
A A Guide to Structure Elicitation and Learning

This section starts with a discussion aimed at methodologists and practitioners who may not feel
entirely at ease using a factor graph approach to model causality. We then conclude with a brief
discussion on how to build IFMs by knowledge elicitation and structure learning. For further
discussion on the use of alternative independence models in causality, we recommend Section 11 of
[22]. Section 12 of the same paper provides further discussion of the meaning of linking intervention
variables to random variables in statistical modeling and its DAG interpretations.

A.1 Background: Extended Conditional Independence

Our starting point is Dawid’s framework for causal inference [23]. Although dubbed “decision-
theoretical”, no utility optimization is actually necessary to justify its approach for encoding causal
assumptions and deriving their consequences. As such, we will drop the “decision-theoretical” label
and refer to it as the extended conditional independence (ECI) approach, formalized in [16]. The
main point is that causal assumptions, either given in the form of independencies in a mutilated DAG
or in distributions of potential outcomes, can directly be framed as “mere” statements of conditional
independence among random variables and intervention variables.

This calls for a clarification of what it means to claim

Xi??�1 | Xj ,�2

as the �i are not random variables. For what follows, it suffices to interpret this statement as Xi

not changing in distribution across different values of �1 when �2 and Xj are fixed/observed at any
particular value.

The most basic statement of structure is expressed by a graph X ! Y . This graph is intended to
communicate that, if we intervene on X , the distribution of Y may change; but if we intervene on
Y , the distribution of X does not change. This may feel unsatisfactory, as the graph X ! Y by
itself does not communicate any independence constraint.9 The ECI approach is explicit: we take
as primitive the notion of “intervention on X” and “intervention on Y ” operationalized by a pair of
intervention variables �x and �y such that

Y ??�x | X
X ??�y

(5)

The first independence establishes that once I know which value X took, it does not matter how X

came to be (i.e., the value of �x) [22]. This is more commonly described as “lack of unmeasured
confounding between X and Y ” or ignorability. Moreover, how Y comes to be does not change
the distribution of X . This is more commonly described as “Y does not cause X”. Note that the
model does not explicit state that “X causes Y ”, just that it’s allowed to. This mirrors the typical
interpretation of a graphical model, by which a graph does not imply dependencies. Instead, a graph
is defined by its independencies [46].

Now, why do we feel compelled to write the edge X ! Y , as in Fig. 6(a), as well as the directions
from (�x,�y) to (X,Y)? This is because, among all “canonical graphical models”10, that’s the only

option that we have. To understand that, consider the three variations in Fig. 6(b)-(d): each one of
them violates one or both of the relations encoded in Eq. (5). That’s the sense in which the DAG is
justified here: syntactic sugar for Eq. (5). This is particularly emphasized by Fig. 6(e): if we do not
define �y, the model is defined by the sole constraint Y ??�x | X . In that case, a chain graph with
undirected component X � Y suffices (and so does the purely undirected structured). Any arrows
here are for cosmetic purposes.

The same idea applies to conditional ignorability: if we have some set of covariates so that
Y ??�x |X,Z, this allows us, for instance, to learn causal effects from observational data. That is, if

9The graph may suggest a factorization, and the causal ordering implied by the factorization does matter for
models such as the additive error model [63]. However, since these graphs are primarily models of independence,
something is still amiss here.

10This means the usual machinery of directed, undirected (Markov), mixed and chain graph models [46, 65],
a relatively small but highly interpretable corner in the universe of possible independence models [74].

15

a.

X Y

�x �y

b.

X Y

�x �y

c.

X Y

�x �y

d.

X Y

�x �y

e.

X Y

�x

Figure 6: The meaning of X ! Y . (a) Expressing it when interventions on both X and Y are defined
via variables �x and �y , and we wish to express that Y ??�x | X and X ??�y . (b)-(d) None of these
graphs respect the two independence constraints on interest. (e) If �y is not defined, a graph like this
one suffices to encode the remaining constraint Y ??�x | X .

�x 2 {“do nothing”, “do(X = 0)”, “do(X = 1)”}, we can obtain p(y | z;�x = do(X = x)) from
observational data as

p(y | z;�x = do(X = x)) = p(y | x, z;�x = do(X = x)) (since do(X = x)) X = x)
= p(y | x, z;�x = do nothing) (since Y ??�x | X,Z)
= p(y | x, z) (conventional notation)

The first line exploits a feature of atomic interventions (do(X = x)) X = x) which is not generally
available for other types of intervention. That’s why non-atomic interventions cannot directly be
handled by Pearl’s do-calculus [17].

As a further example, average treatment effects can be obtained from the backdoor formula/g-formula
[60, 34], which further requires “Z not to be caused by X”. In the ECI framework11, this is just the
further requirement that �x??Z (under the interpretation that �x has “no causes” because it comes
from a hypothetical agent “outside the system that generates the data”, this marginal independence
can only be explained by �x “not causing” Z):

p(y;�x = do(X = x)) =
P

z p(y | z;�x = do(X = x))p(z;�x = do(X = x))
(standard marginalization)

=
P

z p(y | x, z;�x = do(X = x))p(z)
(since Z ??�x and do(X = x)) X = x)

=
P

z p(y | x, z;�x = do nothing)p(z)
(since Y ??�x | X,Z)

=
P

z p(y | x, z)p(z)
(conventional notation)

As a matter of fact, the classical axiom of consistency that underpins causal reasoning from potential
outcomes [34] (basically, that the potential outcome of Y under intervention do(X = x) should
match the observed outcome Y if X = x i.e. Yx = Y if X = x) can be interpreted as the lack
of “fat-hand” interventions [27], that there is some conditioning set C so that �x??Y | C for any
random variable Y other than X .

A.2 Graphical Models and the IFM

The above discussion indicates that conditional independencies among intervention variables and
random variables are the building blocks of a (counterfactual-free, or “Rung 2”[62]) causal modeling
language. However, we need more than that for any practical way of encoding assumptions, as any
reasonable model will involve an extremely large number of conditional independencies. For instance,
even a simple directed Markov chain X1 ! X2 ! · · ·! Xp involves a super-exponential number of
conditional independencies (e.g. Xp is conditionally independence of X1 given any non-empty subset
of {X2, . . . , Xp�1}). Graphical models are extremely useful families of independence models that
allow for the use of a relatively small number of local Markov conditions to describe global Markov
conditions. Moreover, symbolic algorithms based on graph-theoretical concepts provide a way to

11To be clear, the idea of using explicit intervention variables to describe the backdoor adjustment dates back
at least to the original graphical formulation of [72]. The proof in [60] also relies on explicit regime variables.
ECI formalizes explicitly the role of conditional independence statements that involve non-random variables.

16

derive such implications more easily and transparently when compared to relying on algebra alone.
This explains the popularity of graphical models in causal modeling, regardless of the cosmetic appeal
of drawing edges. In what follows, we will start by contrasting undirected (“Markov”) networks to
DAGs, as factor graph models encode the very same families of independencies as undirected graphs
(with the extra facility of representing low-order interactions on top of independence constraints).

