
2 followed by a standard spherical

convolution outperform the direction induction to SO(3) by a slight margin.

Table 7: Average log likelihood (the higher the better ") on SYMSOL I & II. Per [14], a single model
is trained on all classes in SYMSOL I and a separate model is trained on each class in SYMSOL II.

SYMSOL I (") SYMSOL II (")
avg cone cyl tet cube ico avg sphX cylO tetX

S
2-Method 5.11 4.91 4.22 6.10 5.73 4.69 6.20 7.10 6.01 5.62

SO(3)-Method 5.09 5.01 4.25 6.20 5.67 4.35 6.19 7.03 6.10 5.49

Table 8: Rotation prediction on PASCAL3D+. First column is the average over all categories. The
feature encoder is either ResNet-50 or ResNet-101 head.

Median rotation error in degrees (#)
avg plane bike boat bottle bus car chair table mbike sofa train tv

S
2 (ResNet-50) 10.2 9.2 13.1 30.6 6.7 3.1 4.8 8.7 5.4 11.6 11.0 5.8 10.6

SO(3) (ResNet-50) 10.5 9.4 13.3 30.8 6.5 3.4 4.7 9.0 5.5 11.7 11.1 6.0 10.4
S

2 (ResNet-101) 9.2 9.3 12.6 17.0 8.0 3.0 4.5 9.4 6.7 11.9 12.1 6.9 9.9
SO(3) (ResNet-101) 9.7 8.9 14.8 21.3 9.9 3.0 4.7 9.2 5.9 12.8 8.7 6.3 10.3

F Solving the Kernel Constraint For Image to Sphere

Let us solve the kernel constraint presented in the main text 1. The most general linear map � : F ! F"

between (⇡,F) and (⇡"
,F") can be written as

8n̂ 2 S
2
, [�(f)](n̂) =

Z

r2R2
dr (n̂, r)f(r)

where  : S2 ⇥ R2 ! Hom[V, V "]. Let us enforce the SO(2)-equivarience condition derived in 1. We have
that,

8h 2 SE(2), ⇡
"(hc) · �(f) = �(⇡(h) · f)

This constraint places a restriction on the allowed space of kernels. We have that, 8h = h̄hc 2 SE(2),

�[⇡(h) · f ] =
Z

r2R2
dr (p, r)[⇡(h) · f(r)] =

Z

r2R2
dr (p, n̂ : r)⇢(hc)f(h

�1
r)

Now, making the change of variables r ! hr gives

8h 2 SE(2), �[⇡(h) · f ] =
Z

r2R2
dr (p, n̂ : h · r)⇢(hc)f(r)

Now, by assumption �(f) 2 (⇡"
,F") so

8hc 2 SO(2), ⇡
"(hc) · �(f) =

Z

r2R2
dr ⇢

"(hc)(h
�1

c n̂ : r)f(r)

Thus, the kernel  satisfies the linear constraint

8h 2 SE(2), ⇢
"(hc)(h

�1

c n̂ : r) = (p, n̂ : h · r)⇢(hc)

22



Fiber representations are unitary and left multiplying, we can the kernel constraint in the more compact form

8h 2 SO(2), (hc · n̂ : h · r) = ⇢
"(hc)(n̂ : r)⇢(h�1

c )

We can further reduce this to a standard steerable kernel constraint studied in [7, 21, 9]. The set of spherical
harmonics Y k

` form an orthonormal basis for functions on S
2. We can expand the kernel  as

(n̂, r) =
1X

`=0

`X

k=�`

F
k

` (r)Y
k

` (n̂)

where F
k

` (r) : R2 ! Hom[V, V "]. The kernel constraint places additional restrictions on the set of allowed
F

k

` (r). We have that,

8h = h̄hc 2 SO(2), (hc · n̂, h · r) =
1X

`=0

`X

k=�`

F
k

` (h · r)Y k

` (hc · n̂) =
1X

`=0

`X

k=�`

F
k

` (h · r)D`

kk0(hc)Y
k
0

` (n̂)

and,

8h = h̄hc 2 SO(2), ⇢
"(h)(n̂ : r)⇢(h�1) =

1X

`=0

`X

k=�`

⇢
"(h)F k

` (r, z)⇢(h
�1)Y k

` (n̂)

Thus, the functions F k

` (r) : R2 ! Hom[V, V "] must satisfy,

8h 2 SO(2), ⇢
"(h)F k

` (r)⇢(h
�1) =

`X

k0=�`

F
k
0

` (h · r)D`

k0k(h)

Now, the Wigner D-matrices are unitary and the above constraint is equivalent to

8h 2 SO(2), F
k

` (h · r) = ⇢
"(h)

+`X

k0=�`

F
k
0

` (r)⇢(h�1)D`

k0k(h
�1) = ⇢

"(h)
+`X

k0=�`

F
k
0

` (r)[D`

k0k(h)⇢(h)]
�1

Now, let us vectorize the matrix valued functions F k

` (r) as

F`(r) =
⇥
F

`

` (r), F
`�1

`
(r), ... F

�`+1

`
(r), F

�`

`
(r)

⇤
2 Hom[V ⌦W

`
, V

"]

We define the tensor product representation of (⇢, V ) and ResSO(3)

SO(2)
[(D`

,W
`)] as

(⇢`, V `) = (⇢, V )⌦ ResSO(3)

SO(2)
[(D`

,W
`)]

which is a SO(2)-representation. Then the functions F`(r) : R2 ! Hom[V ⌦W
`
, V

"] satisfy the constraint

8h 2 SO(2), F`(h · r) = ⇢
"(h)F`(r)⇢

`(h�1)

This is exactly the constraint on an SO(2)-steerable kernel with input representation (⇢`, V `) = (⇢, V ) ⌦
ResSO(3)

SO(2)
[(D`

,W
`)] and output representation ResSO(3)

SO(2)
[(⇢", V ")]. [20, 8] give a complete classification of

kernel spaces that satisfy this constraint. Note that by enforcing that the output transforms in an SO(3)-
representation, we have added additional constraints to the set of allowed kernels.

G Including Non-linearities

In section 4.2, we considered the most general linear maps that satisfied the generalized equivariance constraint.
After applying the linear layer described in C, we apply an additional RELU activation to the signal on S

2. It is
also possible to use tensor-product based non-linearities analogous to the results of [18, 6]. In this section, we
will consider how to include non-linearities for the general H ✓ G case where G is a compact group. Let (⇢, V )
and (�,W ) be two irreducible H-representations. The tensor product representation of (⇢, V ) and (�,W ) will
in general not be irreducible and will break down into irreducibles as

(⇢, V )⌦ (�,W ) =
M

⌧2Ĥ

c
⌧

⇢�(⌧, V⌧ )

where c
⌧

⇢� counts the number of copies of the H-irreducible (⇢, V⌧ ) in the tensor product representation.
Analogous to the Clebsch-Gordon coefficients [8], we can define C⌧

⇢1⇢2
to be the coefficients of the representation

(⌧, V⌧ ) in the tensor product basis. Specifically, let

|⌧ i⌧ i =
d1X

j1=1

d2X

j2=1

h⇢1j1, ⇢2j2|⌧ i⌧ i| {z }
(C⌧

⇢1⇢2
)i⌧ ,j1j2

|⇢1j1, ⇢2j2i
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with C
⌧

⇢1⇢2
we can use the results of [18] to project the tensor product unto a desired output representation.

