
Appendix:
ProtoDiff: Learning to Learn Prototypical Networks

by Task-Guided Diffusion

Anonymous Author(s)
Affiliation
Address
email

Contents1

1 Algorithms 22

2 Per-task prototype overfitting architecture 23

3 Residual prototype learning architecture 24

4 Datasets 35

5 Implementation details 46

6 Visualization of diffusion process 47

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



1 Algorithms8

We describe the detailed algorithms for meta-training and meta-test of ProtoDiff as following9

Algorithm 1 and 2, respectively:10

Algorithm 1 Meta-training phase of ProtoDiff.
Input: p(T ): distribution over tasks; θ: diffusion parameters; ϕ: feature extractor parameters; T :
diffusion steps.
Output: zθ: diffusion network, fϕ: feature extractor.

1: repeat
2: Sample batch of tasks T i ∼ p(T )
3: for all T i do
4: Sample support and query set {Si,Qi} from T i

5: Compute the vanilla prototype z̃i = f(Si)
6: repeat
7: Take some gradient step on∇LCE(Si,Qi), updating ϕi

8: until LCE(Si,Qi) converges
9: Compute the overfitted prototype by using the updated ϕi, zi,∗ = fϕi(Si)

10: t ∼ Uniform(1...T )
11: ϵ = N (0,1)

12: βt =
10−4(T−t)+10−2(t−1)

T−1 ,αt = 1− βt, ᾱt = Πk=t
k=0αk

13: ẑit =
√
ᾱt(z

i,∗ − z̃i) +
√

1− ᾱt
2ϵ

14: Compute diffusion loss Ldiff with Equation (9) and the final loss LT i with Equation (10)
15: Update {ϕ, θ} ← {ϕ, θ} − β∇{ϕ,θ}

∑
T i∼p(T ) LT i using query data of each task.

16: end for
17: until fϕ and zθ converges

Algorithm 2 Meta-test phase of ProtoDiff.
Input: τ = {S,Q}: meta-test task, zθ: trained diffusion network parameters, fϕ: trained feature
extractor network parameters, T : diffusion steps.

1: zT ∼ N (0, I)
2: Compute vanilla prototype z̃ with support set f(S)
3: for t=T, · · · , 1 do
4: ϵ = N(0,1)

5: βt =
10−4(T−t)+10−2(t−1)

T−1 ,αt = 1− βt, ᾱt = Πk=t
k=0αk

6: zt−1 = zθ(z, z̃, t)
7: end for
8: Compute the final prediction yq by with Equation (1) based on z0 + z̃

2 Per-task prototype overfitting architecture11

To enhance our comprehension of the Per-task prototype overfitting part, we propose a succinct12

architectural representation depicted in Figure 1. The initial step entails the computation of the13

conventional prototypes z̃ for a meta-training task. Subsequently, Equation (1) is employed to14

calculate the predictions for the query sample. The backbone’s parameters are subsequently updated15

through I iterations. Through the utilization of parameters from the final iteration, we ultimately16

obtain the prototypes z∗ that exhibit overfitting characteristics.17

3 Residual prototype learning architecture18

In order to gain a more comprehensive understanding of our residual prototype learning, we have19

crafted a succinct architecture diagram illustrated in Figure 2. Our proposition involves the prediction20

of the prototype update, denoted as z∗ − z̃, instead of directly predicting the overfitted prototype21

2



Gradient descent

Query image

Support set

Backbone

[0.7, 0.2, 0.1]

Vanilla prototypes Overfitted prototypes

[1, 0, 0]

iterations

Query features

Figure 1: Per-task prototype overfitting.

z∗. This distinctive approach also allows us to initialize ProtoDiff with the capability to perform the22

identity function, achieved by assigning zero weights to the decoder. Notably, we have discovered23

that the amalgamation of a global residual connection and the identity initialization substantially24

expedites the training process. By harnessing this mechanism, we have successfully enhanced the25

performance of ProtoDiff in the context of few-shot learning tasks.26

Task-guided diffusion

Vanilla prototypes

Diffused prototypes

Noise

Time step
Overfitted prototypesResidual

Figure 2: Residual prototype learning.