For instance, in a DAG, the local Markov condition is a variable being independent of its non-parental
non-descendants given its parents; the global Markov condition is anything entailed by d-separation
[60, 72]. See [46] for many classical results.

Creating an independence (graphical) model requires trade-offs, as not every family of conditional
independencies can be easily cast in graph-theoretical terms [74]. One common example is the
chordless 4-cycle: the independencies encoded in the undirected graph X1 �X2 �X3 �X4 �X1

cannot be represented by any DAG, even one with the same adjacencies e.g. X1 ! X2 ! X3
X4 X1 (the converse is also true, the independencies encoded by that directed acyclic “diamond
structure” have no correspondence to any undirected graph). It is out of our scope to get into any of
the fine details of such differences, see [46]. Instead, we will focus on some broad aspects relevant to
causal inference.

DAGs (with or without hidden variables) are by far the most common type of graphical model for
expressing causality. There are different ways of explaining this appeal, of which we highlight the
following:

1. marginal independencies: a connected undirected graph implies no marginal independen-
dencies. Yet, marginal independencies lie behind the claim that “the future does not cause
the past”. This is illustrated by Figure 6(a) by interpreting Y as encoding events that happen
after the events encoded by X , and hence an assumption of X ??�y is desirable;

2. “explaining away”: this well-known phenomenon is illustrated by independencies that get
destroyed by conditioning upon further evidence. For instance, if X3 = f(X1, X2), then
even if X1??X2, it is clear that knowing also the value of X3 will change the support
of X1 given X2. More generally, p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2) means that
p(x1, x2) = g(x1)h(x2) for some g(·), h(·), but p(x1, x2 | x3) / g(x1)h(x2)kx3(x1, x2)
for some kx3(·, ·) which does not factorize in general. This also applies to combinations of
random variables and intervention variables. If “X does not cause Z” and we operationalize
that by �x??Z in the DAG �x ! X Z, it is possible to have this independence destroyed
by conditioning on X , since p(z | x;�x) will in general be different if �x is “do nothing”
(where Z is allowed to vary with different values of X) compared against �x = do(X = x)
(where Z is independent of X). That is, in this example we have Z 6?? �x | X in the sense
that p(z | x;�x) is a non-trivial function of �x even if �x??Z.

We claim that neither of the two properties above are particularly well-motivated in the snapshot
sampling process of Figure 1. Given the snapshot, some explaining away can happen between �

and pre-treatment “Past” variables (Figure 1(b)) that happen to be recorded, but this can be simply
accounted for by including the pre-treatment variables as conditioning variables within the IFM
factors. For longitudinal studies where marginal independencies do matter (“the future doesn’t cause
the past”) and where we do happen to make multiple snapshots (as opposed to “contemporaneous
DAG structures”, as in [39]), it is not a technical challenge to extent the IFM to a chain graph structure
[47] with factor graph undirected components. We leave this development for future work.

To summarize, if marginal independencies and explaining away are not of particular relevance to
the problem at hand, then we recommend the IFM as a family of independence models, particularly
in light of its very simple local Markov condition (in the corresponding undirected graph implied
by the factor structure, “a variable is independent of its non-neighbors given its neighbors”). This
comes to life in models motivated by equilibrium equations. For instance, consider this example
which can be found in [11], Section 3.1.1, where f denotes differential equations at equilibrium, X
denotes observed random variables, U denotes (mutually independent) latent variables and I denotes
an intervention indicator:

fI : XI � UI = 0
fD : U1(XI �XO) = 0
fP : U2(gU3XD �XP) = 0
fO : U4(U5IKXP �XO) = 0.

17

After marginalizing the U variables, what we get is an IFM (this is not the whole story, though, as
other non-graphical constraints may take place given the particular equations. [11] discusses UI

being marginally independent of IK on top of the above). In general, energy-based models are to
be interpreted as conjunctions of soft constraints, the factor graph is one implication of a system
of stochastic differential equations, and interventions denote change to particular constraints. A
stochastic differential equation (SDE) model may have other assumptions on top of the factorization,
and parameters which carry particular meaningful interpretations, but this fits well with our claims
that the IFM is a “minimalist” family of models in terms of structural assumptions – a reasonably
conservative direction to follow particularly when the dynamics of many natural phenomena cannot
be (currently) measured at individual level, as it’s the case of much of cell biology data, and hence
writing down a full SDE model may be more inspirational than scientifically grounded. [47] has
further elaborations on some of these ideas.

Notice that, as long as the timing of the measurements is well-defined and consistently respected
by the real-world sampling procedure, there is no need to wait for a system to get into equilibrium
in order for an IFM to be applicable. [21] discusses how “causal structure” changes depending on
which equations have reached equilibrium at any particular point in time – after all, the process as a
function of time is non-stationary until (and if) it reaches equilibrium. Intervention generalization
here should categorically not be interpreted as extrapolating to different, unsampled, time points in a
non-stationary process.

Finally, the ECI framework, as described by [16], is relatively restricted in the definition of statements
such as

�i??�j | Xr,�s,

that is, claims of independence between sets of intervention variables. The focus there is on variation

independence, which roughly speaking can be interpreted as the range of possible values for �i not
depending on �j

12.

In our case, we will interpret statements

�i??�j | X,�\ij ,

where �\ij are all intervention indicators other than �i and �j , by merely linking it to the factorization

p(x;�i,�j ,�\ij) / g(x,�i,�\ij)h(x,�j ,�\ij),

for some functions g(·) and h(·). Going from pairwise independence to setwise independence is
defined here by the usual graphical criterion of pairwise independence for the product space of the
sets implying setwise independence.

The above does not mean a genuine factorization of p(x;�i,�j ,�\ij) as a function of �, as the
normalizing constant will in general depend on all regime indicators (but not the data). It however
denotes the difference between Figure 2(b) and Figure 2(c): the latter is a chain graph with an
undirected component that does not suggest factorization over �1, �2 and �3 for any given x, while
the factor graph explicitly encodes that.

A.3 Structure Elicitation and Learning

Having agreed that a undirected/factor graph model structure is the natural choice under the scenario
described above, we are left to describe how to extract structural knowledge from an expert or
algorithm.

Simply put, removing edges from � to X , or among X , should be business as usual once we
understand that structure follows from conditional independencies among random variables and
regime indicators, with the global Markov condition being that of a factor graph model. An expert
who is ready to answer conditional ignorability questions of the type Y ??�x | X,Z, or plain
consistency-like questions to judge whether �x??Y | C for some C and Y 6= X , should have no
qualms about answering general questions for interventions that don’t have a particular single-variable
target. In particular, the notion of “removing edges” from � to X (that is, forbidding any factor to

12As it would not be the case, for instance, if a choice of �j corresponds to removing a condition or resource
required for carrying out an action encoded by some values of �i. This happens e.g. in resource allocation
problems, where �i and �j correspond to resource allocation decisions limited by some budget constraint.

