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Abstract

Self-training is a well-established technique in semi-supervised learning, which1

leverages unlabeled data by generating pseudo-labels and incorporating them with2

a limited labeled dataset for training. The effectiveness of self-training heavily3

relies on the accuracy of these pseudo-labels. In this paper, we introduce doubly-4

robust self-training, an innovative semi-supervised algorithm that provably balances5

between two extremes. When pseudo-labels are entirely incorrect, our method6

reduces to a training process solely using labeled data. Conversely, when pseudo-7

labels are completely accurate, our method transforms into a training process8

utilizing all pseudo-labeled data and labeled data, thus increasing the effective9

sample size. Through empirical evaluations on both the ImageNet dataset for image10

classification and the nuScenes autonomous driving dataset for 3D object detection,11

we demonstrate the superiority of the doubly-robust loss over the self-training12

baseline.13

1 Introduction14

Semi-supervised learning considers the problem of machine learning given a large unlabeled dataset15

and a small labeled dataset. It plays an important role in the problem of model finetuning, model16

distillation, self-training, transfer learning and continual learning (Zhu, 2005; Pan and Yang, 2010;17

Weiss et al., 2016; Gou et al., 2021; De Lange et al., 2021). To best utilize the unlabeled data, one18

common assumption in distillation or self-training is that one has access to a teacher model obtained19

from prior training processes, which may or may not be accurate in the target task due to potential20

distribution shift. In this paper, we ask the following question:21

Given a teacher model, a large unlabeled dataset and a small labeled dataset, how22

can we design a principled learning process that ensures consistent and sample-23

efficient learning of the true model?24

One widely adopted and popular approach in computer vision and autonomous driving for leveraging25

information from all three components is self-training (Lee, 2013; Berthelot et al., 2019b,a; Sohn26

et al., 2020a; Xie et al., 2020; Jiang et al., 2022; Qi et al., 2021). This approach involves using a27

teacher model to generate pseudo-labels for all unlabeled data, and then training a new model on a28

mixture of both pseudo-labeled and labeled data. However, this method can lead to overreliance on29

the teacher model and can miss important information provided by the labeled data. As a consequence,30

the self-training approach becomes highly sensitive to the accuracy of the teacher model. Our study31

demonstrates that even in the simplest scenario of mean estimation, this method can yield significant32

failures when the teacher model lacks accuracy.33

To overcome this issue, we propose an alternative method that is doubly robust. When the covariate34

distribution of the unlabeled dataset and the labeled dataset matches, the estimator is always consistent35

no matter whether the teacher model is accurate or not. On the other hand, when the teacher model is36

an accurate predictor, the estimator makes full use of the pseudo-labeled dataset and greatly increases37
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the effective sample size. The idea is inspired by and directly related to the missing data inference in38

the literature of causal inference (Rubin, 1976; Kang and Schafer, 2007; Birhanu et al., 2011; Ding39

and Li, 2018), the semi-parametric mean estimation (Zhang et al., 2019), and the recent work on40

prediction-powered inference (Angelopoulos et al., 2023).41

1.1 Main Results42

The proposed algorithm is a simple modification of the original loss for self-training. Assume that43

we are given a set of unlabeled samples D1 = {X1, X2, · · · , Xm}, drawn from a fixed distribution44

PX , a set of labeled samples D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)} drawn45

from some joint distribution PX × PY |X , and a teacher model f̂ . Let ℓθ(x, y) be a pre-specified46

loss function that characterizes the prediction error of the estimator with parameter θ on the given47

sample (X,Y ). The traditional self-training aims at minimizing the combined loss for both labeled48

and unlabeled samples, where the pseudo-labels for unlabeled samples are generated using f̂ :49

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

ℓθ(Xi, f̂(Xi)) +

m+n∑
i=m+1

ℓθ(Xi, Yi)

)
.

Note that it can also be viewed as the first using f̂ to predict all the data, and then replace the labeled50

ones with the known labels.51

LSL
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, Yi).

As an alternative, our proposed doubly robust loss simply replaces the coefficient 1/(m+ n) with52

1/n in the last two terms.53

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi).

With such a small change, the estimator becomes consistent and a doubly robust estimator.54

Theorem 1 (Informal). Let θ⋆ be the minimizer of the original loss θ⋆ =55

argminθ E(X,Y )∼PX×PY |X [ℓθ(X,Y )]. Under certain regularity conditions, we have56

∥∇θLDR
D1,D2

(θ⋆)∥2 ≲


√

d
m+n , when Y ≡ f̂(X),√
d
n , otherwise.

