
A Appendix524

A.1 Bounds for R(Z|K)525

We prove the general bounds for R(Z|K) by proving the lower and upper bound independently using526

the following lemmas.527

Lemma 3 (Lower bound for R(Z|K)). For Z 2 Rn⇥d
, RBF kernel matrix K 2 Rn⇥n

using a528

distance function d(·, ·) that satisfies d(x, x) = 0 and ✏ > 0, it holds that:529

R(Z|K) � R(Z) (7)

where the equality is satisfied only when K = 11T
.530

Proof. We start off by writing down the expanded form of R(Z|K):531

R(Z|K) =
1
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(8)

In the above equation 8, we first note that both ZZT and K matrices are positive-semi definite532

symmetric matrices. Using Schur product theorem [49], we can show that their hadamard product533

ZZT � K is also positive semi-definite (for d > 1). Next, we utilize the following property for534

Hadamard products:535

Theorem 7.25 [48]. Given two positive semi-definite square matrices A and B of dimension m. Then,536

the following property holds: det(A�B) � det(A)
mQ
i=1

bii537

Applying this property to ZZT �K, we get the following:538

det(ZZT �K) � det(ZZT ) (9)

where Kii = 1, 8i, as it is a RBF kernel and d(i, i) = 0. Now, since ZZT � K and ZZT are539

positive semi-definite, their corresponding eigenvalues are non-negative, �i(ZZT �K) � 0 and540

�i(ZZT ) � 0. Since the eigenvalues are non-negative, we can extend Equation 4 as follows:541
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R(Z|K) � R(Z)

(10)

where the second inequality holds because the affine transform of positive variables preserves542

inequalities. The equality is satisfied when K = 11T .543

Lemma 4 (Upper bound for R(Z|K)). For Z 2 Rn⇥d
, RBF kernel matrix K 2 Rn⇥n

using a544

distance function d(·, ·) that satisfies d(x, y) = d(y, x) and and ✏ > 0, it holds that:545

R(Z|K)  n

2
log2

�
1 + d/n✏2

�
(11)

Proof. We start by noting that the Hadamard product of two positive semi-definite matrices ZZT �546

K 2 Rn⇥n is positive semi-definite (using the Schur product theorem). We also assume that the547

representations zi 2 Z are unit normalized, thereby the diagonal entries of (ZZT )ii = 1. The548

diagonal entries Kii = 1 as d(zi, zi) = 0, which implies (ZZT �K)ii = 1. Given these facts, we549

can write the following properties of about the eigenvalues of ZZT �K:550
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�i(ZZT �K) � 0,
X

i

�i(ZZT �K) = n (12)

where the second property follows from the fact that tr(ZZT �K) = n. We are interested in finding551

the maximum value of R(Z|K) that can be written as:552

R(Z|K) =
1

2
log2

nY

i=1

✓
1 +

d

n✏2
�i(ZZT �K)

◆
(13)

To maximize R(Z|K), we need to maximize the product within the logarithm. Each term within the553

product 1 + d
n✏2�i(ZZT �K) � 0 (eigenvalues of a PSD matrix). Using the AM-GM inequality,554

the product is maximized when all the individual terms are equal.555

�i(ZZT �K) = n/n = 1 (14)

Substituting this result in Equation 13, we obtain the following upper bound:556

R(Z|K)  n

2
log2(1 + d/n✏2) (15)

where the equality is achieved when ZZT = I when all the representations are orthogonal. Note that557

this is only possible when d � n.558

559

A.2 Proof of Lemma 2560

Lemma 2 (Alignment for random representations). Expected Ak(f) score achieved by a concept561

erasure framework f that generates random representations is E[Ak(f)] = k/n.562

Proof. To prove this, we first assume two randomly generated k-nearest neighbour graphs (since the563

original representation is uncorrelated with the randomly generated one we can consider it’s random).564

As it is a kNN graph, for each node has an expected degree E[d] ⇡ k, where d is the degree of the565

node. Now, let’s consider the probability of a node xi being part of node xj :566

p(xi 2 knn(xj)) =
di
n

E[p(xi 2 knn(xj))] =
E[di]
n

=
k

n

(16)

where di is the degree of node i and n is the total number of representations. Since computing the567

exact probability requires knowledge of the degree of the node, we compute the expectation of the568

same. Next, we compute the probability that node i is present in both kNN sets (before and after569

debiasing) of node j:570

E[knn(x) \ knn(z)] = E

2

4
X

j

p(xi 2 knn(xj) ^ zi 2 knn(zj))