18

include particular combinations of intervention and random variables) should follow from knowledge
about the domain, the impossibility of some direct connections in all sorts of systems, from physical
ones (including spatial systems [5]) to social ones (e.g., [59]).

Independencies of the type �i??�j | X,�\ij are better understood as the lack of particular interac-
tions. Non-linear multivariate models such as log-linear models have for long been understood as
defining hierarchies of interactions within the allowed probabilistic dependencies [10]. Likewise,
analysis of variance (ANOVA) is predicated on the idea that lower-order interactions can suffice
to model a variety of empirical phenomena. Judging whether a set of random variables (“soft con-
straint”) should be regulated by interactions of particular intervention variables, conditional on all
other variables, is knowledge akin to judging interactions in ANOVA or log-linear models, and it
has a long tradition in multivariate analysis dating back at least to the work of Ising on statistical
mechanics [56].

None of that is to say that the work of structure elicitation is straightforward. We will conclude with
broad ideas about structure learning.

Structure learning can aid the process, and there is a close link between classical DAG learning
algorithms and algorithms for undirected models, using variants of the faithfulness assumption [72].
In particular, akin to the initial stage of the PC algorithm [72], we can start with a fully connected
undirected graph and remove edges, creating a factor graph model out of the cliques remaining after
a step that removes edges.

We can remove edges between random variables, and random variables against intervention variables,
by querying an independence oracle under a particular regime �

0 which we assume all other regimes
should be faithful to. For instance, this takes place when �

0 is an “observational regime” as defined
by an unperturbed system, and any independence among random variables is assumed be carried over
to other regimes. Likewise, varying one entry in � and assessing (conditional) equality in distribution
for particular random variables will remove undirected edges between � and X by assuming they
will also be unnecessary under any other configuration of the unchanged variables.

Finally, edges “within” � vertices, and interactions in general, are less straightforward to deal with.
For any clique remaining in the current undirected graph, one possibility is to test whether the
distribution of this clique given all other variables provides the same goodness-of-fit (by statistical
significance) with or without particular interactions. Statistical power may be an issue, see [68]
for a discussion on nonparametric testing of three-way interactions. An alternative is to adopt a
blanket assumption to remove higher-order interactions if there is no evidence against lower-order
interactions across models fit separately in each of the Di datasets collected.

A fully detailed account of structure learning for IFMs will be provided in future work. An early
method for structure learning of probabilistic factor graph models is described by [1].

B Proofs of Identifiability and Further Examples

This section presents results concerning Theorems 3.1 and 3.2. We start with some background with
textbook definitions, followed by proofs and examples for the decomposable graph, concluding with
proofs for the purely algebraic case. The decomposable case sheds light on how to hierarchically
structure products and ratios of P(⌃train). Among other uses, this theoretically suggests which
regimes could be directly sampled from and added to ⌃train, in order to reduce the estimation error
coming from particular product/ratios which are required to identify larger marginal distributions.

Background. A decomposition of an undirected graph G is formed from a partition of its vertices
into a triplet (A,B,C) where C is complete (a clique) and separates A from B. The decomposition
is proper if both A and B are non-empty. Moreover, an undirected graph is decomposable if it is
complete or, failing that, it has a proper decomposition into a triplet (A,B,C), where the subgraph
of G with vertices A [B and the subgraph with vertices B [C are both decomposable.

A junction tree T of a decomposable graph G is a tree where each vertex Vi is labeled with the
elements of a unique maximal clique from G (hence, this type of vertex is sometimes called a
hypervertex), so that Vi \ Vj denotes the corresponding intersection among sets of vertices in G.
Edges Vi � Vj of T are graphically represented with labels denoting the intersection Vi \ Vj . A

19

junction tree must have a running intersection property: any intersection Vi \ Vj must be contained
in all vertices in the (unique) path between Vi and Vj in T .

If G�(I) is decomposable, there exists at least one junction tree compatible with it. Let T be one of
them. Without loss of generality, pick an arbitrary vertex of T to be the root and direct edges away
from it to create a directed tree out of the junction tree, so that we can assume T to be directed. We
will prove identifiability by an induction argument that starts at the leaves of the directed junction
tree, moving towards the (unique) parent of any particular vertex child in the induction step.

Definitions and notation. In what follows, we use Vk to denote a vertex in T . By abuse of notation,
depending on context, Vk is also used to denote the corresponding intervention variables �Fk in the
original factor graph.

Let �[Z(w)] be a particular instantiation of � where Z ✓ [d] and �Z = w (possibly a vector), with
the remaining entries of � being zero. For instance, if d = 3, Z = {2, 3}, and w = (2, 1), then
�
[Z(w)] = (0, 2, 1). Vector w is allowed to include zero values. To avoid subsequently heavy notation,

from this point on we will use �
[Z(?)] to denote �

[Z(�?
Z)], that is, the vector of assignments that we

obtain by setting to zero all entries of �? which are not in Z.

We use ch(k) to denote the set of children of vertex Vk in T , and V⇡(k) to denote its (unique) parent,
if Vk is not the root vertex. Also, let Dk denote the union of the intervention variables contained in at
least one descendant of Vk in T , remembering that by convention Vk is also a descendant of itself.
Finally, let Bk := Dk \ V⇡(k), the set of intervention variables common to both Dk and V⇡(k). This
means that, by the running intersection property of junction trees, Bk separates Ak := Dk\Bk from
the rest of � in the �-graph G�(I).

Proof of Theorem 3.1. To simplify the proof, assume without loss of generality that no entry in �
?

is zero. To see this, if �?
i = 0, consider the factors k containing �i as being constants in �i, with scope

Sk being redefined as Sk0 := Sk\{�i}. ⌃train in this redefined space still satisfies the assumption
of having entries spanning all possible values for �Sk0 while holding the remaining intervention
variables at the background level of 0. Likewise, as identifiability will be shown pointwise for a given
�
? (where the categorical labels for the intervention values are arbitrary symbols), we can assume all

entries �?
i as being equal, and equal to 1.

We define a message from vertex Vk to its parent V⇡(k) as

m
x
k :=

p(x;�[Dk(?)])

p(x;�[Bk(?)])
, (6)

and state that
p(x;�[Dk(?)]) / p(x;�[Fk(?)])

Y

Vk02ch(k)

m
x
k0 , (7)

with the product over ch(k) defined to be 1 if ch(k) = ;. We will show how (6) can be recursively
identified from a message scheduling that starts from the leaves and propagates messages towards the
root of T . We will show as well how Eq. (7) holds.

Let Vk be a leaf of T . Then Dk = Fk and p(x;�[Fk(?)]) is identified as it is part of ⌃train, showing
that Eq. (7) holds for the leaf vertices of T . Likewise, message mx

k is identifiable for leaf vertices, as
both Dk and Bk are contained in Fk.

