
A Metrics Visualization555

We provide a visualization of the three metrics we compute in Figure 4. For completeness, we also

Figure 4: Metrics for LLDM
556

provide the formulas for the metrics here:557

FWT =
X

k2[K]

FWTk

K
, FWTk =

1

11

X

e2{0...50}

ck,k,e

NBT =
X

k2[K]

NBTk

K
, NBTk =

1

K � k

KX

⌧=k+1

�
ck,k � c⌧,k

�

AUC =
X

k2[K]

AUCk

K
, AUCk =

1

K � k + 1

�
FWTk +

KX

⌧=k+1

c⌧,k

�
.

B Implemented Neural Architectures and Lifelong Learning Algorithms558

Neural Policy Arch.
RESNET-RNN
RESNET-T
VIT-T

Lifelong Learning Algo.

SEQL
EWC [33]
ER [13]
PACKNET [40]
MTL

Table 4: The implemented neural policy architectures and the lifelong learning algorithms in
LIBERO.

B.1 Neural Architectures559

In Section 4.4, we outlined the neural network architectures utilized in our experiments, namely560

RESNET-RNN, RESNET-T, and VIT-T. The specifics of each architecture are illustrated in Figure 5.561

Furthermore, Table 5, 6, and 7 display the hyperparameters for the architectures used throughout all562

of our experiments.563

C Computation564

For all experiments, we use a single Nvidia A100 GPU or a single Nvidia A40 GPU (CUDA 11.7)565

with 8 16 CPUs for training and evaluation.566

16

Figure 5: We provide visualizations of the architectures for RESNET-RNN, RESNET-T, and VIT-T,
respectively. It is worth noting that each model architecture incorporates language embedding in
distinct ways.

Figure 6: The image encoders: ResNet-based encoder and the vision transformer-based encoder.

Variable Value

resnet_image_embed_size 64
text_embed_size 32
rnn_hidden_size 1024
rnn_layer_num 2

rnn_dropout 0.0

Table 5: Hyper parameters of RESNET-RNN.

Variable Value

extra_info_hidden_size 128
img_embed_size 64

transformer_num_layers 4
transformer_num_heads 6

transformer_head_output_size 64
transformer_mlp_hidden_size 256

transformer_dropout 0.1
transformer_max_seq_len 10

Table 6: Hyper parameters of RESNET-T.

567

C.1 Lifelong Learning Algorithms568

Lifelong learning (LL) is a field of study that aims to understand how an agent can continually569

acquire and retain knowledge over an infinite sequence of tasks without catastrophically forgetting570

previous knowledge. Recent literature proposes three main approaches to address the problem of571

catastrophic forgetting in deep learning: Dynamic Architecture approaches, Regularization-Based572

approaches, and Rehearsal approaches. Although some recent works explore the combination of573

different approaches [2, 29, 53] or new strategies [72, 56, 14], our benchmark aims to provide an574

in-depth analysis of these three basic lifelong learning directions to reveal their pros and cons on575

robot learning tasks.576

17

Variable Value

extra_info_hidden_size 128
img_embed_size 128

spatial_transformer_num_layers 7
spatial_transformer_num_heads 8

spatial_transformer_head_output_size 120
spatial_transformer_mlp_hidden_size 256

spatial_transformer_dropout 0.1
spatial_down_sample_embed_size 64
temporal_transformer_input_size null

temporal_transformer_num_layers 4
temporal_transformer_num_heads 6

temporal_transformer_head_output_size 64
temporal_transformer_mlp_hidden_size 256

temporal_transformer_dropout 0.1
temporal_transformer_max_seq_len 10

Table 7: Hyper parameters of VIT-T.

The dynamic architecture approach gradually expands the learning model to incorporate new knowl-577

edge [55, 70, 40, 26, 69, 5]. Regularization-based methods, on the other hand, regularize the learner578

to a previous checkpoint when it learns a new task [33, 11, 59, 36]. Rehearsal methods save exemplar579

data from prior tasks and replay them with new data to consolidate the agent’s memory [13, 38, 12, 9].580

For a comprehensive review of LL methods, we refer readers to surveys [16, 48].581