By choosing the output representation (⌧, V⌧ ) to be the restriction of an G representation, we can use tensor
products as non-linearites in the induction layer. One difficulty with this procedure is that it is too computationally
expensive for practical use. It may be possible to simplify the complexity of implementation using the results of
[63]. Tensor product based non-linearities for the construction in 1 is a promising future direction that we leave
for future work.

H Generalization to Arbitrary Homogeneous Spaces

The results of C.0.1 can be generalized to any H ✓ G. Let G be a compact group and let H ✓ G. Let Hc ✓ H

and let XH = H/Hc be a homogeneous space of H . Let F(XH) be the set of functions on XH that transform
in representation (⇢H , VH) of H ,

F(XH) = { f | f : XH ! VH , [h · f ](x) = f(h�1 · x) = ⇢H(h)f(x) }
Similarly, let Gc ✓ G and let XG = G/Gc be a homogeneous space of G. Let F(XG) be the set of functions
on XG that transform in the representation (⇢G, VG) of G,

F(XG) = { f | f : XG ! VG, [g · f ](x) = f(g�1 · x) = ⇢G(g)f(x) }
We are interested in characterizing all equivariant maps � : F(XH) ! F(XG) from F(XH) to F(XG). Now,
generalizing the consistency condition derived in 1 to any H ✓ G, the condition we seek to enforce is that

8h 2 H, �(⇢H(h) · f) = ⇢G(h) · �(f) (6)

By definition of the restriction representation, 3, this is equivalent to the condition,

8h 2 H, �(⇢H(h) · f) = ResGH [⇢G(h)] · �(f) (7)

Now, the most general linear map � : F(XH) ! F(XG) between the function spaces F(XH) and F(XG)
can be written as

�(f)(xg) =

Z

xh2XH

dxh (xg, xh)f(xh)

where the kernel (xg, xh) : XG ⇥XH ! Hom[VH , VG] must satisfy the relation

8h 2 H, k(h · xg, h · xh) = ⇢G(h)k(xg, xh)⇢H(h)

This is a generalization of the steerable kernel constraint first derived in [9] and solved completely in [8].
Let us simplify this constraint to a more tractable form. Using a result stated in [8], the functions on any
homogeneous space of a compact group can always be decomposed into a sum of harmonic functions. Let G
be a compact group, and X a homogeneous space of G, then for every (⇢, V⇢) 2 Ĝ, there exist multiplicities
0  m⇢  d⇢ such that there exist a orthonormal basis {Y ⇢

ij
} where the indices range over ⇢ 2 Ĝ and

i 2 {1, 2, ..., d⇢}, j 2 {1, 2, ...,m⇢} such that

8j 2 1, 2, ...,m⇢, 8g 2 G, 8x 2 X, Y
⇢

ij
(g�1

x) =

djX

i=1

⇢ii0(g)Y
⇢

i0j(x)

Let us denote the harmonic basis functions on the homogeneous space XG as Y �

ij . Using the orthogonality of
harmonic functions, we can expand the  uniquely in terms of harmonics as

k(xg, xh) =
X

�2Ĝ

d�X

i=1

m�X

j=1

F
�

ij(xh)Y
�

ij (xg)

where F
�

ij : XH ! Hom[VH , VG] are the matrix valued expansion coefficients of . We can simplify this
expression for  by vectorizing,

k(xg, xh) =
X

�2Ĝ

[Y �(xg)]
T
F

�(xh)

where

F
�(xh) : XH ! Hom[VH , VG ⌦ (V� � V� � ...� V�| {z }

m� copies

)]

Let us denote (m��,m�V�) as m� copies of the G-irreducible (�, V�),

(m��,m�V�) = (�, V�)� (�, V�)� ...� (�, V�)| {z }
m� copies
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The kernel constraint places a restriction on the allowed form of the F
�(xh). We have that

8h 2 H, k(h · xg, h · xh) =
X

�2Ĝ

[Y �(h · xg)]
T
F

�(h · xh) =
X

�2Ĝ

[m��(h
�1) · Y �(xg)]

T
F

�(h · xh)

Using the identity �(h�1)T = �(h), we have that,

8h 2 H, k(h · xg, h · xh) =
X

�2Ĝ

[Y �(xg)]
T [m��(h) · F�(h · xh)]

Now, using 6, k(h · xg, h · xh) must be equal to ⇢G(h)k(xg, xh)⇢H(h). This is only satisfied if and only if

8h 2 H, F
�(h · xh) = (⇢G ⌦m��)(h) · F�(xh) · ⇢H(h)

Thus, F� is a H-steerable kernel with input representation ⇢H and output representation ResGH [(⇢G ⌦m��)].
Note that the Clebsch-Gordon coefficients, the multiplicities m� and the induction/restriction coefficients
completely determine the output representation type of the H-steerable kernels F� .

Figure 11: Left: Restricted representation ResG
H

from G to H of G-irreducibles (�i,Wi) to
H-irreducibles (⇢j , Vj). Not every H-representation can be realized as the restriction of a G-
representation. Right: Induced representation IndG

H
from H to G of H-irreducibles (⇢j , Vj) to

G-irreducibles (�i,Wi). Not every H-representation can be realized as the induction of a H-
representation. The restriction and induction operations are adjoint functors. In general, the restriction
and induction operations are generically sparse. This sparsity places restrictions on what irreducibles
can appear in (H ✓ G)-equivariant maps.

I A Completeness Property For Induced Representations

Much of the early work on machine learning focused on proving that sufficiently wide and deep neural networks
can approximate any function within some accuracy [64]. A network that can approximate any function is said
to be expressive. The induced representation satisfies a completeness property.

I.1 Group Valued Functions and Completeness

Can every function f : G ! Rc be realized as the induced mapping of functions in RH? We show that this is
the case. We have the following compositional property of induced representations [54]: Let K ✓ H ✓ G. Let
(⇢, V ) be any representation of K. Then,

IndG

K [(⇢, V )] = IndG

H [IndK

H [(⇢, V )]] (8)

which states that the induced representation of (⇢, V ) from K to G can be constructed by first inducing (⇢, V )
from K to H and then inducing from H to G.