3

5

=
X

j

E [p(xi 2 knn(xj))p(zi 2 knn(zj))]

=
X

j

E [p(xi 2 knn(xj))]E [p(zi 2 knn(zj))]

=
nX

j=1

k2/n2 = k2/n

(17)
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where the first step utilizes linearity of expectation, and the second step follows from the fact that the571

degree of distribution of X and Z are independent. Replacing the result from Eqn 17 in Eqn 6, we572

get Ak(f) = k/n.573

A.3 Proof of Lemma 3574

Lemma 3 (Upper Bound for categorical concepts). For categorical concept variables with the kernel575

values Kij 2 {0, 1}, R(Z|K) is bounded by the sum of rate-distortion functions of representation576

set from individual classes Zj577

R(Z|K) =
mX

j=1

1

2
log2 det
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j

◆


mX

j=1

R(Zj) (18)

where the equality holds only when ZjZT
j = 0, 8j and m is the number of classes.578

Proof. For categorical variables, the kernel function takes the following form:579

k(i, j) =

⇢
1, if ai = aj
0, if ai 6= aj

(19)

If the kernel function k(·, ·) is of the above form. Using the corresponding kernel matrix K we get,580
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(20)

where M becomes a block diagonal matrix and Zi’s are representations belonging to class i. Using581

the determinant property of block diagonal matrices, we have:582

log2 det(M) =
mX

j=1
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The individual terms in the above summation are closely related to the rate-distortion function of583

representation belonging to each class, j, as shown below:584

R(Zj) =
1

2
log2 det

✓
I +

d

nj✏2
ZjZ

T
j

◆
(22)

where nj is the number of representations in class j. Note, nj < n, where n is the total number of585

representations. Using the property that multiplying a matrix with a scalar is equivalent to multiplying586

its eigenvalues with the same scale, and that ZjZT
j is a PSD matrix. We can show:587

R(Z|K) 
mX

j=1

1
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R(Z|K) 
mX

j=1

R(Zj)

(23)

588

Notice that this is closely related to the MCR2 objective, which tries to learn discriminative subspaces589

for individual classes. For concept erasure, we aim for the opposite effect by making instances from590

the same class dissimilar by maximizing their rate-distortion function.591
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Algorithm 1 Correlation Computation Routine

1: Input: Input representation set X 2 Rn⇥d

2: Y = sgn(XW1W2) . generate labels using random weights W2 2 Rd⇥m,W1 2 Rm⇥1

3: U,⌃,V = svd(X )
4: Z0 = X . Initializing the representations
5: A = {}, scores = {} . accuracy and alignment sets
6: for i 2 {1, . . . , d} do

7: u = VT (i)
kVT (i)k . access the i-th column of V

8: Pi = Id � uuT . null space projection matrix
9: Zi = Zi�1Pi

10: A = A [ acc(Zi,Y) . compute accuracy
11: scores = scores [Ak(

Q
Pi) . compute alignment scores

12: end for

13: r = Pearson(A, scores) . compute the Pearson correlation
14: return r

B Alignment Scoring592

In this section, we present several measures to capture information alignment and compare them with593

our proposed metric (in Section 4).594

KSG MI estimator [33]. The Kraskov–Stogbauer–Grassberger (KSG) estimator uses the nearest595

neighbour information in the joint and marginal space to obtain a mutual information estimate.596

Specifically, it computes the number of neighbours around a point within a hypercube in the marginal597

spaces. The length of the hypercube is set based on the max-norm distance to the k-th neighbour in598

the joint space. The KSG MI estimate between two sets X and Z can be shown as follows:599

IKSG(X ,Z) =  (k)� 1/k � E[ (nx) +  (nz)] +  (N) (24)

where  (·) is the digamma function, nx and nz are the number of points in the hypercube of the600

respective marginal spaces. In our experiment, we use the KSG MI estimator to evaluate the alignment601

between representation sets before and after concept erasure.602

Degree distribution. In a k-nearest neighbour graph, some nodes are more connected to others603