Let Vk now be an internal vertex of T , and assume that Equations (6) and (7) are identified for all
of its proper descendants. As all entries of �? are assumed to be 1, it will be useful to define gk :=
fk(x;�Fk = 1). Also define hk := fk(x;�Fk\Bk = 1,�Fk\Bk

= 0) and zk := fk(x;�Fk = 0).

Since T is a junction tree, Dk can be partitioned into sets Dk0 , where Vk0 2 ch(k), or otherwise
there would be a violation of the running intersection property. Let Q(k0) be the set of all indices of
factors q where Fq ✓ Dk0 . Let

Qk0 :=
Y

q2Q(k0)

gq

hq
.

We can multiply and divide Qk0 by the product of all factors zq where Fq \Dk0 = ;. This implies

Qk0 / p(x;�[Dk0 (?)])

p(x;�[Bk0 (?)])
= m

x
k0 .

20

�1 �2 �3 �4 �5 �6 �7 �8

f1

f2

f3

f4 f5 f6

f7

Figure 7: The factor graph used as an illustration of the technique in the proof of Theorem 3.1.

�1 �2

�3

�5

�4

�6

�8

�7

Figure 8: The �-graph corresponding to the factor graph in Figure 7.

Moreover, the product
Q

q:Fq\Dk=; zqQ
q:Fq\Dk=; zq

⇥ fk(x;�Fk = 1)

fk(x;�Fk = 1)
⇥

f⇡(k)(x;�Bk = 1,�F⇡(k)\Bk
= 0)

f⇡(k)(x;�Bk = 1,�F⇡(k)\Bk
= 0)

⇥
Y

k0:Vk02ch(k)

Qk0

is such that the numerator is proportional to p(x;�[Dk(?)]) and the denominator is proportional to
p(x;�[Fk(?)]). To see this, notice that the numerator sets the �Fj variables for all factors Fj in a
coherent way such that entries in Dk are set to 1 while everything else is set to zero (entries in Dk

may still appear in V⇡(k), as Dk \ F⇡(k) = Bk, is possibly non-empty. Hence, we set to 1 those
entries in F⇡(k) which are in Bk, explaining the appearance of the f⇡(k) factors in the expression
above).

This implies
p(x;�[Dk(?)])

p(x;�[Fk(?)])
/

Y

Vk02ch(k)

m
x
k0 ,

from which Eq. (7) follows from quantities previously identified, and as such it identifies
p(x;�[Dk(?)]). To build message m

x
k , all that remains is p(x;�[Bk(?)]). However, Bk ✓ Fk, and

since ⌃train contains the distribution p(x;�[Hk(?)]) for all Hk ✓ Fk, this is also identified. The
required identifiability of p(x;�?) follows from propagating these messages all the way up to the
root of T . ⇤

Example. Let’s solve the example shown in Figures 7-9. The IFM itself is given by

p(x;�) / f1(x;�1,�2)f2(x;�2,�3)f3(x;�2,�5)f4(x;�3,�4)f5(x;�4,�6)f6(x;�6,�7)f7(x;�4,�8),

where all intervention variables are binary and we will generate the regime at �1 = �2 = · · · = �8 =
1. For reference, this means considering the following sets implied by the factorization above:

F1 = {1, 2} D1 = {1, 2} B1 = {2}
F2 = {2, 3} D2 = {1, 2, 3, 5} B2 = {3}
F3 = {2, 5} D3 = {2, 5} B3 = {2}
F4 = {3, 4} D4 = {1, 2, 3, 4, 5, 6, 7, 8} B4 = ;
F5 = {4, 6} D5 = {4, 6, 7, 8} B5 = {4}
F6 = {6, 7} D6 = {6, 7} B6 = {6}
F7 = {4, 8} D7 = {4, 8} B7 = {4}

To illustrate how message passing will work, let’s introduce some symbols so that the steps are easier
to follow. Let g11ij represent a factor with �i = �j = 1. For instance, g1112 = f1(x;�1 = 1,�2 = 1).

21

(1, 2) (2, 5) (6, 7)(6, 7) (4, 8)

2 2 6 4

(2, 3) (4, 6)

3 4

(3, 4)

Figure 9: A (directed) junction tree corresponding to the undirected graph in Figure 8.

This is slightly redundant compared to the notion in the proof (which uses “g1” to denote f1(x;�1 =
1,�2 = 1)), but the redundancy of the superscripts will hopefully make it easier to visualize the logic
in the steps that follow.

Likewise, let h01
ij and h

10
ij denote assignments (�i,�j) = (0, 1) and (�i,�j) = (1, 0), respectively.

Finally, let z00ij denote the respective factor with assignment �i = �j = 0.

We will use expressions such as p(x; [ij]) to denote p(x;�i = 1,�j = 1,�1:8\{i,j} = 0) to make the
notation simpler.

The messages at the leaves are
m

x
1 = p(x; [12])/p(x; [2]) (D1 = {1, 2}, B1 = {2})

m
x
3 = p(x; [25])/p(x; [2]) (D3 = {2, 5}, B3 = {2})

m
x
6 = p(x; [67])/p(x; [6]) (D6 = {6, 7}, B6 = {6})

m
x
7 = p(x; [48])/p(x; [4]) (D7 = {4, 8}, B7 = {4})

It can be readily verified that all of these are identifiable from ⌃train, as all non-zero assignments are
contained within some factor.

Now, let’s pass messages to (2, 3) using formula (7). To see how it is applicable, start from

m
x
1 ⇥m

x
3 =

p(x; [12])

p(x; [2])

p(x; [25])

p(x; [2])

/ g
11
12h

10
23h

10
25z

00
34z

00
46z

00
67z

00
48

h
01
12h

10
23h

10
25z

00
34z

00
46z

00
67z

00
48

⇥ h
01
12h

10
23g

11
25z

00
34z

00
46z

00
67z

00
48

h
01
12h

10
23h

10
25z

00
34z

00
46z

00
67z

00
48

Now, we multiply and divide it by the factor of (2, 3) and its parent (3, 4) evaluated at (�2,�3,�4) =
(1, 1, 0), and reorganize the numerator and denominator:

m
x
1 ⇥m

x
3 =

p(x; [12])

p(x; [2])

p(x; [25])

p(x; [2])

/ g
11
12
ZZh
10
23
ZZh
10
25ZZz

00
34ZZz

00
46ZZz

00
67ZZz

00
48

h
01
12
ZZh
10
23
ZZh
10
25ZZz

00
34ZZz

00
46ZZz

00
67ZZz

00
48

⇥
ZZh
01
12
ZZh
10
23g

11
25ZZz

00
34z

00
46z

00
67z

00
48

ZZh
01
12
ZZh
10
23h

10
25
ZZz
00
34z

00
46z

00
67z

00
48

⇥ g
11
23

g
11
23

⇥ h
10
34

h
10
34

=
g
11
12g

11
23g

11
25h

10
34z

00
46z

00
67z

00
48

h
01
12g

11
23h

10
25h

10
34z

00
46z

00
67z

00
48

/ p(x; [1235]

p(x; [23])
.