Now, choose K = {e} to be the identity element of G. Let (⇢, V ) be the trivial one dimensional representation
of K = {e} with

dimV = 1, ⇢(e)v = v

Consider the set of left cosets of H in K = {e}. We have that

H/K = H/{e} = {he|h 2 G} = H
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so the set of coset representatives of H/K is just elements of H . Using a from [54], the induced representation
of (⇢, V ) from K = {e} to H is the left regular representation of H . By the same argument, the induced
representation of (⇢, V ) from K = {e} to G is the left regular representation of G. Thus,

IndH

K [(⇢, V )] = (L,CH), IndG

K [(⇢, V )] = (L,CG)

Using the compositionality property of the induced representation (8), we thus have that

(L,CG) = IndG

H [(L,CH)]

Thus, the induced representation from H to G of the left regular representation of H is the left regular
representation of G.

(L,CH) (L,CG)

(L,CH) (L,CG)

IndG
H

[(L,CH
)]

L(h) L(g)L(h)

IndG
H

[(L,CH
)]

Figure 12: Commutative Diagram for Completeness Property of Induced Representations. Lh

denotes the left regular action of H on CH . Lg denotes the left regular action of G on CG. The
induced representation of the left regular representation of H is the left regular representation of
G, (L,CG) = IndG

H
[(L,CH)]. The induced representation makes the diagram commutative. This

should be contrasted with the definition of G-equivarience defined in A.0.1.

Thus, the induction operation maps the space of all group valued functions on H into the space of all group
valued functions on G.

J Irriducibility and Induced and Restricted Representations

Let H be a subgroup of compact group G. We can use the induced representation to map representations of
H to representations of G and the restricted representation to map representations of G to representations of
H . All representations of H break down into direct sums of irreducible representations of H . Similarly, all
representations of G break down into direct sums of irreducible representations of G. Let use denote Ĥ as a
set of representatives of all irreducible representations of H and Ĝ as a set of representatives of all irreducible
representations of G,

Ĥ = { (⇢, V⇢) | Representative irreducibles of H }

Ĝ = { (�,W�) | Representative irreducibles of G }

We want to understand how the restriction and induction operations transform H-irreducibles to G-irreducibles
and vice versa. We can completely characterize how irreducibles change under the restriction and induction
procedures using branching rules and induction rules, respectively.

J.1 Restricted Representation and Branching Rules

Let (�,W ) and (�0
,W

0) be G-representations. The restriction operation is linear and

ResGH [(�,W )� (�0
,W

0)] = ResGH [(�,W )]� ResGH [(�0
,W

0)]

We can study the restriction operation by looking at restrictions of the set of G-irreducibles Ĝ. The restriction of
an G-irreducible is not necessarily irreducible in H and will decompose as a direct sum of H-irreducibles. Let
(�,W�) 2 Ĝ. We can define a set of integers B�,⇢ : Ĝ⇥ Ĥ ! Z�0,

ResGH [(�,W�)] =
M

⇢2Ĥ

B�,⇢(⇢,W⇢)

so that B�,⇢ counts the multiplicities of the H-irreducible (⇢,W⇢) in the restricted representation of the G-
irreducible (�,W�). The B�,⇢ are called branching rules and they have been well studied in the context of
particle physics [52]. Let (�0

,W
0) be any G-representation. (�0

,W
0) will decompose into G-irreducibles as

(�0
,W

0) =
M

�2Ĝ

m�(�,W�)
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where m� counts the number of copies of the G-irreducible (�,W�) in (�0
,W

0). Then, the restriced representa-
tion of (�0

,W
0) decomposes into H-irreducibles as

ResGH [(�0
,W

0)] =
M

�2Ĝ

m� ResGH [(�,W�)] =
M

⇢2Ĝ

X

�2Ĝ

[m�B�,⇢](⇢,W⇢)

So that the multiplicity of the (⇢,W⇢) irreducible in the restriction of (�0
,W

0) is
P

�2Ĝ
m�B�,⇢. Thus, the

branching rules B�,⇢ completely determine how an arbitrary G-representation restricts to an H-representation.

J.2 Induced Representation and Induction Rules

The induction operation acts linearly on representations composed of direct sums of representations. Specifically,
if (⇢1, V1) and (⇢2, V2) are representations of H , then

IndG

H [(⇢1, V1)� (⇢2, V2)] = IndG

H [(⇢1, V1)]� IndG

H [(⇢2, V2)]

The induction operation IndG

H maps every irreducible representation (⇢, V⇢) 2 Ĥ to a G-representation. The
induced representation of an irreducible representation of H is not necessarily irreducible in G and will break
into irreducibles in Ĝ as

IndG

H [(⇢, V⇢)] =
M

�2Ĝ

I⇢,�(�,W�)

where the integers I⇢,� : Ĥ ⇥ Ĝ !2 Z�0 denotes the number of copies of the irreducible (�,W�) 2 Ĝ in
the induced representation IndG

H(⇢, V⇢) of the irreducible (⇢, V⇢). The I⇢,� are called Induction Rules and
completely determine the multiplicities of G-irreducibles in the induced representation of any H-representation.
Specifically, let (⇢0, V 0) be any representation of H . Then, (⇢0, V 0) breaks into H-irreducibles as

(⇢0, V 0) =
M

⇢2Ĥ

n⇢(⇢, V⇢)

The induced representation is linear and maps (⇢0, V 0) into a representation of G which will break into G-
irreducibles as

IndG

H [(⇢0, V 0)] =
M

⇢2Ĥ

n⇢ Ind
G

H(⇢, V⇢) =
M

�2Ĝ

(
X

⇢2Ĥ

n⇢I⇢,�)(�,W�)

so that the multiplicity of (�,W�) 2 Ĝ in the induced representation of (⇢, V⇢) 2 Ĥ is given by
P

⇢2Ĥ
m�I⇢,� .

Thus, the induction rules I⇢,� completely determine the multiplicities of G-representations in the induced
representation of any H-representation.

J.3 Irriducibility and Frobinous Reciprocity

The induction rules I⇢� : Ĥ ⇥ Ĝ ! Z�0 and the branching rules B�⇢ : Ĝ ⇥ Ĥ ! Z�0 are related
by the Frobinous reciprocity theorem [37]. Let (⇢0, V 0) be any H-representation and let (�0

,W
0) be any

G-representation. Then,

HomH [(⇢0, V 0),ResGH [(�0
,W

0)]] ⇠= HomG[Ind
G

H [(⇢0, V 0)], (�0
,W

0)]

Choosing (⇢0, V 0) = (⇢, V⇢) 2 Ĥ and (�0
,W

0) = (�,W�) 2 Ĝ gives I⇢,� = B�,⇢. So that when viewed
as matrices, B = I

T . All information about how H-representations are induced to G-representations and
G-representations are restricted to H-representations is encoded in both B�,⇢ and I⇢,� . It should be noted for
many cases of interest, B�,⇢ and I⇢,� are sparse, and have non-zero entries for only a small number of ⇢ and �

pairs. In the next section, we discuss how the structure of B�,⇢ and I⇢,� constraint the design of equivariant
neural architectures.