(hub nodes) while others are sparsely connected. Building on our intuition of alignment Ak using604

the nearest neighbour graphs of representations, we can consider changes in its degree distribution,605

D(X ), during concept erasure to gauge how the underlying structure of the representation set has606

changed. We quantify the change using either L1-norm, L2-norm, or KL-divergence between the607

normalized degree distributions D(X ) and D(Z).608

Experiments. We perform experiments in a controlled setup to evaluate the efficacy of the proposed609

alignment measures.610

(a) Simulated Erasure. In this experiment, we simulate knowledge erasure from a set of synthetic611

representations and observe how the alignment scores correlate with the downstream accuracy.612

Algorithm 1 shows the details for this process. First, we sample a set of representations from a613

uniform distribution X ⇠ Rn⇥d from a uniform distribution and construct a label set Y (using614

randomly sampled weights W1,W2). In a way, the label set retains some information about the615

original representations that we will probe as erasure happens. Then, we gradually remove information616

from representations Z by projecting them onto the nullspace P formed using the eigenvectors u.617

After each iteration of projection, we compute the accuracy of predicting Y and alignment score, Ak.618

We report the Pearson correlation between the accuracies and information alignment in Table 3 (left619

side), along with the hyperparameter k used for each measure. We observe that Ak outperforms other620

approaches achieving better correlation, which showcases the efficacy of our approach.621

(a) Correlated Gaussians. In this experiment, we sample two sets of Gaussians (zero mean) with a622

fixed covariance �. In this setup, the mutual information has a closed-form solution:623
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Simulated Erasure Correlated Gaussian
Metric k/n (%) Pearson (r) " k/n (%) Pearson (r) "

KSG 10 0.965 0.02 0.989

KL-div (degree) 0.1 0.874 0.2 0.490
L2-norm (degree) 0.1 0.865 0.2 0.458
L1-norm (degree) 0.1 0.905 0.2 0.564

Alignment: Ak 50 0.994 50 0.969

Table 3: Comparison of Ak with other alignment measures on synthetic datasets. We observe that
Ak achieves the best Pearson correlation scores with downstream accuracy on simulated concept
erasure experiments due to the presence of a mapping function f . In a separate experiment, the KSG
estimator shows the highest correlation with MI. Ak also achieves a high correlation score, while the
degree distribution-based measures perform poorly due to the lack of a mapping function.

I(X ,Z) = �1

2
log(1� �2) (25)

We use the samples to compute the different alignment measures and investigate if they’re correlated624

with the actual mutual information (Equation 25). Note that there does not exist an explicit mapping625

between these samples. In Table 3 (right side), we report the Pearson correlation scores for different626

measures. We find that the KSG MI estimator outperforms others, with Ak coming in as a close627

second. This is because our alignment scores assume a 1-to-1 mapping between the sets, which is628

absent in this case. The degree-distribution-based scores suffer even more as their measure is even629

more strongly reliant on the mapping. These results show that the alignment score Ak leverages the630

bijective mapping to generate scores that are well correlated with the mutual information but can be631

inaccurate in cases where the mapping function is absent.632

C Implementation details633

In this section, we provide various implementation details about our experimental setup. Specifically,634

we describe the details of the dataset, metrics, and hyperaparameters utilized.635

C.1 Dataset636

In this section, we describe the details of the datasets that were used in the experimental section.637

GloVe embeddings [42]. We revisit the problem of deleting gender information (binary attribute)638

from word embeddings [12]. Specifically, we consider the GloVe embeddings of the 150k most639

frequently occurring words. For training KRaM, we follow the setup of [45, 17] to select the 7500 most640

male-biased, female-biased, and neutral words determined by the magnitude of the word vector’s641

projection onto the gender direction (the largest principal component of the space of vectors formed642

using the difference gendered word vector pairs).643

DIAL [11] is a Twitter-based sentiment classification dataset, where each tweet is associated with644

sentiment labels and “race” information (binary concept label) of the author. The sentiment concept645

labels are “happy” or “sad” and the binary race concept labels are “African-American English” (AAE)646

or “Standard American English” (SAE).647

Synthetic dataset. We create a dataset where the representations are generated using a continuous648