As p(x; [23]), mx
1 and m

x
3 have been previously identified, from the above we get the update for

p(x; [1235]) per Eq. (7), pointing out that indeed D2 = {1, 2, 3, 5} and F2 = {2, 3}.

22

To construct the message m
x
2 that factor (2, 3) needs to pass to its own parent (3, 4), we also need

the corresponding p(x;�[B2(?)]), which in the example notation is p(x; [3]). But as B2 = {3} is
contained in F2 = {2, 3}, and this will be the case for all (Bk, Fk) pairs, by assumption ⌃train will
contain p(x; [3]). Therefore, we identified m

x
2 .

The steps for (4, 6) and (3, 4) follow identical, if somewhat tedious, reasoning. ⇤

Proof of Theorem 3.2. Sufficiency follows immediately from the fact that, under Eq. (4) being
satisfied, the PR-transformation

Qt
i=1 p(x;�

i)qi is equivalent to
lY

k=1

Y

�v
Fk

2Dk

fk(xSk ;�
v
Fk
)

Pt
i=1:�i

Fk
=�v

Fk

qi
=

lY

k=1

fk(xSk ;�
?
Fk
) / p(x;�?), (8)

for all x.

For almost-everywhere necessity, let zkv := log fk(xSk ;�
v
Fk
). Taking the logarithm on both sides of

the equality in Eq. (8), we have

lX

k=1

X

�v
Fk

2Dk

zkv

0

B@
tX

i=1:�i
Fk

=�v
Fk

qi

1

CA =
lX

k=1

zk? ,

which implies

lX

k=1

zk?

0

B@
tX

i=1:�i
Fk

=�?
Fk

qi

1

CA+
lX

k=1

X

�v
Fk

2Dk\{?}

zkv

0

B@
tX

i=1:�i
Fk

=�v
Fk

qi

1

CA = 0.

As no zk? appears in the second term of the expression above, the only way for this equality to
hold without {q1, . . . , qt} satisfying Eq. (4) is if constrains tie together the different zk? . For any
reasonable continuous measure by which the parameters of such functions are free to be chosen from
(say, as draws of a multivariate Gaussian), this will be a set of measure zero. ⇤

Discussion. As a corollary it is implied that, similar to the conditions of Theorem 3.1, we need to
have at least one train condition �

i for every possible combination of �Fk , for each Fk. To see why,
imagine if the example of Figure 4 we did not have condition 4, that is, (�1,�2,�3) = (1, 1, 0) is left
out. This means that there is nothing to be added in the column f

11
1 , and the sum

Pt
i=1:�i

F1
=(1,1) qi

evaluates to 0, implying 0 = 1.

Proof of Theorem 4.1. Vovk et al. [78] introduced a distribution-free procedure for computing
prediction intervals with guaranteed finite sample coverage, under the assumption that training and
test data are exchangeable. Lei et al. [51] propose a more computationally tractable version that they
call the “split conformal” method, and derive a novel upper bound on conformal coverage. We review
some fundamental results.

Consider the regression setting with X 2 X ✓ Rd and Y 2 Y ✓ R. We partition the data into equal-
sized subsets I1, I2, using the former for model training and the latter for computing conformity
scores. For instance, we may fit a model f̂(x) to estimate E[Y | x] using samples from I1 and
consider the score function s

(i) = |y(i) � f̂(x(i))| for i 2 I2. Let ⌧̂ be the q
th smallest value in

S, with q = d(n/2 + 1)(1 � ↵)e. Define Ĉ(x) = f̂(x) ± ⌧̂ . (We assume symmetric errors for
convenience; the result can easily be modified by invoking the appropriate quantiles of the residual
distribution.)

Theorem B.1 (Split conformal inference [51].) Fix a target level ↵ 2 (0, 1). If (x(i)
, y

(i)), i 2 [n],
are exchangeable, then for any new n+ 1 from the same distribution:

P
�
Y

(n+1) 2 Ĉ(X(n+1))
�
� 1� ↵.

Moreover, if scores have a continuous joint distribution, then the upper bound on this probability is

1� ↵+ 2/(n+ 2).

23

Tibshirani et al. [76] extend this result beyond exchangeable data by introducing the notion of
weighted exchangeability. We call random variables V1, . . . , Vn weighted exchangeable, with weight
functions w1, . . . , wn, if their joint density can be factorized as:

f(v1, . . . , vn) =
nY

i=1

wi(vi) · g(v1, . . . , vn),

where g does not depend on the ordering of its inputs, i.e. g is permutation invariant. This entails the
following lemma.

Lemma B.2 (Weighted exchangeability [76].) Let Zi ⇠ Pi, i 2 [n], be independent draws, where

each Pi is absolutely continuous with respect to P1, for i � 2. Then Z1, . . . , Zn are weighted

exchangeable, with weight functions w1 = 1 and wi = dPi/dP1, i � 2.

This allows us to generalize the conformal guarantee to weighted exchangeable distributions. Let
w̃

(i)(x) denote a rescaled version of the weight function, such that weights sum to n. The original
paper does not use the split conformal approach, but we adapt the result below. First, we reweight the
empirical scores to create the new distribution

P
i w̃

(i)(x) · �(s)(i), where � denotes the Dirac delta
function. Let ⌧̂(x) be the q

th smallest value in
P

i w̃
(i)(x) · �(s)(i), with q defined as above. Then

we construct the weighted conformal band Ĉw(x) = f̂(x)± ⌧̂(x) for all x 62 I1.

Theorem B.3 (Split weighted conformal inference [76].) Fix a target level ↵ 2 (0, 1). If

(x(i)
, y

(i)), are weighted exchangeable with weight functions w
(i)
, i 2 [n], then for any new n+ 1:

P
�
Y

(n+1) 2 Ĉw(X
(n+1))

�
� 1� ↵.

Moreover, if scores have a continuous joint distribution, then the upper bound on this probability is

1� ↵+ 2/(n+ 2).