J.4 Induced and Restriction Representation Based Architectures

Heuristically, convolutional neural networks are compositions of linear functions, interleaved with non-linearities.
At each layer of the network, we have a set of functions from a homogeneous space of a group into some vector
space [6]. Let XH

i be a set of homogeneous spaces of the group H and let XG

j be a set homogeneous spaces of
the group G. Let V H

i and W
G

j be a set of vector spaces .Then, consider the function spaces

FH

i = { f | f : XH

i ! V
H

i }, FG

j = { f
0 | f

0 : XG

j ! W
G

j }

The group H acts on the homogeneous spaces XH

i and the group G acts on the homogeneous spaces XG

j so
that the function spaces FH

i and FG

j form representations of H and G, respectively
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Suppose we wish to design a downstream G-equivariant neural network that accepts as signals functions that
live in the vector space FH

0 and transform in the ⇢0 representation of H . Thus, (⇢0,FH

0 ) is a H-representation,
but not necessarily a G-representation. At some point, in the architecture, a layer FH

i must be H equivariant on
the left and both H and G-equivariant on the right. Let us call the layer that is both H and G-equivariant FG

1 .

... (⇢i,FH

i
) (�1,FG

1 ) ...

... (⇢i,FH

i
) (�1,FG

1 ) ...

�i�1

⇢i(h)

 

�1(g)

 1

�i�1   1

⇠=

... (⇢i,FH

i
) IndG

H
[(⇢i,FH

i
)] (�1,FG

1 ) ...

... (⇢i,FH

i
) IndG

H
[(⇢i,FH

i
)] (�1,FG

1 ) ...

�i�1

⇢i(h)

�⇢i

IndG
H

[⇢i]

 "

�1(g)

 1

�i�1 �⇢i  "  1

Figure 13: Factorization of Generic Architecture Using Universal Property of Induced Representation
5.1  =  " � ��i

Suppose that  is an intertwiner between (⇢i,FH

i
) and (�1,FG

1
). Using 5.1, there is a canonical

basis of the space HomH [(⇢i,FH

i
),ResG

H
[(�1,FG

1
)]] ⇠= HomG[Ind

G

H
[(⇢i,FH

i
)], (�1,FG

1
)] and we

may write  uniquely as  =  " ��⇢ where �⇢ is an H-equivariant map and  " is a G-equivariant
map.

(⇢0,FH

0 ) (⇢1,FH

1 ) ... (⇢i,FH

i
) (�1,FG

1 ) (�2,FG

2 ) ... (�j ,FG

j
)

(⇢0,FH

0 ) (⇢1,FH

1 ) ... (⇢0,FH

0 ) (�1,FG

1 ) (�2,FG

2 ) ... (�j ,FG

j
)

⇢0(h)

�0

⇢1(h)

�1 �i�1
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IndG
H

�1(g)

 1  2
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�j(g)

�0 �1 �i�1 IndG
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Figure 14: Most general downstream G-equivariant architecture that accepts signals of capsule type
⇢0 that live in vector space FH

0
. Using the universal property of the induction layer, all downstream

G-equivariant architectures can be written in this form.

Using this decomposition, we may write any G-equivariant neural architecture that accepts sig-
nals in the function space FH

0
as J.4. Each layer FH

i
transforms in the ⇢i representation

of the group H . Each layer FG

j
transforms in the �j representation of the group G. Each

map �i 2 HomH [(⇢i,FH

i
), (⇢i+1,FH

i+1
)] is an intertwiner of H representations. Each map

 i 2 HomG[(�i,FG

i
), (�i+1,FG

i+1
)] is an intertwiner of G representations. All layers preceding the

induced mapping are H-equivariant. All layers succeeding the induced mapping are G-equivariant.

Uniformly G-equivariant networks are the topic of a significant amount of research. End to end
G-equivariant networks can be essentially fully categorized [8]. Each layer is labeled by the number
of multiplicity of irreducibles that it falls into and the non-linear activation function. Thus, an
architectures of the form J.4 can be completely specified by decomposition of each layer into
irreducibles

(⇢0,FH

0
) =

M

⇢2Ĥ

m0⇢(⇢, V⇢)

(⇢1,FH

1
) =

M

⇢2Ĥ

m1⇢(⇢, V⇢), (⇢2,FH

2
) =

M

⇢2Ĥ

m2⇢(⇢, V⇢), ..., (⇢i,FH

i
) =

M

⇢2Ĥ

mi⇢(⇢, V⇢)

(�1,FG

1
) =

M

�2Ĝ

n1⌧ (�,W�), (�2,FG

2
) =

M

�2Ĝ

n2�(�,W�), ..., (�j ,FG

j
) =

M

�2Ĝ

nj�(�,W�)

where mi,⇢ are the multiplicities of the H-irreducible (⇢, V⇢) in the i-th H-equivariant layer and nj,�

are the multiplicities of the G-irreducible (�,W�) in the j-th G-equivariant layer. [6] introduced the
concept of fragments, which label how a layer breaks into irreducibles. For networks that are initially
H-equivariant but downstream G-equivariant, we need to specify the group as well as the fragment
type.

A induced representation based network is characterized by the non-linearities and (i+1)H-fragments
and j G-fragments,

H-Equivariant Input Space: (m0,1,m0,2, ...m0,|Ĥ|)

H-Equivariant Layers: (m1,1,m1,2, ...m1,|Ĥ|) (m1,1,m1,2, ...m1,|Ĥ|) ... (mi,1,mi,2, ...mi,|Ĥ|)

G-Equivariant Layers: (n1,1, n1,2, ...n1,|Ĝ|), (n1,1, n1,2, ...n1,|Ĝ|) ... (ni,1, ni,2, ...ni,|Ĝ|)
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where each of the i H-equivariant layers is specified by a fragment (mx,1,mx,2, ...mx,|Ĥ|) which
specifies the decomposition of the x-th layer into H-irreducibles. Similarly, each of the j G-
equivariant layers is specified by a fragment (ny,1, ny,2, ...ny,|Ĝ|) which specifies the decomposition
of the y-th layer into G-irreducibles. The fragments (mi,1,mi,2, ...mi,|Ĥ|) and (n1,1, n1,2, ...n1,|Ĝ|)
can not be arbitrarily chosen and are related by induced and restriction representations. Specifically,
the linear maps between boundary layers must satisfy,