latent variable, a, which serves as our concept label. During data generation, we first sample the latent649

variable a ⇠ Uni(0, 1), and then sample the high-dimensional representation x ⇠ N (a1d, aId),650

where 1d is a vector of ones and Id is the identity matrix. For this dataset, we set the dimension651

of the representations to be d = 100. In this setup, we observe that the latent concept label, a, is652

being used to scale the underlying isotropic Gaussian distribution. Therefore, post-concept erasure653

the representation space should appear like an isotropic Gaussian distribution, which is indeed the654

case as shown in Figure 5.655
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UCI Crimes [34]. This dataset1 contains information about US communities in 1990 from various656

surveys. The dataset provides 128 attributes (both categorical and continuous variables) from657

1,994 different US communities. we concatenate individual attributes of a community to obtain its658

representation. The regression task involves predicting the number of violent crimes per capita. We659

consider the ratio of African-American (AAE) people (continuous attribute) in a community as the660

concept to be erased.661

Jigsaw Toxicity Classification [1]. This dataset contains online comments and the binary classi-662

fication task involves detecting whether a comment is toxic or not. In this dataset, we consider663

two different concepts: religion and race. We consider a vector-valued protected attribute for this664

dataset. For the religion concept, we consider an unnormalized vector over the following categories:665

{‘buddhist’, ‘christian’, ‘hindu’, ‘jewish’, ‘muslim’, ‘other_religion’}. Similarly, for the gender666

we consider the following categories: {‘bisexual’, ‘female’, ‘heterosexual’, ‘homosexual, gay, or667

lesbian’, ‘male’, ‘other gender’, ‘other sexual orientation’, ‘transgender’}. During concept erasure of668

either concept, we only consider instances where at least one of the concept categories has a non-zero669

value and reserved 20% of the instances as the test set. This resulted in a dataset with a train/test670

split of (72k, 18k) for the religion concept and (106k, 26k) for the gender concept. We retrieve text671

representations for the comments from GPT-3.5 [14] and perform concept erasure on them.672

C.2 Metrics673

In this section, we present the details of the fairness metrics used in our experiments.674

Demographic Parity (DP). Demographic Parity measures the difference in the probability of a675

prediction w.r.t to the protected attribute A. Formally, it is defined as:676

DP =
X

y2Y
|p(ŷ = y|A = a)� p(ŷ = y|A = ā)| (26)

where a, ā are possible values of the binary concept and Y is the set of possible target attribute labels.677

Generalized Demographic Parity (�GDP). Most of the literature on fairness metrics has focused678

on categorical variables. We use Generalized Demographic Parity (GDP) [31], which measures the679

discrepancy in outcome with respect to a continuous variable. GDP measure extends Demographic680

Parity for continuous protected attributes. It is defined as follows:681

�GDP =

Z 1

0
|m(a)�mavg|P (A = a)da (27)

where m(a) = E[ŷ|A = a] is expected prediction of the model when protected attribute A = a,682

mavg = E[ŷ] is overall expected prediction, and P (A = a) is the probability that the protected683

attribute takes value a. The probability density P (·) can be measured using a histogram or kernel684

method. We used a kernel function to evaluate the probability density.685

C.3 Hyperparameters686

In our experiments, we primarily deal with two hyperparameters: regularization constant, � (in Equa-687

tion 4), and �, associated with the standard deviation of a Gaussian kernel (k(x, y) = e�kx�yk/�2

).688

We set these parameters by performing a grid search on the development set using Weights & Bi-689

ases [10]. We use a multi-layer neural network with ReLU non-linearity as the erasure function f .690

We further perform ablation experiments to understand the impact of these parameters on concept691

erasure performance (shown in Figure 8). All networks were trained using a single 22GB NVIDIA692

Quadro RTX 6000 GPU and experiments were executed in PyTorch [40] framework.693

D Additional Results694

In this section, we present additional experiments to analyze KRaM’s concept erasure performance.695

1https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Figure 7: Vector-valued concept erasure performance using KRaM on Jigsaw toxicity classification
dataset (gender concept). We observe a significant reduction in �GDP scores post erasure of vector-
valued gender concept with negligible impact on toxicity classification performance.