The following paragraphs provide details on the three lifelong learning algorithms that we have582

implemented.583

ER Experience Replay (ER) [13] is a rehearsal-based approach that maintains a memory buffer584

of samples from previous tasks and leverages it to learn new tasks. After the completion of policy585

learning for a task, ER stores a portion of the data into a storage memory. When training a new586

task, ER samples data from the memory and combines it with the training data from the current task587

so that the training data approximately represents the empirical distribution of all-task data. In our588

implementation, we use a replay buffer to store a portion of the training data (up to 1000 trajectories)589

after training each task. For every training iteration during the training of a new task, we uniformly590

sample a fixed number of replay data from the memory (32 trajectories) along with each batch of591

training data from the new task.592

EWC Elastic Weight Consolidation(EWC) [33] is a regularization-based approach that add a
regularization term that constraints neural network update to the original single-task learning objective.
Specifically, EWC uses the Fisher information matrix that quantify the importance of every neural
netwrk parameter. The loss function for task k is:

LEWC

k
(✓) = LBC

K
(✓) +

X

i

�

2
Fi

�
✓i � ✓

⇤
k�1,i

�2
,

where � is a penalty hyperparameter, and the coefficient Fi is the diagonal of the Fisher information593

matrix: Fk = Es⇠DkEa⇠p✓(·|s) (r✓k log p✓k(a|s))
2. In this work, we use the online update version594

of EWC that updates the Fisher information matrix using exponential moving average along the595

lifelong learning process, and use the empirical estimation of above Fisher information matrix to596

stabilize the estimation. Formally, the actually used estimation of Fisher Information Matrix is597

F̃k = �Fk�1+(1� �)Fk, where Fk = E(s,a)⇠Dk
(r✓k log p✓k(a|s))

2 and k is the task number. We598

set � = 0.9 and � = 5 · 104.599

PACKNET PACKNET [40] is a dynamic architecture-based approach that aims to prevent changes600

to parameters that are important for previous tasks in lifelong learning. To achieve this, PACKNET601

18

iteratively trains, prunes, fine-tunes, and freezes parts of the network. The method theoretically602

completely avoids catastrophic forgetting, but for each new task, the number of available parameters603

shrinks. The pruning process in PACKNET involves two stages. First, the network is trained, and at the604

end of the training, a fixed proportion of the most important parameters (25% in our implementation)605

are chosen, and the rest are pruned. Second, the selected part of the network is fine-tuned and then606

frozen. In our implementation, we follow the original paper [40] and do not train all biases and607

normalization layers. We perform the same number of fine-tuning epochs as for training (50 epochs608

in our implementation). Note that all evaluation metrics are calculated before the fine-tuning stage.609

19

D LIBERO Task Suite Designs610

D.1 Task Suites611

We visualize all the tasks from the four task suites in Figure 7- 10. Figure 7 visualizes the initial612

states since the task goals are always the same. All the figures visualize the goal states of tasks except613

for Figure 7, which visualizes the initial states since the task goals are always the same.614

Figure 7: LIBERO-SPATIAL

Figure 8: LIBERO-OBJECT

Figure 9: LIBERO-GOAL

615

616

617

618

619

620

20

Figure 10: LIBERO-100

621

622

21

D.2 PDDL-based Scene Description File623

Here we visualize the whole content of an example scene description file based on PDDL. This file624

corresponds to the task shown in Figure 2.625

Example task: Open the top drawer of the cabinet and put the bowl in it.626

(d e f i n e (problem LIBERO_Ki tchen_Tab le top_Manipu la t ion)627

(: domain r o b o s u i t e)628

(: l a n g u a g e open t h e t o p drawer o f t h e c a b i n e t and p u t t h e bowl i n i t)629