 2 HomH [(⇢i,FH

i
),ResG

H
[(�1,FG

1
)]] ⇠= HomG[Ind

G

H
[(⇢i,FH

i
)], (�1,FG

1
)]

Specifically, if (⇢i,FH

i
) and (�1,FG

1
) decompose into irreducibles as

(⇢i,FH

i
) =

M

⇢2Ĥ

mi⇢(⇢, V⇢), (�1,FG

1
) =

M

�2Ĝ

n1�(�,W�)

Then, we can write the induced and restricted representations in terms of the branching and induction
rules,

ResG
H
[(�1,FG

1
)] =

M

⇢2Ĥ

[(
X

�2Ĝ

n1�B�,⇢)(⇢, V⇢)] IndG
H
[(⇢i,FH

i
)] =

M

�2Ĝ

[(
X

⇢2Ĥ

mi,⇢I⇢,�)(�,W�)]

J.4.1 Generalization to Multiple Groups

We have chosen to consider the case where we induce directly from H ⇢ G to G. It should be
noted that this induction procedure can also be performed incrementally for any sequence of nested
ascending subgroups H = G1 ⇢ G2... ⇢ GN�1 ⇢ G = GN . A network architecture is then
completely specified by a set of layers that decompose into Gi-irreducibles,

(⇢G1
0

,FG1
0

) =
M

�2Ĝ1

nG1
0�

(�, V�), (⇢G1
1

,FG1
1

) =
M

�2Ĝ1

nG1
1�

(�, V�), ... (⇢G1
i1

,FG1
i1

) =
M

�2Ĝ1

nG1
i1�

(�, V�)

(⇢G2
1

,FG2
1

) =
M

�2Ĝ2

nG2
1�

(�, V�), (⇢G2
2

,FG2
2

) =
M

�2Ĝ2

nG2
2�

(�, V�), ... (⇢G2
i2

,FG2
i2

) =
M

�2Ĝ2

nG2
i2�

(�, V�),

...

(⇢GN

1
,FGN

1
) =

M

�2ĜN

nGN

1�
(�, V�), (⇢GN

2
,FGN

2
) =

M

�2ĜN

nGN

2�
(�, V�), ... (⇢GN

iN
,FGN

iN
) =

M

�2ĜN

nGN

iN�
(�, V�)

Let  B

i
be the intertwiner at the i-th boundary layer. The equivarience conditions require that

 B

1
2 HomG1 [(⇢

G1
i1

,FG1
i1

),ResG2
G1

[(⇢G2
i2

,FG2
i2

)]] ⇠= HomG2 [Ind
G2
G1

[(⇢G1
i1

,FG1
i1

)], (⇢G2
i2

,FG2
i2

)]

 B

2
2 HomG2 [(⇢

G2
i2

,FG2
i2

),ResG3
G2

[(⇢G3
i3

,FG3
i3

)]] ⇠= HomG3 [Ind
G3
G2

[(⇢G2
i2

,FG2
i2

)], (⇢G3
i3

,FG3
i3

)]

...

 B

N�1
2 HomGN�1 [(⇢

GN�1

iN�1
,FGN�1

iN�1
),ResGN

GN�1
[(⇢GN

iN
,FGN

iN
)]] ⇠= HomGN

[IndGN

GN�1
[(⇢GN�1

iN�1
,FGN�1

iN�1
)], (⇢GN

iN
,FGN

iN
)]

Let IGiGi+1 : Ĝi ⇥ Ĝi+1 ! Z�0 and BGiGi+1 : Ĝi+1 ⇥ Ĝi ! Z�0 be the induction rules and
the branching rules for the groups Gi ⇢ Gi+1, respectively. Then, we can write the induced and
restricted representations at each layer in terms of the branching and induction rules,

ResG2
G1

[(⇢G2
i2

,FG2
i2

)] =
M

⇢2Ĝ1

[(
X

�2Ĝ2

n
G2
1�

B
G1G2
�,⇢ )(⇢, V⇢)], IndG2

G1
[(⇢G1

i1
,FG1

i1
)] =

M

⇢2Ĝ2

[(
X

�2Ĝ1

n
G1
i1,�

I
G1G2
�,⇢ )(⇢, V⇢)]

ResG3
G2

[(⇢G3
i3

,FG3
i3

)] =
M

⇢2Ĝ2

[(
X

�2Ĝ3

n
G3
1�

B
G2G3
�,⇢ )(⇢, V⇢)], IndG3

G2
[(⇢G2

i2
,FG2

i2
)] =

M

⇢2Ĝ3

[(
X

�2Ĝ2

n
G2
i2,�

I
G2G3
�,⇢ )(⇢, V⇢)]

...

ResGN

GN�1
[(⇢GN

iN
,FGN

iN
)] =

M

⇢2ĜN�1

[(
X

�2ĜN

n
GN

1�
B

GN�1GN

�,⇢ )(⇢, V⇢)], IndGN

GN�1
[(⇢

GN�1
iN�1

,FGN�1
iN�1

)] =
M

⇢2ĜN

[(
X

�2ĜN�1

n
GN�1
iN�1,�

I
GN�1GN

�,⇢ )(⇢, V⇢)]

Thus, the induced representation allows for the design of networks that are equivariant with respect a
sequence of ascending nested larger groups. It should be noted that it is also possible to move in the
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‘other direction’. The restriction representation can be used for coset pooling [20] to design networks
that are equivariant with respect to a descending sequence of nested subgroups G0

1
� G0

2
� ... � G0

N
.

Thus, the induced representation, combined with coset pooling allow for the design of neural networks
that are at different stages equivariant with respect to an arbitrary sequence of groups G1, G2, ..., GN ,
so long as each group in the sequence either contains or is contained by the previous group.

K Toy Example: Tetrahedral Signals

We work out one toy example to help build intuition for induced representations.

Let T̄ denote a tetrahedron in three dimensional space. T̄ is composed of four vertices and four
equilateral triangular faces. Let T be the projection of T̄ in a direction normal to a face of T̄ . As
show in 15, the image of a projection in a direction normal to a face is a equilateral triangle which
we will call T . The induced representation has a natural geometric interpretation that relates the
symmetry subgroup of the projected platonic solid T to the full Platonic solid T̄ . The same argument
presented here for the dodecehedron D̄ recovers the results of [11].

Figure 15: Left: Three dimensional tetra-
hedron T̄ with symmetry group A4. The
projection of T̄ into a plane is an equilateral
triangle T . The symmetry group of T is Z3.
Right: Three dimensional dodecehedron D̄

with symmetry group A5. The projection of
D̄ into a plane is an pentagon D. The sym-
metry group of T is Z5.

The group of orientation preserving symmetries of the
equilateral triangle T is Z3 which corresponds to rotations
through the origin an angle of 0, 2⇡

3
or 4⇡

3
. The group of

orientation preserving symmetries of T̄ is A4.

