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1 More Experimental Results

1.1 Ablation Study of Warmup and Extra Cost

Impact of Warmup Rounds As shown in Table 1 below, we gradually increase the rounds of the
warmup stage (from 0 to 50) while keeping the total budget of rounds to 100 (warmup + training),
considering the limited capacity of computation and communication for local devices in FL. The best
performance is achieved when the warmup rounds are set to 20. However, the performance shows
minimal variation when the number is set to 10, 20, 30, or 40. It demonstrates that the performance
is stable when we choose warmup rounds in the area from 10 to 40. The choice of warmup round
numbers exhibits low sensitivity, like on the parameter plateau.

Notably, with no warmup rounds, performance is substantially decreased due to the impact of worse-
performed initial candidates of the FL system. Similarly, when the warmup rounds are increased to
50, indicating insufficient training, the performance will drop accordingly. We need to ensure there
are enough training rounds with a proper number of warmup rounds.

In summary, a few warmup rounds can improve the stability of FL optimization and accuracy-related
performance. Given a proper area, choosing warmup rounds is low sensitivity to performance.

Extra Cost of integrating proposed CAM framework to existing FL methods For simplicity,
we use “FedAvg” as the measuring unit or benchmark for the cost of storage, communication and
computation on local devices. In general, CAM will bring one extra ‘FedAvg’ cost to the existing FL
methods every communication round.

As for IFCA [1], which needs to transmit K cluster-specific models to each client to compute the
clustering, applying our proposed CAM framework with IFCA, we need to transmit K cluster models
and one extra global model to the clients, that is K + 1 models in total. The communication cost
and storage cost are listed in Table 1. Moreover, the warmup stage only incurs one “FedAvg” cost.
Therefore, integrating CAM can even reduce the overall cost by increasing the number of warmup
rounds.

Lastly, considering the tradeoff between performance and cost, we choose 30 warmup rounds out of
100 as the default experiment setting.

1.2 Experimental Results for PathMINST and TissueMNIST

Table 2 and 3 are test results for PathMNIST and TissueMNIST in cluster-wise and client-wise
non-IID settings, respectively. And we have similar results as Fashion-MNIST and CIFAR-10.
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Table 1: Ablation study of warmup round numbers for performance and cost using “FedAvg” as
the measuring unit (Other settings: CIFAR-10 dataset, IFCA, client-wise non-iid with Dirichlet
distribution α = 0.1, Cluster number K = 10).

Baseline # Warmup + Training Performance/% Cost/“FedAvg”
Accuracy Macro-F1 Storage Communication Computation

IFCA 0+100 47.62 23.36 10x 10x 10x

IFCA-CAM

0+100 63.75 32.17 11x 11x 11x
10+90 72.69 41.24 11x 10x 10x
20+80 73.83 44.72 11x 9x 9x
30+70 72.54 42.86 11x 8x 8x
40+60 72.98 42.20 11x 7x 7x
50+50 65.74 26.63 11x 6x 6x

Table 2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST & TissueMNIST.

Datasets PathMNIST TissueMNIST

Non-IID setting α = (0.1, 10) (3, 2)−class α = (0.1, 10) (3, 2)−class
#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36
FedProx 27.6±6.15 14.07±3.42 25.7±8.48 11.62±1.08 49.78±2.64 17.85±3.81 54.92±3.7 15.15±1.47

5

FedAvg+ 35.84 17.01 25.51 12.14 49.52 17.59 54.98 15.12
FedProx+ 27.57 15.74 29.7 13.05 48.88 17.08 52.24 15.54
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CAM 50.12±0.42 25.22±3.67 68.45±5.83 39.31±1.57 83.08±2.16 39.81±3.7 83.26±6.47 36.03±0.96
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
FeSEM-CAM 70.01±1.23 44.09±4.94 71.5±2.2 43.69±2.96 80.28±4.04 34.77±0.49 75.04±4.95 39.33±3.32

10

FedAvg+ 33.19 19.98 24.82 13.73 49.5 18.03 54.78 13.23
FedProx+ 28.21 16.17 35.62 15.95 46.57 16.47 53.47 14.88
IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CAM 66.5±3.46 38.12±2.32 66.22±3.85 40.75±2.2 81.53±7.24 43.88±6.98 88.77±15.23 46.48±4.98
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
FeSEM-CAM 85.06±2.62 61.82±5.38 76.41±2.22 64.33±4.92 84.91±2.83 53.08±1.77 90.22±3.03 60.62±2.64

Table 3: Test results (mean±std) in client-wise non-IID settings on PathMNIST & TissueMNIST.

