
Appendix1

A Additional Experiments2

Class Conditioning. As both GET and ViT share the same class injection interface, we perform an3

ablation study on ViT. We consider two types of input injection schemes for class labels: 1) additive4

injection scheme 2) injection with adaptive layer normalization (AdaLN-Zero) as used in DiT [25].5

Despite using almost the same parameters as unconditional ViT-B, the class-conditional ViT-B using6

additive injection interface has an FID of 12.43 at 200k, while the ViT-B w/ AdaLN-Zero class7

embedding [25] set up an FID of 17.19 at 200k iterations. Another surprising observation is that8

ViT-B w/ AdaLN-Zero class embedding performs worse than unconditional ViT in terms of FID9

score. Therefore, it seems that adaptive layer normalization might not be useful when used only with10

class embedding.11

Table 6: Ablation on class conditioning.

Model FID↓ IS↑ Params↓
ViT-Uncond 15.20 8.27 85.2M
ViT-AdaLN-Zero 17.19 8.38 128.9M
ViT-Inj-Interface 12.43 8.69 85.2M

B Related Work12

Transformers. Transformers were first proposed by Vaswani et al. [36] for machine translation and13

since then have been widely applied in many domains like natural language processing [10, 19, 28, 33],14

reinforcement learning [9, 24], self-supervised learning [8], vision [12, 21], and generative modeling15

[13, 15, 25, 31]. Many design paradigms for transformer architectures have emerged over the years.16

Notable ones include encoder-only [10, 18, 20], decoder-only [7, 28, 29, 37, 38], and encoder-decoder17

architectures [17, 30, 36]. We are interested in scalable transformer architectures for generative18

modeling. Most relevant to this work are two encoder-only transformer architectures: Vision19

Transformer (ViT) [12] and Diffusion Transformer (DiT) [25]. Vision Transformer (ViT) closely20

follows the original transformer architecture. It first converts 2D images into patches that are flattened21

and projected into an embedding space. 2D Positional encoding is added to the patch embedding to22

retain positional information. This sequence of embedding vectors is fed into the standard transformer23

architecture. Diffusion Transformers (DiT) are based on ViT architecture and operate on sequences24

of patches of an image that are projected into a latent space through an image encoder [34]. In25

addition, DiTs adapt several architectural modifications that enable their use as a backbone for26

diffusion models and help them scale better with increasing model size, including adaptive Layer27

Normalization (AdaLN-Zero) [6, 11, 16, 26] for time and class embedding, and zero-initialization28

for the final convolution layer [14].29

Deep equilibrium models. Deep Equilibrium models (DEQs) [2] solve for a fixed point in the30

forward pass. Specifically, given an input x and a layer or a block fθ, DEQ approximates an31

infinite-depth representation of fθ by solving for its fixed point z⋆: z⋆ = fθ(z
⋆;x). For the32

backward pass, one can differentiate analytically through z⋆ by the implicit function theorem.33

DEQs do not have any convergence guarantees and can be highly unstable to train [4]. As a34

result, recent efforts focus on addressing these issues by designing variants of DEQs with provable35

guarantees [32, 39], or through optimization techniques such as Jacobian regularization [4], and fixed-36

point correction [5]. DEQs have been successfully applied on a wide range of tasks such as image37

classification [3], semantic segmentation [3, 40], optical flow estimation [5], landmark detection [23],38

out-of-distribution generalization [1], language modelling [2], unsupervised learning [35], and39

generative modelling [22, 27].40

C Model Configuration41

We set the EMA momentum to 0.9999 for all the models.42
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The configuration of different GET architectures are listed in Table 7. Here, Li and Le denote the43

number of transformer blocks in the Injection transformer and Equilibrium transformer, respectively.44

D denotes the width of the network. E corresponds to the expanding factor of the FFN layer in45

the Equilibrium transformer, which results in the hidden dimension of E × D. For the injection46

transformer, we always adopt an expanding factor of 4.47

Table 7: Details of configuration for GET architectures.

Model Params Li Le D E

GET-Tiny 8.9M 6 3 256 6
GET-Mini 19.2M 6 3 384 6
GET-Small 37.2M 6 3 512 6
GET-Base 62.2M 1 3 768 12
GET-Base+ 83.5M 6 3 768 8

We have listed relevant model configuration details of ViT in Table 8. The model configurations are48

adopted from DiT [25], whose effectiveness was tested for learning diffusion models. In this table, L49

denotes the number of transformer blocks in ViT. D stands for the width of the network. We always50

adopt an expanding factor of 4 following the common practice [12, 25, 36].51

Table 8: Details of configuration for ViT architectures.

Model Params L D

ViT-B 85.2M 12 768
ViT-L 302.6M 24 1024
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