Let f : T ! Rc be a signal defined on T . Take {�k}4k=1

to be four independent filters with �k : T ! RK⇥c each
transforming in the same representation of Z3. We can
then convolve each �k with f ,

8g 2 Z3,  k(g) = (�k ? f)(g) =

Z

x2T

�k(x)f(g
�1x)

so that each  k : Z3 ! RK 2 (RK)Z3 . The group Z3

has action on each k. Now, let us vectorize the k group
valued functions into one variable  with  : Z3 ! R4K ,

g 2 Z3,  (g) =

2

64

 1(g)
 2(g)
 3(g)
 4(g)

3

75

We can now compute the induced action. The computations involved with this map are straightforward
but somewhat tedious and are described in L. We just state the results in this section. Let  " be
the function defined on A4, which has A4 induced action. First, consider  " on elements of
Z3 = {e, (1, 2, 3), (1, 3, 2)},

 "[e] =

2

64

 1[e]
 2[e]
 3[e]
 4[e]

3

75 ,  "[(1, 2, 3)] =

2

64

 1[(1, 2, 3)]
 4[(1, 2, 3)]
 2[(1, 2, 3)]
 3[(1, 2, 3)]

3

75  "[(1, 3, 2)] =

2

64

 1[(1, 3, 2)]
 3[(1, 3, 2)]
 4[(1, 3, 2)]
 2[(1, 3, 2)]

3

75

Note that on Z3 coset  " acts only via permutations.

Now, consider the (1, 2, 4)H coset, we have that

 "[(1, 2, 4)] =

2

64

 2[e]
 4[(1, 3, 2)]
 3[(1, 3, 2)]
 1[(1, 2, 4)]

3

75 ,  "[(1, 3)(2, 4)] =

2

64

 2[(1, 2, 3)]
 1[(1, 3, 2)]
 4[e]
 3[e]

3

75  "[(2, 4, 3)] =

2

64

 2[(1, 3, 2)]
 3[(1, 2, 3)]
 1[e]

 4[(1, 2, 3)]

3

75

Similarly, for the (2, 3, 4)H coset, we have that,

 "[(2, 3, 4)] =

2

64

 3[e]
 1[(1, 2, 3)]
 2[(1, 3, 2)]
 4[(1, 3, 2)]

3

75 ,  "[(1, 2)(3, 4)] =

2

64

 3[(1, 2, 3)]
 4[e]

 1[(1, 3, 2)]
 2[e]

3

75  "[(3, 4, 1)] =

2

64

 3[(1, 3, 2)]
 2[(1, 2, 3)]
 4[(1, 2, 3)]
 1[e]

3

75
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Lastly for the (3, 1, 4)H coset, we have that

 "[(3, 1, 4)] =

2

64

 4[e]
 2[(1, 3, 2)]
 1[(1, 2, 3)]
 3[(1, 3, 2)]

3

75 ,  "[(2, 3)(1, 4)] =

2

64

 4[(1, 2, 3)]
 3[e]
 2[e]

 1[(1, 3, 2)]

3

75  "[(1, 4, 2)] =

2

64

 4[(1, 3, 2)]
 1[e]

 3[(1, 2, 3)]
 2[(1, 2, 3)]

3

75

Thus, we have constructed a function  " : A4 ! R4K from a set of four filters �k : T ! RK⇥c

defined on the triangle T . The important observation is that the group A4 acts on  " via permutation
and action by an element Z3 ⇢ A4. This is the same as the induced representation which has G-action
that is a mix of permutation and H-action A.0.2. It should be noted that unlike the projection trick
used in [10], this construction requires no padding or projections. Furthermore, it is not even required
that the signal f be lifted from T into T̄ .

K.0.1 Comparison With Orthographic Projection

In analogy with [12, 10, 11], another way to create a signal on T̄ would be to first lift the signal from
T to T̄ via orthographic projection and then use an A4-equivariant neural network to extract features.
Note that this approach is a specific instance of our construction in K and corresponds to setting

�1 = �(x) �2 = �3 = �4 = 0

where �(x) : T ! T is a feature map defined on the equilateral triangle. With this choice of �k,
occluded faces of the tetrahedron have no signal defined on them.

L Group Calculations for Induced Representation of Z3 to A4

This section details the calculations in computing induced representations of Z3 on A4. Computations
were done with symbolic computer program, which is available upon request. Let us take Z3 ⇢ A4

to be the group

Z3 = h(1, 2, 3)i = {e, (1, 2, 3), (1, 3, 2)}

Let us calculate the representatives of the four left cosets of A4/Z3. We have that

e · Z3 = {e, (1, 2, 3), (1, 3, 2)}
(1, 2, 4) · Z3 = {(1, 2, 4), (1, 3)(2, 4), (2, 4, 3)}
(2, 3, 4) · Z3 = {(2, 3, 4), (1, 2)(3, 4), (3, 4, 1)}
(3, 1, 4) · Z3 = {(1, 4, 3), (2, 3)(1, 4), (1, 4, 2)}

Thus, the elements g1 = e, g2 = (1, 2, 4), g3 = (2, 3, 4), g4 = (3, 1, 4) are representatives of A4/Z3.
Now, we know that,

8g 2 A4, 8gi 2 {g1, g2, g3, g4}, 9hi(g) 2 Z3 s.t. g · gi = gjg(i)hi(g)

where jg is a permutation and hi(g) 2 H . We thus need to compute the permutations jg 2 S4 :
{1, 2, 3, 4} ! {1, 2, 3, 4} and hi(g) 2 H . The identity element coset has

je =


1 2 3 4
1 2 3 4

�
, j(1,2,3) =


1 2 3 4
1 4 2 3

�
, j(1,3,2) =


1 2 3 4
1 3 4 2

�
,

h(e) =


1 2 3 4
e e e e

�
,

h(1, 2, 3) =


1 2 3 4

(1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3)

�
,

h(1, 3, 2) =


1 2 3 4

(1, 3, 2) (1, 3, 2) (1, 3, 2) (1, 3, 2)

�
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Now, for the g2 = (1, 2, 4) coset,

j(1,2,4) =


1 2 3 4
2 4 3 1

�
, j(1,3)(2,4) =


1 2 3 4
2 1 4 3

�
, j(2,4,3) =


1 2 3 4
2 3 1 4

�
,

h(1, 2, 4) =


1 2 3 4
e (1, 3, 2) (1, 3, 2) (1, 2, 3)

�
,

h((1, 3)(2, 4)) =


1 2 3 4

(1, 2, 3) (1, 3, 2) e e

�
,

h(2, 4, 3) =


1 2 3 4

(1, 3, 2) (1, 2, 3) e (1, 2, 3)