Our case is somewhat trickier, as we do not have access to data X from the unobserved environment �?

and our regime variables are not random, so ratios such as p(�a)/p(�b) are undefined. However, we
can use a similar reweighting strategy based on likelihood ratios of the form p(xk(i);�?)/p(xk(i);�k)
to ensure that conformity scores satisfy weighted exchangeability with respect to any target regime.
This works because we observe the mediators x for each conformity score s, and assume identifiability
of the relevant likelihood ratios via previous Theorems 3.1 and/or 3.2. Thus our conformal bands
are functions of �, not X , and our result is simply a special case of the split weighted conformal
inference theorem. ⇤

C More on Elicitation, Testability and Experimental Design

As mentioned before, the main result shows that the factorization over X is unimportant for iden-
tifiability, which may be surprising. However, it is important to remember that identifiability and
testability are two different concepts. While Figure 2(b) has testable implications of conditional
independence, testing factorizations may require more intervention levels than the minimal set implied
by Theorem 3.1. In particular, if we have a model p(x;�) /

Ql
k=1 fk(xk;�k), we may be able to

identify the model by singleton experiments spanning the range of each �i individually, but it does not
mean we can falsify this factorization with just this data. In general, our advice for graph construction
is akin to any causal modeling exercise: apply independence constraint tests and interaction tests
where applicable (see e.g. [68] for an example of nonparametric three-way interaction test), but
untestable conditions (under the available data) can be used if there is a sensible theoretical justifica-
tion for it. This means expert assessment of the lack of direct dependency between an intervention
variable and particular random variables; and the split of � into sets Fk from postulated lack of
interactions among intervention variables when causing particular random variables. Although not
necessarily always the case, we anticipate that in general this exercise will imply a factorization over
the random variables too.

Also of interest is understanding which minimal size ⌃train should have in order to identify a
particular test regime. This is straightforward to answer in the decomposable case: simply ensure
that the regimes used in the messages of the message passing scheme are available in the training

24

set. A simple iterative algorithm can list the required messages for a target regime �
?. For instance,

with binary treatments, a �-graph without any edges (no interaction of intervention variables in a
same factor), and with the goal of identifying all combinations of interventions, this is simply d+ 1,
where d is the number of intervention variables (this follows from having the baseline regime plus
one regime where a single intervention variable is set to 1). For non-decomposable graphs, we can
triangulate the corresponding �-graph and run the same procedure defined for decomposable graphs
to provide an upper bound on number of training conditions and a superset of conditions. We can run
a greedy procedure to iteratively remove redundant entries in ⌃train by proposing candidate training
regimes to be removed and testing whether the PR condition for the regime �

? of interest is still
satisfied.

What if the cardinality @i of some �i is very high? Without smoothness assumptions, getting a
reasonable dose-response pattern with few evaluations of �i is clearly impossible regardless of any
method – this is true even for a single intervention variable in the [0, 1] interval where (say) p(x;�)
jumps arbitrarily as we sweep the values of � in [0, 1]. With smoothness assumptions, we can simply
elicit a grid of values for the intervention variables, ask conditions for the identifiability of those, and
fill up the remaining potential functions/expected outcome values of interest via whatever smoothing
procedure we deem appropriate (from potential functions which are smooth functions of � or via
partial identification procedures, see e.g. [35]). There is no free lunch.

D Covariate Shift Method

As IPW may have large variance, one alternative is to use covariate shift regression [53]. In particular,
for each test regime �

?, we provide a customize estimate of fy(x) := E[Y |X].

As before, we combine data from all training regimes D1
, . . . ,Dt, but reweighting then according to

(the estimated) p(x;�?). We propose minimizing the following objective function,

Ly(✓y) :=
tX

i=1

niX

j=1

(yij � fy(x
ij ; ✓y))

2
w

ij?
,

where w
ij? is an estimate of p(xij ;�?)/p(xij ;�i), and all the training data regimes are weighted

equally given that
Pn

j=1 w
ij? = 1 for all i. As done with the IPW method, this ratio is taken directly

from the likelihood function of the deep energy-based model we describe for the direct method.

When generating an estimate µ̂�? , we just apply the same idea as in the direct method, where samples
from the estimated p(x;�?) are generated by Gibbs sampling, so that we average fy(x; ✓̂y) over these
samples.

As we are averaging over fy(X) instead of considering predictions at each realization of X , the main
motivation for covariate shift here is to improve on IPW by substituting the use of Y ij as the empirical
plug-in estimate of E[Y ij | xij] with a smoothed version of it given by a shared learned fy(Xij ; ✓y).
However, in our experiments, this covariate shift method was far too slow when considering the cost
over the entire ⌃test (as expected, given that the output model is fitted again for every test regime)
and did not show concrete advantages compared to the direct method.

E Experimental Details

In this section, we present further experimental details for Section 5, including setup for the datasets
(Sachs and DREAM), oracular simulators (Causal-DAG and Causal-IFM), generating ground truth
X and Y , model implementation details, and complete training process for our experiments.

E.1 Datasets

Sachs (et al.) dataset. The original Sachs et al. study [66] consisted of 14 different datasets
collected under different compound perturbations in single-cell systems measured by 11 protein/lipid
concentrations. Perturbations can be described in terms of binary intervention variables, labeled by
the associated compound. For instance, condition pma describes the introduction or not of phorbol
12-myristate 13-acetate. Among all perturbations, pma and b2camp are entangled with cd3cd28 (this

25

Table 1: Details for the Sachs et al. datasets used for our first batch of intervention generalization
experiments. Data files can be downloaded from the website of the original reference [66], with the
name described below. Column Target X node describes the theoretical direct connection (as given
by [66]) between the perturbation and 11-dimensional system described by a vector of 11 random
variables X , with condition cd3cd28 always present and affecting all variables, and hence interpreted
as a targeting none. As described in Section E.2, we encode each regime as a 11-dimensional binary
vector, and display them in the last column. A Julia notebook exemplifying the pre-processing of
this data and a Julia script outlining a complete pipeline of batch simulated experiments comparing
methods is provided in the supplementary material.

File name Target X Node Data Regime Corresponding �

cd3cd28.xls None (background condition) Regime 0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
cd3cd28+aktinhib.xls Variable 7 Regime 1 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
cd3cd28+g0076.xls Variable 9 Regime 2 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
cd3cd28+psitect.xls Variable 4 Regime 3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
cd3cd28+u0126.xls Variable 2 Regime 4 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

means, for instance, that pma = 1 or b2camp = 1 imply cd3cd28off = 1). Hence, we ignore these
two experimental setups, and all remaining datasets are collected under cd3cd28 = 1 so that it can be
considered as an implicit condition not modeled explicitly with a separate intervention variable.

Other conditions implying unresolved entanglements were not considered, in particular the uses
of icam-2 and ly294002. The remaining datasets are listed in Table 1. Assumptions about each
intervention targeting a single protein in the network are taken from [66]. In summary, the original
Sachs et al. data used to train the simulator contains samples from 5 (1 “baseline” plus 4 “perturbed”)
different regimes, and each data sample has 11 variables.

Since each intervention is considered as a binary value (0 for no perturbation and 1 for perturbation),
this gives us a total of 24 = 16 combinatorial possibilities, with 5 in ⌃train. Hence, we need a way of
establishing a (synthetic) ground truth for the 16� 5 = 11 possible test conditions, which we explain
in Section E.2.