(: r e g i o n s630

(w o o d e n _ c a b i n e t _ i n i t _ r e g i o n631

(: t a r g e t k i t c h e n _ t a b l e)632

(: r a n g e s (633

(−0 .01 −0.31 0 . 0 1 −0 .29)634

)635

)636

(: y a w _ r o t a t i o n (637

(3 .141592653589793 3 .141592653589793)638

)639

)640

)641

(a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n642

(: t a r g e t k i t c h e n _ t a b l e)643

(: r a n g e s (644

(−0 .025 −0.025 0 .025 0 . 0 2 5)645

)646

)647

(: y a w _ r o t a t i o n (648

(0 . 0 0 . 0)649

)650

)651

)652

(p l a t e _ i n i t _ r e g i o n653

(: t a r g e t k i t c h e n _ t a b l e)654

(: r a n g e s (655

(−0 .025 0 .225 0 .025 0 . 2 7 5)656

)657

)658

(: y a w _ r o t a t i o n (659

(0 . 0 0 . 0)660

)661

)662

)663

(t o p _ s i d e664

(: t a r g e t wooden_cab ine t_1)665

)666

(t o p _ r e g i o n667

(: t a r g e t wooden_cab ine t_1)668

)669

(m i d d l e _ r e g i o n670

(: t a r g e t wooden_cab ine t_1)671

)672

(b o t t o m _ r e g i o n673

(: t a r g e t wooden_cab ine t_1)674

)675

)676

677

(: f i x t u r e s678

22

k i t c h e n _ t a b l e − k i t c h e n _ t a b l e679

wooden_cab ine t_1 − wooden_cab ine t680

)681

682

(: o b j e c t s683

a k i t a _ b l a c k _ b o w l _ 1 − a k i t a _ b l a c k _ b o w l684

p l a t e _ 1 − p l a t e685

)686

687

(: o b j _ o f _ i n t e r e s t688

wooden_cab ine t_1689

a k i t a _ b l a c k _ b o w l _ 1690

)691

692

(: i n i t693

(On a k i t a _ b l a c k _ b o w l _ 1 k i t c h e n _ t a b l e _ a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n)694

(On p l a t e _ 1 k i t c h e n _ t a b l e _ p l a t e _ i n i t _ r e g i o n)695

(On wooden_cab ine t_1 k i t c h e n _ t a b l e _ w o o d e n _ c a b i n e t _ i n i t _ r e g i o n)696

)697

698

(: g o a l699

(And (Open w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n)700

(In a k i t a _ b l a c k _ b o w l _ 1 w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n)701

)702

)703

704

)705

23

E Experimental Setup706

We consider five lifelong learning algorithms: SEQL the sequential learning baseline where the707

agent learns each task in the sequence directly without any further consideration, MTL the multitask708

learning baseline where the agent learns all tasks in the sequence simultaneously, the regularization-709

based method EWC [33], the replay-based method ER [13], and the dynamic architecture-based710

method PACKNET [40]. SEQL and MTL can be seen as approximations of the lower and upper711

bounds respectively for any lifelong learning algorithm. The other three methods represent the712

three primary categories of lifelong learning algorithms. For the neural architectures, we consider713

three vision-language policy architectures: RESNET-RNN, RESNET-T, VIT-T, which differ in how714

spatial or temporal information is aggregated (See Appendix B.1 for more details). For each task,715

the agent is trained over 50 epochs on the 50 demonstration trajectories. We evaluate the agent’s716

average success rate over 20 test rollout trajectories of a maximum length of 600 every 5 epochs.717

We use Adam optimizer [32] with a batch size of 32, and a cosine scheduled learning rate from718

0.0001 to 0.00001 for each task. Following the convention of Robomimic [41], we pick the model719

checkpoint that achieves the best success rate as the final policy for a given task. After 50 epochs720

of training, the agent with the best checkpoint is then evaluated on all previously learned tasks,721

with 20 test rollout trajectories for each task. All policy networks are matched in Floating Point722

Operations Per Second (FLOPS): all policy architectures have ⇠13.5G FLOPS. For each combination723

of algorithm, policy architecture, and task suite, we run the lifelong learning method 3 times with724

random seeds {100, 200, 300} (180 experiments in total). See Table 4 for the implemented algorithms725

and architectures.726

F Additional Experiment Results727

F.1 Full Results728

We provide the full results across three different lifelong learning algorithms (e.g., EWC, ER,729

PACKNET) and three different policy architectures (e.g., RESNET-RNN, RESNET-T, VIT-T) on the730

four task suites in Table 8.731

To better illustrate the performance of each lifelong learning agent throughout the learning process,732

we present plots that show how the agent’s performance evolves over the stream of tasks. Firstly, we733

provide plots that compare the performance of the agent using different lifelong learning algorithms734

while fixing the policy architecture (refer to Figure 11,12, and 13). Next, we provide plots that735

compare the performance of the agent using different policy architectures while fixing the lifelong736

learning algorithm (refer to Figure14, 15, and 16)737

24

Algo. Policy Arch. FWT(") NBT(#) AUC(") FWT(") NBT(#) AUC(")

