
A Proof of Associativity of Binary Operator401

Recall that � is defined as:402

ai � aj :=

⇢
(aj,a � ai,a, aj,a ⌦ ai,b + aj,b, ai,c) if aj,c = 0
(aj,a, aj,b, aj,c) if aj,c = 1

This is equivalent to the following:403

ai � aj :=

⇢
((ai • aj)a, (ai • aj)b, ai,c) if aj,c = 0
aj if aj,c = 1

where • is S5’s binary operator defined in Equation 5. Note that •’s associativity was proved in Smith404

et al. [38]. Using this, we can prove the associativity of �.405

Let x, y, and z refer to three elements. We will prove that for all possible values of x, y, and z, �406

retains associativity.407

Case 1: zc = 1408

(x� y)� z = z (10)
= y � z (11)
= x� (y � z) (12)

Case 2: zc = 0 and yc = 1409

(x� y)� z = y � z (13)
Note that (y � z)c = 1 thus, (14)

= x� (y � z) (15)

Case 3: zc = 0 and yc = 0410

(x� y)� z = ((x • y)a, (x • y)b, xc)� z (16)
= (((x • y) • z)a, ((x • y) • z)b, xc) (17)
= ((x • (y • z))a, (x • (y • z))b, xc) (18)
= x� ((y • z)a, (y • z)b, yc) (19)
= x� (y � z) (20)
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B Hyperparameters411

Table 3: Hyperparameters for training A2C on Bsuite
Parameter Value
Adam Learning Rate 3e-4
Entropy Coefficient 0.0
Encoder Layer Sizes [256, 256]
Number of Recurrent Layers 1
Size of Recurrent Layer 256
Discount � 0.99
TD � 0.9
Number of Environments 1
Unroll Length 32
Number of Episodes 10000
Activation Function ReLU

Table 4: Hyperparameters for training PPO on POPGym
Parameter Value
Adam Learning Rate 5e-5
Number of Environments 64
Unroll Length 1024
Number of Timesteps 15e6
Number of Epochs 30
Number of Minibatches 8
Discount � 0.99
GAE � 1.0
Clipping Coefficient ✏ 0.2
Entropy Coefficient 0.0
Value Function Weight 1.0
Maximum Gradient Norm 0.5
Learning Rate Annealing None
Activation Function LeakyReLU
Encoder Layer Sizes [128, 256]
Recurrent Layer Hidden Size 256
Action Decoder Layer Sizes [128, 128]
Value Decoder Layer Sizes [128, 128]
S5 Layers 4
S5 Hidden Size 256
S5 Discretization ZOH
S5 � min 0.001
S5 � max 0.1
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Table 5: Hyperparameters for training Muesli on Multi-Environment Meta-RL. These experiments
were run using 64 TPUv3’s.

Parameter Value
Adam Learning Rate 3e-4
Value Function Weight 1.0
Muesli Auxiliary Loss Weight 3.0
Muesli Model Unroll Length 1.0
Encoder Layer Sizes [512, 512]
Number of Environments 1024
Discount � 0.995
Rollout Length 1000
Offline Data Fraction 0.0
Total Frames 2e9
LSTM Hidden Size 512
Projected Observation Size 12
Projected Action Size 2
S5 Layers 10
S5 Hidden Size 256
S5 Discretization ZOH
S5 � min 0.001
S5 � max 0.1
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C POPGym Discussion412

Stateless
CartPole Hard

Noisy Stateless
CartPole Hard

Stateless
Pendulum Hard

Noisy Stateless
Pendulum Hard

Repeat Previous
Hard

S5 (ours) 1.0± 0.0 0.28± 0.0 0.79± 0.01 0.55± 0.01 0.91± 0.01
GRU (ours) 1.0± 0.0 0.27± 0.0 0.75± 0.0 0.61± 0.01 �0.46± 0.01
MLP (ours) 0.26± 0.0 0.22± 0.0 0.41± 0.02 0.34± 0.01 �0.48± 0.00

GRU 1.000± 0.000 0.390± 0.007 0.828± 0.001 0.657± 0.002 �0.428± 0.002
MLP 0.265± 0.002 0.229± 0.002 0.477± 0.030 0.351± 0.012 �0.486± 0.002

IndRNN 1.000± 0.000 0.404± 0.005 0.804± 0.023 0.521± 0.109 �0.384± 0.013
LMU 0.987± 0.007 0.352± 0.019 0.806± 0.006 0.563± 0.014 0.191± 0.041
S4D 0.127± 0.026 0.207± 0.007 0.303± 0.014 0.289± 0.011 �0.491± 0.001

FART 0.996± 0.000 0.366± 0.002 0.698± 0.077 0.553± 0.007 �0.485± 0.001

Table 6: Results in POPGym’s suite. The reported number is the max-mean episodic reward (MMER)
used in Morad et al. [27]. To calculate this, we take the mean episodic reward for each epoch, and
then take the maximum over all epochs. For our results above, the mean and standard deviation across
eight seeds are reported. The results below are selected architectures from Morad et al. [27], which
also includes the best-performing one from each environment. They report the mean and standard
deviation across three trials.

Morad et al. [27] used RLLib’s [24] implementation of PPO, which differs significantly from standard413

implementations of PPO. It uses a dynamic KL-divergence coefficient on top of the clipped surrogate414

objective of PPO [37]. Furthermore, they use advanced orchestration to return full episode trajectories,415

rather than using the more commonly-studied "stored state" [19] strategy.416

Instead, we follow the design decisions outlined in the StableBaselines3 [35] and CleanRL’s [18]417

recurrent PPO implementations. While this results in different results shown in Table 6 for the same418

architecture, it recovers similar performance across the environments. Notably, our S5 architecture419

far outperforms the best performing architecture in Morad et al. [27] in the “RepeatPreviousHard”420

environment.421

We used the learning rate, number of environments, unroll length, timesteps, epochs, and minibatches,422

GAE �, and model architectures from Morad et al. [27]. However, we used the standard clipping423

coefficient ✏ of 0.2 instead of 0.3 to account for the lack of a dynamic KL-divergence coefficient. Note424

that we also adjusted the S5 architecture to contain approximately the same number of parameters as425

the GRU implementation instead of matching the size of the hidden state, which was done in Morad426

et al. [27].427

We did not evaluate our architecture across the full POPGym suite. To enable more rapid experimen-428

tation, we implement our algorithms and environments end-to-end in JAX [3, 25]. While the original429

POPGym results took 2 hours per trial with a GRU with a Quadro RTX 8000 and 24 CPUs, we could430

run our experiments using only 3 minutes per trial on an NVIDIA A40. Because of this, we selected431

environments from Morad et al. [27] to implement in JAX. We chose the CartPole, Pendulum, and432

Repeat environments because they are modified versions of existing environments in Lange [22]. We433

found that the “Easy” and “Medium” versions of these environments were not informative, as most434

models perform well on them and only report the “Hard” difficulty results.435

We attach our code in the supplementary materials.436
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