DREAM dataset. The DREAM challenges include a series of problems for causal inference in
protein networks [30]. We generate data based on a known E. coli sub-network with 10 nodes,
and consider that each random variable Xi has a corresponding interventional variable �i. We
use the GeneNetWeaver simulator13 to generate this data, under "InSilicoSize10-Ecoli1" from the
"DREAM3_In-Silico_Size_10" task and there is no further data selection process as in the Sachs case.
The simulation is based on a series of predefined ODEs and SDEs. For each data regime, a single
data sample is collected with a random seed initialization with an otherwise exact similar simulation
setting for that particular regime. Following [77], we gather the data sample once it reaches its
equilibrium state and repeat this process as many times as the sample size is required. In summary,
this provides us with a dataset consisting of 11 (1 baseline plus 10 perturbation) regimes. As we are
interested in combinations of 10 binary indicator variables �i, not directly provided in the original
DREAM simulator, we had to create our own ground-truth synthetic model based on samples from
the 11 regimes we can obtain from DREAM.

E.2 Oracular Simulators

Both Sachs and DREAM come with a ground truth DAG (either defined by expert domain knowledge
or motivated by physical systems dynamics). We used each of the DAGs to construct the associated
IFMs. To further explain: in a DAG, the joint probability distribution can be factorized based on the
local Markov condition [46], where a single factor is defined by a vertex and its parents; this suggests
are least one IFM, with the factorization following from interpreting each child-parents factor as a
black-box (i.e., not normalized by the child) positive function of these variables. Graphically, this
is known as the moralization step of “marrying the parents” followed by the dropping of directions
in order to create an undirected Markov network [46]. We use this to define a factor graph model
without stating that this would be the best representation for the corresponding data. It relaxes the
DAG assumption (i.e., it removes some of the independence constraints encoded in the DAG) and

13https://gnw.sourceforge.net

26

https://gnw.sourceforge.net

a. X1 X2 X3 X4

X5

X6 X7

X8X9

X10 X11

�2 �4 �7

�9

b.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

�2 �4 �7 �9

Figure 10: Causal structures used for building the synthetic ground-truth models for the Sachs et al.
[66] data. The name of the random variables are CD3CD28off , ICAM -2, Akt-inhibitor, G0076,
Psitectorigenin, U0126, LY 294002, PMA, B2camp, with more details given in the companion
Julia notebook. (a) A directed acyclic graph (DAG) for the Sachs et al. process, with intervention
vertices representing intervention variables. (b) The interventional factor graph, inspired by the DAG,
which we use in our synthetic ground-truth simulator. This is done by creating a factor for each child
and parent set from the postulated DAG. These independence models are not equivalent. The point is
not to provide an exact model, but to build a synthetic ground truth with parameters calibrated by real
data instead of arbitrarily sampled, and with independence constraints and factorizations that do not
contradict a given expert assessment (as the factor graph contains fewer independence assumptions
than the DAG, not more).

could be refined by adding other constraints (such as breaking the factors into products of reduced
sets of variables), which we do not attempt. See Figure 10 for an example with the Sachs et al. model.
Approaches such as [1] could be used to refine this structure, if so desired.

Given two theoretical constructions and the respective parameterizations they use, this suggests two

ways of building ground-truth simulator models to generate ground truth data X , which we now
explain.

Common to both ground-truth simulators is the fitting of a postulated causal structure to real data
(either Sachs or DREAM). Prior to fitting, we scale the data of each study so that the respecive
“merged empirical distributions”, defined by taking the union of all respective datasets collected under
all available training regimes, have empirical mean of zero and empirical variance of 1 for each
measured random variable. This does not mean any given variable in any given training regime will
have zero empirical mean and unit variance, but pragmatically it helps to control having variables

27

a. X1 X2 X3

X4

X5X6

X7

X8X9

X10�1 �2 �3

�4

�5�6

�7

�8

�9

�10

b.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Figure 11: The DREAM structural assumptions, following a process analogous to the Sachs et al.
case described in Figure 10.

with disparate scales. For the Sachs data, we also take the logarithm of each random variable prior to
standardization.

E.2.1 Causal DAG Ground-Truth

The first ground-truth simulator is implied by the respective causal DAG model. The DAG for each
study are shown in Figures 10(a) and 11(a). The factorization comes from the structure of the DAG
and can be rewritten as follows:

p(x;�) =
lY

k=1

p(xk | pa(xk);�Fk), (9)

where, l is the total number of random variables, p(xk | pa(xk);�Fk) is the conditional density
function for xk, �Fk is the regime indicator subvector for the intervention variables which are parents
of xk in the DAG, and Pa(xk) refers to the random variables which are parents of xk.

For parameterizing the causal DAG model family, we assume a heteroscedastic conditionally Gaussian
formulation. This can be represented by the equation

Xk = fk(pa(Xk),�k) + gk(pa(Xk),�k)⇥ ✏k, ✏k ⇠ N (0, 1).

Here, each fk and gk are multilayer perceptrons (MLPs) with 10 hidden units and the role of �k is
just a switch: for each value of �k, we pick one independent set of parameters for the MLP mapping
pa(Xk) to the real line. To learn the parameters in functions fk and gk, maximum likelihood is used.
Further details are provided in the companion Julia code.

E.2.2 IFM Ground-Truth

The second simulator is the causal IFM. The factorization comes from the structure of the DAG,
using the moralization criterion described in the previous section. Figures 10(b) and 11(b) show the
respective IFM graph structure. This results in the following factorization form:

p(x;�) /
lY

k=1

fk(x{k} [pa(xk);�Fk), (10)

28

where pa(xk) comes from the respective theoretical causal DAG case, with Fk given accordingly
by k. To learn the causal IFM simulator, we use pseudo-likelihood and assign each factor again to a
black-box MLP of 15 hidden units where the corresponding �Fk is a switch between independent
sets of parameters within each factor. We additionally perform a discretization step for variable Xi

by collecting all data and doing uniformly binning it in 20 bins, so that it is faster to compute the
conditional normalizing constants14 for each term in the pseudo-likelihood objective function.

To sample from the learned IFM, so that we can numerically compute quantities such as µ� , we use
Gibbs sampling.

E.3 Generating Ground-Truth Population Models and Data

Generating ground truth data, either for numerically computing population quantities by Monte Carlo
or as a generator of training data, includes the following steps: (1) learning simulators, (2) generating
ground truth X and (3) generating ground truth Y .

Learning simulators. The first step involves learning the simulators: with the Sachs et al. data, we
use 5 data regimes as the training data for the simulator (1 baseline regime and 4 interventional); and
with DREAM data, we use 11 data regimes as the training data for the simulator (1 baseline regime
and 10 interventional). As described above, two simulators are built for each of the two studies.

Generating ground-truth system X . Since each intervention is considered as a binary value (0
for no intervention and 1 for with intervention), with the training dataset of 5 data regimes in Sachs,
this gives us a total of 24 = 16 combinatorial possibility regimes; as for the DREAM case, we have
in total of 11 regimes, which means that the complete space ⌃ has 210 = 1024 combinations. To
simplify the computation of the benchmark, we are interested in the "one-to-double knockdown"
scenario and hence generate a total of 56 regimes (= 10⇥9

2 + 11).