LIBERO-LONG LIBERO-SPATIAL

SEQL
RESNET-RNN 0.24 ± 0.02 0.28 ± 0.01 0.07 ± 0.01 0.50 ± 0.01 0.61 ± 0.01 0.14 ± 0.01
RESNET-T 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
VIT-T 0.44 ± 0.04 0.50 ± 0.05 0.13 ± 0.01 0.63 ± 0.02 0.76 ± 0.01 0.16 ± 0.01

ER
RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02

EWC
RESNET-RNN 0.02 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.14 ± 0.02 0.23 ± 0.02 0.03 ± 0.00
RESNET-T 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
VIT-T 0.05 ± 0.02 0.09 ± 0.03 0.01 ± 0.00 0.32 ± 0.03 0.48 ± 0.03 0.06 ± 0.01

PACKNET
RESNET-RNN 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

MTL
RESNET-RNN 0.20 ± 0.01 0.61 ± 0.00
RESNET-T 0.48 ± 0.01 0.83 ± 0.00
VIT-T 0.46 ± 0.00 0.79 ± 0.01

LIBERO-OBJECT LIBERO-GOAL

SEQL
RESNET-RNN 0.48 ± 0.03 0.53 ± 0.04 0.15 ± 0.01 0.61 ± 0.01 0.73 ± 0.01 0.16 ± 0.00
RESNET-T 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
VIT-T 0.76 ± 0.03 0.73 ± 0.03 0.27 ± 0.02 0.75 ± 0.01 0.85 ± 0.01 0.20 ± 0.01

ER
RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01

EWC
RESNET-RNN 0.17 ± 0.04 0.23 ± 0.04 0.06 ± 0.01 0.16 ± 0.01 0.22 ± 0.01 0.06 ± 0.01
RESNET-T 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
VIT-T 0.57 ± 0.03 0.64 ± 0.03 0.23 ± 0.00 0.32 ± 0.04 0.45 ± 0.04 0.07 ± 0.01

PACKNET
RESNET-RNN 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

MTL
RESNET-RNN 0.10 ± 0.03 0.59 ± 0.00
RESNET-T 0.54 ± 0.02 0.80 ± 0.01
VIT-T 0.78 ± 0.02 0.82 ± 0.01

Table 8: We present the full results of all networks and algorithms on all four task suites. For each task
suite, we highlight the top three AUC scores among the combinations of the three lifelong learning
algorithms and the three neural architectures. The best three results are highlighted in magenta (the
best), light magenta (the second best), and super light magenta (the third best), respectively.

25

Figure 11: We compare the performance of different algorithms using the RESNET-RNN policy
architecture in Figure 11. The y-axis represents the success rate, and the x-axis shows the agent’s
performance on each of the 10 tasks in a specific task suite over the course of learning. For example,
the upper-left plot in the figure displays the agent’s performance on the first task as it learns the 10
tasks sequentially.

Figure 12: Comparison of different algorithms using the RESNET-T policy architecture. The y-axis
represents the success rate, while the x-axis shows the agent’s performance on each of the 10 tasks in
a given task suite during the course of learning. For example, the plot in the upper-left corner depicts
the agent’s performance on the first task as it learns the 10 tasks sequentially.

26

Figure 13: Comparison of different algorithms using the VIT-T policy architecture. The success rate
is represented on the y-axis, while the x-axis shows the agent’s performance on the 10 tasks in a
given task suite over the course of learning. For instance, the plot in the upper-left corner illustrates
the agent’s performance on the first task when learning the 10 tasks sequentially.

Figure 14: Comparison of different architectures with the EWC algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite over the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.

27

Figure 15: Comparison of different architectures with the ER algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite ver the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.

Figure 16: Comparison of different architectures with the PACKNET algorithm. The y-axis is the
success rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite
over the course of learning. For instance, the upper-left plot shows the agent’s performance on the
first task when learning the 10 tasks sequentially.

28

F.2 Study on task ordering (Q4)738

Figure 17 shows the result of the study on Q4. For all experiments in this study, we used RESNET-739

T as the neural architecture and evaluated both ER and PACKNET. As the figure illustrates, the740

performance of both algorithms varies across different task orderings. This finding highlights an741

important direction for future research: developing algorithms or architectures that are robust to742

varying task orderings.743

Figure 17: Performance of ER and PACKNET using RESNET-T on five different task orderings. An
error bar shows the performance standard deviation for a fixed ordering.