Figure 8: Ablation experiments to study the effect of parameters � (Eqn. 4), r (a scaling factor in
R(Z) = rb), and � (parameter in gaussian kernels) on the performance of concept deletion.

Vector-valued Concept Erasure. In this section, we present the results of vector-valued gender696

concept removal from GPT-3.5 text embeddings from the Jigsaw Toxicity classification dataset. We697

report the MSE and �GDP results in Figure 7. We observe that KRaM is able to significantly increase698

the gender MSE while simultaneously reducing the �GDP scores. During the debiasing process, we699

observe that there is minimal impact on the toxicity classification accuracy (91.9% ! 90.1%).700

Method MSE (a) # Ak "

Original 0.006 1.0
KRaM (Laplace) 0.083 0.68
KRaM (Cauchy) 0.092 0.63
KRaMlinear (Gaussian) 0.083 0.75

KRaM (Gaussian) 0.109 0.67

Table 4: Ablations with kernel functions:
we observe that KRaM achieves similar per-
formance using different kernel functions.

Ablation with different kernels. We perform ablation701

experiments with different kernel functions used to de-702

fine the K and observe its impact on the concept erasure703

performance. In Table 4, we report the results for erasing704

the continuous concept on the synthetic dataset. Apart705

from the kernel function, we use the same hyperparam-706

eters in all setups. We observe that KRaM achieves sim-707

ilar concept erasure performance using different kernel708

functions. We observe that using the Gaussian kernel709

function in KRaM yields the best erasure performance710

and alignment score Ak improves when we use a linear711

erasure function f .712

Ablation of parameters. In this experiment, we perform ablations with several parameters in KRaM713

and observe how that affects the concept erasure performance. First, we experiment with gender714

removal from GloVe embeddings to understand the impact of � (Eqn. 4). In Figure 8 (left), we observe715

that as � increases, concept erasure worsens (" gender accuracy). This is expected as the erasure716

function f is penalized for |R(Z)� b| term more than maximizing R(Z|K) (which helps in erasure).717

The alignment scores Ak stay mostly stable with a minor drop at high � values. We belive this happens718

as f aims to match the rate-distortion constant, possibly neglecting the underlying representation719

structure. Second, in the same setup, we modify the equality constraint to be: |R(Z)� rb| and ablate720

r (shown in Figure 8 (center)). We observe that both alignment scores and gender accuracy increase721

with an increase in r, which demonstrates the importance of this constraint. Even though R(Z|K)722

is maximized, if the overall feature space expands (high r), the concept variable can still become723

distinguishable (high gender accuracy). Third, in Figure 8 (right), we report the MSE scores on the724

synthetic dataset for varying � (the parameter in the gaussian kernel). In all setups within Figure 8725

(right), we notice the same pattern of increasing MSE (a) scores followed by a decrease. We believe726
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this drop happens with higher � values because distances become very small and kernel values are727

similar. This results in the kernel ignoring the similarity of instances in the concept space.728

E Broader Impact & Limitations729

In this section, we discuss the broader societal impact and limitations of our framework, KRaM.730

Limitations. While erasing sensitive concept attributes can reduce bias and improve privacy, it may731

also result in the loss of potentially useful information for the task at hand. This could negatively732

impact the utility of the model. The definition of what constitutes a sensitive concept attribute can733

vary greatly depending on the cultural, ethical, and legal context. This work assumes that these734

sensitive attributes can be clearly defined and agreed upon, which might not always be the case.735

Therefore, developers using such erasure frameworks should take care of the societal impact before736

utilizing them in the wild.737

Negative Usage. KRaM s intended to be used in scenarios where the user is already aware of the738

concept attribute to be erased. KRaM can only be trained on data where concept labels are annotated739

either as categorical, continuous, or vector-valued attributes. One potential misuse of KRaM would be740

to define relevant features for a task (e.g., experience for a job application) as a concept to be erased.741

In such cases, the classification system may be forced to rely on sensitive demographic information742

for predictions. It is possible to flag systems in these cases by evaluating the statistical parity when743

the concept attributes have changed.744

In general, we hope that our proposed concept erasure framework, KRaM, would encourage others to745

develop more robust concept erasure systems that can simultaneously retain a lot of information from746

the original representations.747
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