�

Similarly, for the (2, 3, 4) coset,

j(2,3,4) =


1 2 3 4
3 1 2 4

�
, j(1,2)(3,4) =


1 2 3 4
3 4 1 2

�
, j(3,4,1) =


1 2 3 4
3 2 4 1

�
,

h(2, 3, 4) =


1 2 3 4
e (1, 2, 3) (1, 3, 2) (1, 3, 2)

�
,

h((1, 2)(3, 4)) =


1 2 3 4

(1, 2, 3) e (1, 3, 2) e

�
,

h(3, 4, 1) =


1 2 3 4

(1, 3, 2) (1, 2, 3) (1, 2, 3) e

�

And lastly for the (1, 4, 3) coset,

j(1,4,3) =


1 2 3 4
4 2 1 3

�
, j(2,3)(1,4) =


1 2 3 4
4 3 2 1

�
, j(1,4,2) =


1 2 3 4
4 1 3 2

�
,

h(1, 4, 3) =


1 2 3 4
e (1, 3, 2) (1, 2, 3) (1, 3, 2)

�
,

h((2, 3)(1, 4)) =


1 2 3 4

(1, 2, 3) e e (1, 3, 2)

�
,

h(1, 4, 2) =


1 2 3 4

(1, 3, 2) e (1, 2, 3) (1, 2, 3)

�

Now that we have explicit formulae for jg and h(g) we can construct the induction of a function from
domain Z3 to A4.

L.1 Counting Degrees of Freedom

Z3 has three one dimensional irreducible representations (⇢1, V1), (⇢+, V+) and (⇢�, V�). The
actions are given by

v 2 V1, ⇢1(g)v = v

v 2 V±, ⇢±(g)v = exp(±2⇡i

3
)v

where (⇢1, V1) is the trivial representation and (⇢+, V+) and (⇢�, V�) are conjugate representations.

We can now find the induced representation of (⇢k, Vk) on A4. The index is given by |A4 : Z3| = 4.
Let g1, g2, g3, g4 be representatives of the four left cosets in A4/Z3. So that

A4/Z3 = {g1Z3, g2Z3, g3Z3, g4Z3} (9)

Note that Z3 is not normal in A4 so A4/Z3 is not a group. Despite this, the decomposition in (9)
holds, via the fact that the set of representatives of cosets partitions G. The induced representation of
the irreducible (⇢k, Vk) representation of Z3 on A4 acts on the vector space

k 2 {1,+,�}, Wk = IndA4
Z3

(Vk) =
4M

i=1

giV
(i)

k
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were the notation giV
(i)

k
is a label denoting the i-th independent copy of the vector space Vk. Let

Rk = IndA4
Z3

(⇢k) denote the action of A4 on Wk. We have that,

8g 2 A4, Rk(g) ·
4X

i=1

givi =
4X

i=1

gjg(i)⇢k(hi(g))vi 2 Wk

where 8g 2 A4, jg(i) 2 S4 : {1, 2, 3, 4} ! {1, 2, 3, 4} is a permutation of the coset representatives
and hi(g) 2 Z3. To summarize, irreducible representations of Z3 = hgi are given by (⇢k, Vk) with

v 2 V1, ⇢1(g)v = v

v 2 V±, ⇢±(g)v = exp(
±2⇡i

3
)v

The induced representations of Z3 on A4 are given by (Rk,Wk) with

k 2 {1,+,�}, Wk =
4M

i=1

giV
(i)

k

Rk(g) ·
4X

i=1

givi =
4X

i=1

gjg(i)⇢k(hi(g))vi

with g · gi = gjg(i) · hi(g)

Let us explicitly construct the induced representation of each irreducible of Z3 explicitly.

L.1.1 Trivial Representation (⇢1, V1)

Consider first the trivial representation (⇢1, V1) of Z3. The induced action R1 = IndA4
Z3

(⇢1) is then
given by

R1[e] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v1

v2

v3

v4

3

75 R1[(1, 2, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v1

v4

v2

v3

3

75 R1[(1, 3, 2)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v1

v3

v4

v2

3

75

R1[(1, 2, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v2

v4

v3

v1

3

75 R1[(1, 3)(2, 4)] ·

2

64

v2

v1

v4

v3

3

75 =

2

64

v1

v2

v3

v4

3

75 R1[(2, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v2

v3

v1

v4

3

75

R1[(2, 3, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v3

v1

v2

v4

3

75 R1[(1, 2)(3, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v3

v4

v1

v2

3

75 R1[(3, 4, 1)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v3

v2

v4

v1

3

75

R1[(1, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v4

v2

v1

v3

3

75 R1[(2, 3)(1, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v4

v3

v2

v1

3

75 R1[(2, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v4

v1

v3

v2

3

75

Working in the standard Euclidean basis, we may write this as

R1[e] =

2

64

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

75 R1[(1, 2, 3)] =

2

64

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

3

75 R1[(1, 3, 2)] =

2

64

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

3

75

R1[(1, 2, 4)] =

2

64

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

3

75 R1[(1, 3)(2, 4)] =

2

64

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

3

75 R1[(2, 4, 3)] =

2

64

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

3

75

R1[(2, 3, 4)] =

2

64

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

3

75 R1[(1, 2)(3, 4)] =

2

64

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

75 R1[(3, 4, 1)]

2

64

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

3

75

R1[(1, 4, 3)] =

2

64

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

3

75 R1[(2, 3)(1, 4)] =

2

64

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

75 R1[(2, 4, 3)] =

2

64

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

3

75
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Note that the induced action of a trivial representation acts only via permutation for all groups.

L.1.2 (⇢+, V+) and (⇢�, V�) Representations

Now, consider the two complex representations (⇢+, V+) and (⇢�, V�). These representations are
conjugate representations,

(⇢+, V+) = (⇢�, V�) (⇢�, V�) = (⇢+, V+)

The induced representation of the conjugate is the conjugate of the induced representation,

IndG
H
[(⇢, V )] = IndG

H
[(⇢, V )]