Datasets PathMNIST TissueMNIST

Non-IID setting α = 0.1 2−class α = 0.1 2−class
#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28
FedProx 27.61±7.38 13.97±2.6 28.77±8.33 12.16±2.27 53.42±4.29 15.84±3.41 54.51±3.26 14.43±1.36

5

FedAvg+ 32.68 15.03 29.8 13.02 53.15 16.51 54.63 14.57
FedProx+ 33.19 15.66 30.51 13.49 53.56 17.89 55.03 14.78
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CAM 64.67±6.17 34.86±3.95 62.72±3.54 37.5±4.67 84.72±0.95 41.86±1.38 73.71±0.97 33.02±2.64
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
FeSEM-CAM 68.81±1.29 49.22±2.2 68.92±1.13 47.32±1.99 87.88±1.27 45.82±1.54 70.09±0.86 29.49±0.77

10

FedAvg+ 29.83 16.75 28.35 13.49 53.5 18.03 54.58 13.46
FedProx+ 29.36 16.55 29.07 13.63 54.69 17.36 56.03 15.21
IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CAM 77.32±1.0 54.89±3.42 67.91±3.21 40.49±3.58 88.24±1.62 54.12±4.15 74.5±0.89 32.04±1.17
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
FeSEM-CAM 82.38±2.6 63.84±2.03 72.95±0.36 54.44±1.05 87.09±1.97 54.77±2.2 80.13±1.6 51.9±2.15

1.3 Comparison with Ensemble and Finetune

In Table 4, we further analyze CAM under various scenarios. The terms "-Finetune" and "+" denote
finetuning base methods for one additional round and ensembling both methods via soft voting,
respectively. We present a few examples as follows.

• FedAvg+IFCA: Initially, we separately train FedAvg and IFCA on the same partitioned
dataset for 100 rounds, keeping all other hyperparameters identical. We then ensemble the
trained models of FedAvg and IFCA to test on the relevant clients using soft voting. The
inference is carried out using the formula below, which aligns with the inference method in
Fed-CAM,

argmax y = f(x; Θg) + f(x; Θc(i)). (1)

• FedAvg-Finetune+IFCA-Finetune: Similar to the previous method, we train FedAvg and
IFCA separately on the same partitioned dataset for 100 rounds, and then finetune each
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locally for one additional round. Next, we ensemble the trained models of FedAvg-Finetune
and IFCA-Finetune to test on the relevant clients using soft voting.

• IFCA-CAM-Finetune: After obtaining Θg and Θc(i), we finetune both locally for one
round without aggregation. Then, we use the finetuned models for testing, applying the
same inference method as before.

Table 4: More comparison, CIFAR-10 cluster-wise non-IID (Dirichlet), K = 10

Methods Accuracy Macro-F1

FedAvg 24.38±3.30 11.69±3.15

IFCA 34.84±5.82 22.76±3.99
FedAvg+IFCA 35.62±4.73 24.31±3.65
IFCA-CAM 70.9±1.18 40.03±1.28
FedAvg-Finetune+IFCA-Finetune 65.89± 2.31 39.51±1.94
IFCA-CAM-Finetune 78.97± 1.64 52.3± 2.42

FeSEM 66.89±2.18 38.35±4.24
FedAvg+FeSEM 67.37±1.85 42.03 ±2.45
FeSEM-CAM 78.45±1.71 49.5±1.13
FedAvg-Finetune+FeSEM-Finetune 77.63±1.84 50.34±2.58
FeSEM-CAM-Finetune 81.33± 1.51 57.64± 2.17

1.4 More Clustering Analysis

Clustering stability Figure 1 demonstrates that the clustering results remain stable after five
communication rounds.

Figure 1: A Clustering change example for IFCA-CAM with client-wise non-IID and K = 10 on CIFAR-10.
Note that there are 200 lines in this graph, and each represents a client. The bold line in this figure is the
combination of lines of clients within one cluster. After five rounds, the clustering remains stable.

Clustering accuracy in highly-skewed cluster-wise non-iid setting Figure 2 is an example of
highly-skewed cluster-wise non-iid setting with cluster size {10, 10, 10, 10, 10, 20, 30, 30, 70}. Then
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Figure 3 shows the difference between clustering results when stable and ground truth. Compared
with clustering collapse in IFCA, in which all clients fall into one cluster, IFCA-CAM can reveal
most of the clustering ground truth.

Figure 2: A skewed non-iid setting example on CIFAR-10. Legends represent labels of the dataset.

2 Convergence Proof

Claim 1. (Identical data distribution with one cluster for FedSEM-CAM). Assume that clients
clustered into the same cluster have the same data distribution when clustering is stable, especially
in FedSEM-CAM.