Findings: From Figure 17, we observe that indeed different task ordering could result in very different744

performances for the same algorithm. Specifically, such difference is statistically significant for745

PACKNET.746

F.3 Loss v.s. Success Rates747

We demonstrate that behavioral cloning loss can be a misleading indicator of task success rate748

in this section. In supervised learning tasks like image classifications, lower loss often indicates749

better prediction accuracy. However, this is not, in general, true for decision-making tasks. This is750

because errors can compound until failures during executing a robot [54]. Figure 18, 12 and 13 plots751

the training loss and success rates of three lifelong learning methods (ER, EWC, and PACKNET)752

for comparison. We evaluate the three algorithms on four task suites using three different neural753

architectures.754

Findings: We observe that though sometimes EWC has the lowest loss, it did not achieve good755

success rate. ER, on the other hand, can have the highest loss but perform better than EWC. In756

conclusion, success rates, instead of behavioral cloning loss, should be the right metric to evaluate757

whether a model checkpoint is good or not.758

29

Figure 18: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-RNN policy. The first (second) row shows the loss (success rate) of the agent
on task i throughout the LLDM procedure.

30

Figure 19: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-T policy. The first (second) row shows the loss (success rate) of the agent on
task i throughout the LLDM procedure.

31

Figure 20: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with VIT-T policy. The first (second) row shows the loss (success rate) of the agent on task i

throughout the LLDM procedure.

32

F.4 Attention Visualization759

It is also important to visualize the behavior of the robot and its attention maps during the completion760

of tasks in the lifelong learning process to give us intuition and qualitative feedback on the perfor-761

mance of different algorithms and architectures. We visualize the attention maps of learned policies762

with (author?) [23] and compare them in different studies as in 5.2 to see if the robot correctly pays763

attention to the right regions of interest in each task.764

Perturbation-based attention visualization: We use a perturbation-based method [23] to extract765

attention maps from agents. Given an input image I , the method applies a Gaussian filter to a pixel766

location (i, j) to blur the image partially, and produces the perturbed image �(I, i, j). Denote the767

learned policy as ⇡ and the inputs to the spatial module (e.g., the last latent representation of resnet768

or ViT encoder) ⇡u(I) for image I . Then we define the saliency score as the Euclidean distance769

between the latent representations of the original and the blurred images:770

S⇡(i, j) =
1

2

����

����⇡u(I)� ⇡u(�(I, i, j))

����

����
2

. (3)

Intuitively, S⇡(i, j) describes how much removing information from the region around location (i, j)771

changes the policy. In other words, a large S⇡(i, j) indicates that the information around pixel (i, j)772

is important for the learning agent’s decision-making. Instead of calculating the score for every773

pixel, [23] found that computing a saliency score for pixel i mod 5 and j mod 5 produced good774

saliency maps at lower computational costs for Atari games. The final saliency map P is normalized775

as P (i, j) = S⇡(i,j)P
i,j S⇡(i,j)

.776

We provide the visualization and our analysis on the following pages.777

33

Different Task Suites778

779

Figure 21: Attention map comparison among different task suites with ER and RESNET-T. Each row
corresponds to a task suite.

Findings: Figure 21 shows attention visualization for 12 tasks across 4 task suites (e.g., 3 tasks per780

suite). We observe that:781

1. policies pay more attention to the robot arm and the target placement area than the target782

object.783

2. sometimes the policy pays attention to task-irrelevant areas, such as the blank area on the784

table.785

34

These observations demonstrate that the learned policy use perceptual data for decision-making786

in a very different way from how humans do. The robot policies tends to spuriously correlate787

task-irrelevant features with actions, a major reason why the policies overfit to the tasks and do not788

generalize well across tasks.789

35

The Same Task over the Course of Lifelong Learning790

791

Figure 22: Attention map of the same state of the task put both the alphabet soup and the tomato

sauce in the basket from LIBERO-LONG during lifelong learning. Each row visualizes how the
attention maps change on the first task with one of the LL algorithms (ER and PACKNET) and one of
the neural architectures (RESNET-T and VIT-T). Initial policy is the policy that is trained on the first
task. And all the following attention maps correspond to policies after training on the third, fifth, and
the tenth tasks.