4 Datasets27

Within-domain few-shot. For this setting we focus on 5-way 1-shot/5-shot tasks, which aligns with28

previous research [11]. The within-domain few-shot experiments are performed on three datasets:29

miniImagenet [13] tieredImagenet [8], and ImageNet-800 [2]. miniImagenet consists of 100 randomly30

selected classes from ILSVRC-2012 [9], while tieredImagenet is composed of 608 classes that are31

grouped into 34 high-level categories. We measure the accuracy of 600 tasks randomly sampled32

3



from the meta-test set to evaluate the performance. Following [2], we also evaluate our model on33

ImageNet-800, a dataset obtained by randomly dividing the 1,000 classes of ILSVRC-2012 into 80034

base classes and 200 novel classes. The base classes consist of images from the original training set,35

while the novel classes comprise images from the original validation set.36

Cross-domain few-shot. In the 5-way 5-shot cross-domain few-shot classification experiments, the37

training domain is miniImagenet [13], and the testing is conducted on four different domains. These38

domains are CropDisease [7], which contains plant disease images; EuroSAT [5], a collection of39

satellite images; ISIC2018 [12], consisting of dermoscopic images of skin lesions, and ChestX [14],40

a dataset of X-ray images.41

Few-task few-shot. Few-task few-shot learning [15] challenges the common meta-training as-42

sumption of having many tasks available. We conductt experiments on four few-task meta-learning43

challenges, namely miniImagenet-S [13], ISIC [6], DermNet-S [3], and Tabular Murris [1]. To reduce44

the number of tasks and make it comparable to previous works, we followed [15] by limiting the num-45

ber of meta-training classes to 12 for miniImagenet-S, with 20 meta-test classes. ISIC [6] involves46

classifying dermoscopic images across nine diagnostic categories, with 10,015 images available for47

training in eight different categories, of which we selected four as meta-training classes. DermNet [3],48

which contains over 23,000 images of skin diseases, was utilized to construct Dermnet-S by selecting49

30 diseases as meta-training classes, following [15]. Finally, Tabular Murris [1], which deals with50

cell type classification across organs and includes nearly 100,000 cells from 20 organs and tissues,51

was utilized to select 57 base classes as meta-training classes, again following the same approach as52

[15].53

5 Implementation details54

In our within-domain experiments, we utilize a Conv-4 and ResNet-12 backbone for miniImagenet55

and tieredImagenet. A ResNet-50 is used for ImageNet-800. We follow the approach described in56

[2] to achieve better performance and initially train a feature extractor on all the meta-training data57

without episodic training. We use the SGD optimizer with a momentum of 0.9, a learning rate starting58

from 0.1, and a decay factor of 0.1. For miniImagenet, we train for 100 epochs with a batch size of59

128, where the learning rate decays at epoch 90. For tieredImageNet, we train for 120 epochs with60

a batch size of 512, where the learning rate decays at epochs 40 and 80. Lastly, for ImageNet-800,61

we train for 90 epochs with a batch size of 256, where the learning rate decays at epochs 30 and 60.62

The weight decay is 0.0005 for ResNet-12 and 0.0001 for ResNet-50. Standard data augmentation63

techniques, including random resized crop and horizontal flip, are applied. For episodic training,64

we use the SGD optimizer with a momentum of 0.9, a fixed learning rate of 0.001, and a batch size65

of 4, meaning each training batch consists of 4 few-shot tasks to calculate the average loss. For66

our cross-domain experiments, we use a ResNet-10 backbone to extract image features, which is a67

common choice for cross-domain few-shot classification [16, 4]. The training configuration for this68

experiment is the same as the within-domain miniImagenet training. For few-task few-shot learning,69

we follow [15] using a network containing four convolutional blocks and a classifier layer. Each70

block comprises a 32-filter 3 × 3 convolution, a batch normalization layer, a ReLU nonlinearity,71

and a 2 × 2 max pooling layer. All experiments are performed on a single A100 GPU, each taking72

approximately 20 hours. We will release all our code.73

6 Visualization of diffusion process74

The ProtoDiff method utilizes a task-guided diffusion model to generate prototypes that provide75

efficient class representations, as discussed in the previous section. To better understand the ef-76

fectiveness of our proposed approach, we provide a visualization by Grad-Cam [10] in Figure of77

the diffusion process, demonstrating how ProtoDiff gradually aggregates towards the desired class78

prototype during meta-training. The vanilla prototype is shown in the first row on the left, which79

does not exclusively focus on the guitar. In contrast, the overfitted prototype in the second row on the80

left provides the highest probability for the guitar. ProtoDiff, with the diffusion process, randomly81

selects certain areas to add noise and perform diffusion, resulting in a prototype that gradually moves82

towards the guitar with the highest probability at t=0. Moreover, ProtoDiff with residual learning83

produces a more precise prototype. The comparison between these different prototypes demonstrates84