Remark 1. Claim 1 can be validated by experimental analysis of clustering in this paper easily, as
FeSEM-CAM uses the parameters of the last layers for clustering, which contains label distribution
information of clients.
Lemma 1. (Bounding ϵdistriubte). Under the assumption of convexity of cluster models, and the
claim of dentical data distribution with one cluster for FedSEM-CAM, we can get

ϵdistriubte = L(Θg,Θc(i))− L(Θg, θi, c(i)) (2)

≤ 0. (3)

Proof. For minloss-based methods, it is straightforward to prove that ϵdistriubte ≤ 0. However, for
distance-based methods like FeSEM-CAM, bounding ϵdistriubte may require the introduction of
a new bound in Lemma 4 of work [2]. According to the assumptions of convexity and identical
distribution within one cluster, we have

Et[L(Θg,Θc(i))− L(Θg, θi)] (4)

=

K∑
k=1

∑
c(i)=k

ni

n
Et[ℓ(Θg,Θc(i))− ℓ(Θg, θi)] (5)

=

K∑
k=1

nk

n

∑
c(i)=k

ni

nk
Et[ℓ(Θg,

∑
i∈Ck

ni

nk
θi)− ℓ(Θg, θi)] (6)

≤0, (7)

where nk is the number of clients in Cluster k, and
∑K

k=1 nk = n.
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Figure 3: In the context of the highly-skewed clustering scenario depicted in Figure 2, the differences between
IFCA-CAM’s clustering and the actual ground truth remain minimal. Conversely, the clustering of IFCA easily
collapses into a single cluster. The right y-axis indicates the cluster id. The color represents the ground truth,
while the lines indicate the transition from the original ground truth to the clustering through CAM. Notably,
CAM also demonstrates its capability to alleviate clustering collapse and imbalance in skewed clustering
settings successfully.

Finally, the convergence proof is as follows.
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Proof. Firstly, we simplify the objective function to minimize as below,

L =
1

m

m∑
i=1

ℓ(Θg,Θc(i)). (8)

Then the proof outline is as follows,

L(Θ(t+1)
g ,Θ

(t+1)
c′(i) )− L(Θ(t)

g ,Θ
(t)
c(i)) (9)

=L(Θ(t+1)
g , θ

(t+1)
i , c(i))− L(Θ(t)

g ,Θ
(t)
c(i))︸ ︷︷ ︸

ϵfedsim

+L(Θ(t+1)
g , θ

(t+1)
i , c′(i))− L(Θ(t+1)

g , θ
(t+1)
i , c(i))︸ ︷︷ ︸

ϵcluster

(10)

+ L(Θ(t+1)
g ,Θ

(t+1)
c′(i) )− L(Θ(t+1)

g , θ
(t+1)
i , c′(i))︸ ︷︷ ︸

ϵdistribute

, (11)

where c′(i) represents the assign relationships of round t+ 1 compared to c(i) of round t and

Θ
(t+1)
c′(i) ←

∑
i∈Ck

ni∑
i∈Ck

ni
θ
(t+1)
i , ∀ c′(i) = k. (12)

Bounding ϵfedsim. In this process, c(i) does not change. Fed-CAM can be seen doing parameter
sharing for one global and parameter personalization for clients in clusters. So this process is equal to
FedSim [3], then we have,

L(Θ(t+1)
g , θ

(t+1)
i )− L(Θ(t)

g ,Θ
(t)
c(i)) (13)

≤⟨∇Θg
L(Θ(t)

g ,Θ
(t)
c(i)),Θ

(t+1)
g −Θ(t)

g ⟩︸ ︷︷ ︸
ϵ1,g

+

m∑
i=1

⟨∇Θk
ℓ(Θ(t)

g ,Θ
(t)
c(i)), θ

(t+1)
i −Θ

(t)
c(i)⟩︸ ︷︷ ︸

ϵ1,i

(14)

+ L∥Θ(t+1)
g −Θ(t)

g ∥2︸ ︷︷ ︸
ϵ2,g

+

m∑
i=1

L∥θ(t+1)
i −Θ

(t)
c(i)∥

2

︸ ︷︷ ︸
ϵ2,i

. (15)

By mapping ϵ1,g, ϵ2,g, ϵ1,i, ϵ2,i to τ1,u, τ2,u, τ1,v, τ1,v respectively in the convergence proof for Fed-
Sim, with Claim 14, 15, 16, 17 in [3], we will obtain the same bound.

Bounding ϵcluster. In this bounding step, we assign a new cluster for all clients, but distribute the
cluster model later. Therefore c(i) changes to c′(i), but θi keeps the same. And we got

L(Θ(t+1)
g , θ

(t+1)
i , c′(i))− L(Θ(t+1)

g , θ
(t+1)
i , c(i)) = 0 (16)

Bounding ϵdistriubte. According to Lemma 1, we have ϵdistriubte ≤ 0.

Finally, combining ϵfedsim, ϵcluster, ϵdistribute, taking full expectation and telescoping over t =
1, . . . , T , we have the same error bound and convergence rate with FedSim.
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