Thus, we have that

R±[e] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v1

v2

v3

v4

3

75 R±[(1, 2, 3)] ·

2

64

v1

v2

v3

v4

3

75 = !±

2

64

v1

v4

v2

v3

3

75 R±[(1, 3, 2)] ·

2

64

v1

v2

v3

v4

3

75 = !⌥

2

64

v1

v3

v4

v2

3

75

R±[(1, 2, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v2

!±v4
!⌥v3
!⌥v1

3

75 R±[(1, 3)(2, 4)] ·

2

64

v2

v1

v4

v3

3

75 =

2

64

!±v1
!⌥v2
v3

v4

3

75 R±[(2, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

!⌥v2
!±v3
v1

!±v4

3

75

R1[(2, 3, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v3

!±v1
!⌥v2
!⌥v4

3

75 R±[(1, 2)(3, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

!±v3
v4

!⌥v1
v2

3

75 R±[(3, 4, 1)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

!⌥v3
!±v2
!±v4
v1

3

75

R±[(1, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

v4

!⌥v2
!±v1
!⌥v3

3

75 R±[(2, 3)(1, 4)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

!±v4
v3

v2

!⌥v1

3

75 R±[(2, 4, 3)] ·

2

64

v1

v2

v3

v4

3

75 =

2

64

!⌥v4
v1

!±v3
!±v2

3

75

Working in the standard Euclidean basis, we may write this as

R±[e] =

2

64

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

75 R±[(1, 2, 3)] = !±

2

64

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

3

75 R±[(1, 3, 2)] = !⌥

2

64

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

3

75

R±[(1, 2, 4)] =

2

64

0 1 0 0
0 0 0 !±
0 0 !⌥ 0
!⌥ 0 0 0

3

75 R±[(1, 3)(2, 4)] =

2

64

0 !± 0 0
!⌥ 0 0 0
0 0 0 1
0 0 1 0

3

75 R±[(2, 4, 3)] =

2

64

0 !⌥ 0 0
0 0 !± 0
1 0 0 0
0 0 0 !±

3

75

R±[(2, 3, 4)] =

2

64

0 0 1 0
!± 0 0 0
0 !⌥ 0 0
0 0 0 !⌥

3

75 R±[(1, 2)(3, 4)] =

2

64

0 0 !± 0
0 0 0 1
!⌥ 0 0 0
0 1 0 0

3

75 R±[(3, 4, 1)] =

2

64

0 0 !⌥ 0
0 !± 0 0
0 0 0 !±
1 0 0 0

3

75

R±[(1, 4, 3)] =

2

64

0 0 0 1
0 !⌥ 0 0
!± 0 0 0
0 0 !⌥ 0

3

75 R±[(2, 3)(1, 4)] =

2

64

0 0 0 !±
0 0 1 0
0 1 0 0
!⌥ 0 0 0

3

75 R±[(2, 4, 3)] =

2

64

0 0 0 !⌥
1 0 0 0
0 0 !± 0
0 !± 0 0

3

75

The group A4 has four conjugacy classes: e, (1, 2, 3), (1, 2)(3, 4) and (1, 3, 2). The four irreducible

e (1, 2, 3) (1, 3, 2) (12)(34)
�R1 4 1 1 0
�R+ 4 !+ !� 0
�R� 4 !� !+ 0

Table 9: Character Table for induced representations of the irreducibles (⇢1, V1), (⇢+, V+) and
(⇢�, V�) of Z3 on A4, R+ = IndA4

Z3
(⇢+) and R� = IndA4

Z3
(⇢�). !+ = exp( 2⇡i

3
) = !̄�.

representations of A4 are: The trivial (�1,W1) representation, two conjugate one-dimensional
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e (1, 2, 3) (1, 3, 2) (12)(34)
�1 1 1 1 1
�1,� 1 !+ !� 1
�1,+ 1 !� !+ 1
�3 3 0 0 -1

Table 10: Character Table for A4. !+ = exp( 2⇡i
3
) = !̄�. (�1,+,W1,+) and (�2,�,W2,�) are

conjugate representations.

representations (�1,+,W1,+), (�1,�,W1,�) and one three dimensional representation (�3,W3). We
can thus compute the induction coefficients of the induced representation of Z3 on A4. We have that

IndA4
Z3

[(⇢1, V1)] = (�3,W3)� (�1,W1)

IndA4
Z3

[(⇢+, V+)] = (�3,W3)� (�1,+,W1,+)

IndA4
Z3

[(⇢�, V�)] = (�3,W3)� (�1,�,W1,�)

Using Frobinous Reciprocity, we can derive the restrictions of A4 irreducibles. We have that

ResA4
Z3

[(�3,W3)] = (⇢1, V1)� (⇢+, V+)� (⇢�, V�)

ResA4
Z3

[(�1+,W1+)] = (⇢+, V+)

ResA4
Z3

[(�1�,W1�)] = (⇢�, V�)

ResA4
Z3

[(�1,W1)] = (⇢1, V1)

Figure 16: Left: Decomposition of the restricted representation ResA4
Z3

of A4-irreducibles (�,W�) 2
bA4 into Z3-irreducibles (⇢, V⇢) 2 bZ3. Not every Z3-representation can be realized as the restriction of
a A4-representation. Right: Decomposition of the induced representation IndA4

Z3
for Z3-irreducibles

(⇢, V⇢) 2 bZ3 into A4-irreducibles (�,W�) 2 bA4. Not every A4-representation can be realized as the
induction of a Z3-representation.

We are only interested in real representations. The most general real representation of Z3 is given by
(⇢, V ) = m1(⇢1, V1)�mc[(⇢+, V+)� (⇢�, V�)]

where m1 and mc are integers. The dimension of the vector space V is dimV = m1 +mc. The
induced representation of (⇢, V ) is

(R,W ) = IndA4
Z3

[(⇢, V )] = [m1 + 2mc](�3,W3)�mc[(�1,+,W1,+)� (�1,�,W1,�)]�m1(�1,W1)

where the vector space W of the induced representation has dimension dimW = 3(m1 + 2mc) +
2mc +m1 = 4m1 + 8mc = 4(m1 + 2mc) = 4 dimV as expected. This result, although simple
is extremely satisfying as it shows that any function on A4 can be lifted from a function on Z3. To
see this, note the following: By the Peter-Weyl theorem, the left regular representation (L,RZ3)
decomposes as

(L,RZ3) = (⇢1, V1)� [(⇢+, V+)� (⇢�, V�)]
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Thus, the induced representation of (L,RZ3) is from Z3 to A4 is thus

(R,W ) = IndA4
Z3

[RZ3 ] = 3(�3,W3)� [(�1,+,W1,+)� (�1,�,W1,�)]� (�1,W1)

Now, again by the Peter-Weyl theorem, the left regular representation (L,RA4) of A4 decomposes as

(L,RA4) = 3(�3,W3)� [(�1,+,W1,+)� (�1,�,W1,�)]� (�1,W1)

So the induced representation of the left regular representation of Z3 has the same decomposition
into irreducibles as the left regular representation of A4. Representations are completely determined
by their decomposition into irreducibles and

(L,RA4) = IndA4
Z3

[(L,RZ3)] (10)

Ergo, the space of functions from A4 into R is identical to the induced representation from Z3 to A4

of the space of functions of Z3 into R. Using the linearity of the induced representation and taking
the c-fold direct sum of both sides of (10), we have that

(L, (Rc)A4) = IndA4
Z3

[(L, (Rc)Z3)]

Thus, as expected, the induced representation bijectively maps group valued functions from Z3 ! Rc

into group valued functions from A4 ! R4c.

36