Findings: Figure 22 shows attention visualizations from policies trained with ER and PACKNET792

using the architectures RESNET-T and VIT-T respectively. We observe that:793

1. The ViT visual encoder’s attention is more consistent over time, while the ResNet encoder’s794

attention map gradually dilutes.795

2. PackNet, as it splits the model capacity for different tasks, shows a more consistent attention796

map over the course of learning.797

36

Different Lifelong Learning Algorithms798

799

Figure 23: Comparison of attention maps of different lifelong learning algorithms with RESNET-T
on LIBERO-LONG. Each row shows the same state of a task with different neural architectures.
“Task 5” refers to the task put the white mug on the left plate and put the yellow and white mug on the

right plate. “Task 10” refers to the task put the yellow and white mug in the microwave and close it.
The second row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the
attention map differences in backward transfer.

Findings: Figure 23 shows the attention visualization of three lifelong learning algorithms on800

LIBERO-LONG with RESNET-T on two tasks (task 5 and task 10). The first and third rows show the801

attention of the policy on the same task it has just learned. While the second row shows the attention802

of the policy on the task it learned in the past. We observe that:803

1. PACKNET shows more concentrated attention compared against ER and EWC (usually just804

a single mode).805

2. ER shares similar attention map with EWC, but EWC performs much worse than ER.806

Therefore, attention can only assist the analysis but cannot be treated as a criterion for807

performance prediction.808

37

Different Neural Architectures809

810

Figure 24: Comparison of attention maps of different neural architectures with ER on LIBERO-
LONG. Each row shows the same state of a task with different neural architectures. “Task 5” refers
to the task put the white mug on the left plate and put the yellow and white mug on the right plate.
“Task 10” refers to the task put the yellow and white mug in the microwave and close it. The second
row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the attention
map differences in backward transfer.

Findings: Figure 24 shows attention map comparisons of the three neural architectures on LIBERO-811

LONG with ER on two tasks (task 5 and task 10). We observe that:812

1. ViT has more concentrated attention than policies using ResNet.813

2. When ResNet forgets, the attention is changing smoothly (more diluted). But for ViT, when814

it forgets, the attention can completely shift to a different location.815

3. When ResNet is combined with LSTM or a temporal transformer, the attention hints at the816

"course of future trajectory". But we do not observe that when ViT is used as the encoder.817

38

Different Task Ordering818

819

Figure 25: Attention map comparison among different orderings with ER and RESNET-T on three
selected tasks from LIBERO-LONG: put both the alphabet soup and the tomato sauce in the basket,
put the white mug on the left plate and put the yellow and white mug on the right plate, and put the

yellow and white mug in the microwave and close it. Each row corresponds to a specific sequence of
task ordering, and the caption of each attention map indicates the order of the task in that sequence.

Findings: Figure 25 shows attention map comparisons of three different task orderings. We show two820

immediately learned tasks from LIBERO-LONG trained with ER and RESNET-T. We observe that:821

1. As expected, learning the same task at different positions in the task stream results in822

different attention visualization.823

2. There seems to be a trend that the policy has a more spread-out attention when it learns on824

tasks that are later in the sequence.825

39

With or Without Pretraining826

827

Figure 26: Attention map comparison between models without/with pretrained models using RESNET-
T and different lifelong learning algorithms on three selected tasks from LIBERO-LONG.

40

Findings: Figure 26 shows attention map comparisons between models with/without pretrained828

models on LIBERO-LONG with RESNET-T and all three LL algorithms. We observe that:829

1. With pretraining, the policies attend to task-irrelevant regions more easily than those without830

pretraining.831

2. Some of the policies with pretraining have better attention to the task-relevant features than832

their counterparts without pertaining, but their performance remains lower (the last in the833

second row and the second in the fourth row). This observation, again, shows that there is834

no positive correlation between semantically meaningful attention maps and the policy’s835

performance.836

41

	Introduction
	Background
	Markov Decision Process for Robot Learning
	Lifelong Robot Learning Problem

	Research Topics in LLDM
	LIBERO
	Procedural Generation of Tasks
	Task Suites
	Lifelong Learning Algorithms
	Neural Network Architectures

	Experiments
	Evaluation Metrics
	Experimental Results

	Related Work
	Conclusion and Limitations
	Metrics Visualization
	Implemented Neural Architectures and Lifelong Learning Algorithms
	Neural Architectures

	Computation
	Lifelong Learning Algorithms

	LIBERO Task Suite Designs
	Task Suites
	PDDL-based Scene Description File

	Experimental Setup
	Additional Experiment Results
	Full Results
	Study on task ordering (Q4)
	Loss v.s. Success Rates
	Attention Visualization