The original training datasets for both simulators are discarded and we now consider the simulator
as the oracle for any required training set and population functionals. In particular, for each regime,
we generate 25,000 samples to obtain a Monte Carlo representation of the ground-truth respective
population function p(x;�).

Generating ground-truth outcome processes Y . For outcome variables Y from which we want to
obtain µ�? := E[Y ;�?] for given test regimes �?, we consider models of the type Y = tanh(�>

X)+
✏y, with random independent normal weights � and ✏y ⇠ N (0, vy). � and vy are scaled such that
the ground truth variance of �T

X is a number vx sampled uniformly at random from the interval
[0.6, 0.8], and set vy := 1� vx.

For each of the four benchmarks (i.e., based on either the Sachs et al. data or DREAM data, with
either a DAG model-based ground-truth or an IFM-based ground truth), we generate 100 random
vectors �. The point of these 100 problems is just to illustrate the ability to learn (noisy) summaries
of X , or general downward triggers or markers predictable from X under different conditions. When
generating Y from X , we keep a single sample for X . We then generate an unique sample for each
of the 100 Y variations given the same X data.

Generating training data. For training our models, we additionally generate 5000 samples for the
observational regime (baseline) and 500 samples for each of the remaining 4 experimental conditions
(Sachs) and 10 experimental conditions (DREAM). To map from X to Y , we use the model described
above.

E.4 Implementation Details

We now describe the implementation details, which are also detailed in the companion source code.

14While it is theoretically possible to use continuous variables and automatic differentiation through a
quadrature method that computes each univariate integral for each term in the pseudo-likelihood, this is still far
too slow in practice. The discretization level chosen for these examples are fine enough so that it does not appear
to affect the predictive performance of the p(y | x).

29

Dataset: DREAM
Simulation: DAG

Dataset: DREAM
Simulation: IFM

Dataset: Sachs
Simulation: DAG

Dataset: Sachs
Simulation: IFM

0.6 0.7 0.8 0.9 1.0 0.80 0.85 0.90 0.95 −0.5 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

4

5

0

1

2

3

4

0

5

10

15

0

5

10

15

20

Rank Correlation

D
en

si
ty Model

Black Box
IFM1

Figure 12: Overlapping density plots showing average rank correlation between true treatment effects
and those predicted by the black box model and IFM1, respectively. Ideal performance is a point
mass on 1.

Table 2: Experimental results for Sachs and InSilicoSize10-Ecoli1 datasets for our interventional
generalization experiments. The values are correspond to the average of 100 Y problems.

Sachs DREAM
Causal-DAG Causal-IFM Causal-DAG Causal-IFM

pRMSE pRMSE pRMSE pRMSE
Blackbox 0.043 0.414 0.025 0.174

Causal-DAG 0.014 0.408 0.017 1.337
IFM-1 0.105 0.168 0.022 0.185
IFM-2 0.051 0.111 0.107 0.769
IFM-3 0.123 0.175 – –

rCOR rCOR rCOR rCOR
Blackbox 0.696 0.701 0.953 0.930

Causal-DAG 0.873 0.405 0.972 0.502
IFM-1 0.546 0.835 0.952 0.942
IFM-2 0.673 0.821 0.865 0.737
IFM-3 0.503 0.811 – –

• Blackbox Model: We use the Julia wrapper of XGBoost15. In practice, given how sparse
⌃train is in the space ⌃ of possible combinations, this is hardly more effective than linear
regression (results not shown);

• Causal DAG: We set each heteroscedastic MLP model with a hidden dimension of 10 and
this is the same setting we used for the Causal DAG simulator. This gives this competitor
much advantage in the benchmarks generated by DAGs, as following a parametric Gaussian
with additive error structure is already substantive information to be exploited;

• IFM: We implemented the IFM model with a combination of neural factors, where each
factor is determined by the DAG structure and each MLP has 25 hidden units. Note that the
number of hidden units does not match the one used to generate the data.

F Further Experimental Results

F.1 Further Experimental Metrics

We present a series of further experimental results in numerical form based on the following metrics:
(1) proportional root mean squared error (pRMSE): the average of the squared difference between
the ground truth Y and estimated Ŷ , where each entry is further divided by the ground truth variance
of the corresponding Y ; and (2) rank correlation (rCOR): the Spearman’s ⇢ between the ground truth
vector µ�? for all entries in ⌃test, and the corresponding estimated vector (see Table 216).

15https://juliapackages.com/p/xgboost.
16The IFM-3 results are omitted from Tables 2 and 3, as the method does not convergence in a reasonable

time.

30

https://juliapackages.com/p/xgboost

Table 3: P-values from a series of one-sided binomial tests against the null hypothesis that models
perform no better on average than the black box model. Significance at ↵ = 0.05 is indicated with
one asterisk, and ↵ = 0.001 with two.

Data Simulation DAG IFM1 IFM2 IFM3

DREAM Causal-DAG < 0.001⇤⇤ 0.044⇤ 1 NA
DREAM Causal-IFM 1 0.972 1 NA
Sachs Causal-DAG < 0.001⇤⇤ 1 0.998 1
Sachs Causal-IFM 0.956 < 0.001⇤⇤ < 0.001⇤⇤ < 0.001⇤⇤

F.2 Binomial Tests

We present results from a series of one-sided binomial tests to determine whether models significantly
outperform the black box baseline (see Table 3).

G Pseudolikelihood Details

The pseudo-loglikelihood function pL(✓;D1
, . . . ,Dt) is given by

pL(✓;D1
, . . . ,Dt) :=

tX

i=1

niX

j=1

mX

r=1

log p✓(x
i(j)
r | xi(j)

\r ;�i),

where x
i(j)
r is the r-th variable of the j-th data point in dataset Di, with ni being the number of data

points in Di. Vector xi(j)
\r for the same data point is composed of all other random variables but the

r-th variable.

The log-conditional distribution log p✓(x
i(j)
r | xi(j)

\r ;�i) is given by

log p✓(x
i(j)
k | xi(j)

\k ;�i) =
lX

k=1

�k,�Fk
(xi(j)

Sk
)� log

8
<

:
X

x0
r

exp

kX

k=1

�k,�Fk
(x0

Sk

i(j))

!9=

; ,

where the second term on the right-hand side is the log-normalizing constant summing all possible
values x0

r of the r-th random variable. Here, x0
Sk

i(j) is the vector obtained by substituting the value
of xk within data point j of dataset i with x

0
k, prior to selecting the subvector corresponding to Sk.

The above assumes that all variables are discrete. As described in the main text, we discretize our
variables in an uniform grid, preserving the magnitude information. The parameterization ✓ is the
same regardless of the number of discretization levels, so that this number is chosen basically by the
computational considerations of performing the sum over x0

k in the log-normalizing constant. Finer
discretizations preserve more information but increase this cost.

31