4



Overfitted

Input

Diffusion process without residual learning

Diffusion process with residual learning

t=100 t=80 t=60 t=40 t=20 t=0

Prob = 0.99 Prob = 0.25 Prob = 0.35 Prob = 0.41 Prob = 0.49 Prob = 0.69 Prob = 0.88

Vanilla t=100 t=80 t=60 t=40 t=20 t=0

Prob = 0.45 Prob = 0.24 Prob = 0.31 Prob = 0.35 Prob = 0.41 Prob = 0.59 Prob = 0.73

Figure 3: Visualization of the diffusion process. The first row on the right shows the vanilla
prototype, which does not exclusively focus on the guitar. In contrast, the overfitted prototype in the
second row on the right provides the highest probability for the guitar. ProtoDiff randomly selects
certain areas to predict during the diffusion process, with the lowest probability at the beginning time
step. As time progresses, the prototype gradually aggregates towards the guitar, with the highest
probability at t=0. In comparison, ProtoDiff with residual learning produces a more precise prototype.

the effectiveness of the ProtoDiff diffusion process in generating a more accurate and informative85

prototype for few-shot learning tasks.86

References87

[1] K. Cao, M. Brbic, and J. Leskovec. Concept learners for few-shot learning. ICLR, 2020.88

[2] Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang. Meta-baseline: Exploring simple meta-learning89

for few-shot learning. In ICCV, pages 9062–9071, 2021.90

[3] Dermnet. Dermnet dataset. https://dermnet.com/. 2016.91

[4] Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and92

R. Feris. A broader study of cross-domain few-shot learning. In European Conference on93

Computer Vision, 2020.94

[5] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning95

benchmark for land use and land cover classification. IEEE Journal of Selected Topics in96

Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.97

[6] M. A. A. Milton. Automated skin lesion classification using ensemble of deep neural networks98

in isic 2018: Skin lesion analysis towards melanoma detection challenge. arXiv preprint99

arXiv:1901.10802, 2019.100

[7] S. P. Mohanty, D. P. Hughes, and M. Salathé. Using deep learning for image-based plant disease101

detection. Frontiers in plant science, 7:1419, 2016.102

[8] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle,103

and R. S. Zemel. Meta-learning for semi-supervised few-shot classification. arXiv preprint104

arXiv:1803.00676, 2018.105

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,106

A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei. ImageNet large scale visual recognition107

challenge. International Journal of Computer Vision, 115(3):211–252, 2015.108

[10] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual109

explanations from deep networks via gradient-based localization. In ICCV, pages 618–626,110

2017.111

5

https://dermnet.com/


[11] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NeurIPS,112

pages 4077–4087, 2017.113

[12] P. Tschandl, C. Rosendahl, and H. Kittler. The ham10000 dataset, a large collection of multi-114

source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,115

2018.116

[13] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.117

In NeurIPS, pages 3630–3638, 2016.118

[14] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. Chestx-ray8: Hospital-scale119

chest x-ray database and benchmarks on weakly-supervised classification and localization of120

common thorax diseases. In CVPR, pages 2097–2106, 2017.121

[15] H. Yao, L. Zhang, and C. Finn. Meta-learning with fewer tasks through task interpolation. arXiv122

preprint arXiv:2106.02695, 2021.123

[16] H. Ye, H. Hu, D. Zhan, and F. Sha. Few-shot learning via embedding adaptation with set-to-set124

functions. In CVPR, 2020.125

6


	Algorithms
	Per-task prototype overfitting architecture
	Residual prototype learning architecture
	Datasets
	Implementation details
	Visualization of diffusion process