On the other hand, there exists instances such that ∥∇θLSL
D1,D2

(θ⋆)∥2 ≥ C always holds true no57

matter how large m,n are.58

The result shows that the true parameter θ⋆ is also a local minimum of the doubly-robust loss, but not59

a local minimum of the original self-training loss. We also provide more detailed comparisons for the60

special example of mean estimation in Section 2.2, and the empirical results on image and driving61

datasets are provided in Section 3.62

1.2 Related Work63

Missing Data Inference and Causal Inference. The problem of missing data inference has been a64

central and fundamental problem in causal inference. For each unit in the experiment, at most one65

of the potential outcomes—the one corresponding to the treatment to which the unit is exposed—is66

observed, and the other potential outcomes are missing (Holland, 1986; Ding and Li, 2018). The67

doubly robust method combines the virtues of data imputation Rubin (1979) and propensity score68

weighting Rosenbaum and Rubin (1983). The estimator is named doubly robust due to the following69

property: if the model for imputation is correctly specified then it is consistent no matter whether the70

propensity score model is correctly specified; on the other hand, if the model propensity score model71

is correctly specified, then it is consistent no matter whether the model for imputation is correctly72

specified (Scharfstein et al., 1999; Bang and Robins, 2005; Birhanu et al., 2011; Ding and Li, 2018).73
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Another line of work that is also inspired by the doubly robust estimator in causal inference is double74

machine learning (Semenova et al., 2017; Chernozhukov et al., 2018a,b; Foster and Syrgkanis, 2019).75

The problem in double machine learning is related to the classic semi-parametric problem of inference76

on a low-dimensional parameter in the presence of high-dimensional nuisance parameters, and thus77

is different from our question of semi-supervised learning.78

Self-Training. Self-training is a popular semi-supervised learning paradigm in which machine-79

generated pseudo-labels are used for training with unlabeled data (Lee, 2013; Berthelot et al., 2019b,a;80

Sohn et al., 2020a). To generate these pseudo-labels, a teacher model is pre-trained on a set of labeled81

data, and its predictions on the unlabeled data are extracted as pseudo-labels. Previous work seeks82

to address the noisy quality of pseudo-labels in various ways. MixMatch Berthelot et al. (2019b)83

ensembles pseudo-labels across several augmented views of the input data. ReMixMatch Berthelot84

et al. (2019a) extends this by weakly augmenting the teacher inputs and strongly augmenting the85

student inputs. FixMatch Sohn et al. (2020a) uses confidence thresholding to select only high-quality86

pseudo-labels for student training.87

Self-training has been applied in both 2D (Liu et al., 2021a; Jeong et al., 2019; Tang et al., 2021; Sohn88

et al., 2020b; Zhou et al., 2022) and 3D (Park et al., 2022; Wang et al., 2021; Li et al., 2023; Liu et al.,89

2023) object detection. STAC Sohn et al. (2020b) enforces consistency between strongly augmented90

versions of confidence-filtered pseudo-labels. Unbiased teacher Liu et al. (2021a) updates the teacher91

during training with an exponential moving average (EMA) of the student network weights. Dense92

Pseudo-Label Zhou et al. (2022) replaces box pseudo-labels with the raw output features of the93

detector to allow the student to learn richer context. In the 3D domain, 3DIoUMatch Wang et al.94

(2021) thresholds pseudo-labels using a model-predicted Intersection-over-Union (IoU). DetMatch95

Park et al. (2022) performs detection in both the 2D and 3D domains and filters pseudo-labels based96

on 2D-3D correspondence. HSSDA Liu et al. (2023) extends strong augmentation during training97

with a patch-based point cloud shuffling augmentation. Offboard3D Qi et al. (2021) utilizes multiple98

frames of temporal context to improve pseudo-label quality.99

There have been some theoretical analyses for the case of semi-supervised inference for mean100

estimation and linear regression (Zhang et al., 2019; Azriel et al., 2022). Our analysis bridges the101

gap between these approaches and the doubly-robust estimators in causal inference literature. Our102

proposed loss can be viewed as a generalization of these approaches, and can exactly reduce to the103

same estimator when considering mean estimation.104

2 Doubly-Robust Self-Training105

2.1 Proposed Algorithm106

We begin with the case where the marginal distributions of the covariate of the labeled and107

unlabeled datasets are the same. Assume that we are given a set of unlabeled samples D1 =108

{X1, X2, · · · , Xm}, drawn from a fixed distribution PX supported on X , a set of labeled samples109

D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)} drawn from some joint distribution110

PX × PY |X supported on X ×Y , and a pre-trained model f̂ : X 7→ Y . Let ℓθ(·, ·) : X ×Y 7→ R be111

a pre-specified loss function that characterizes the prediction error of the estimator with parameter θ112

on the given sample (X,Y ). Our target is to find some θ⋆ ∈ Θ that satisfies113

θ⋆ ∈ argmin
θ∈Θ

E(X,Y )∼PX×PY |X [ℓθ(X,Y )].

For any loss ℓθ(x, y), consider the first simple estimator which ignores the predictor f̂ and only trains114

on the labeled samples:115

LTL
D1,D2

(θ) =
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi).

This can be a safe choice since it’s always an empirical risk minimizer. As n → ∞, the loss converges116

to the population loss. However, it ignores all the information provided in f̂ and the unlabeled dataset,117

which makes it less sample efficient when the predictor f̂ is informative.118
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On the other hand, the traditional self-training aims at minimizing the combined loss for both labeled119

and unlabeled samples, where the pseudo-labels for unlabeled samples are generated using f̂ 1:120

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

ℓθ(Xi, f̂(Xi)) +

m+n∑
i=m+1

ℓθ(Xi, Yi)

)

=
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, Yi).

As is shown by the last equality, the self-training loss can be viewed as first using f̂ to predict all the121

samples (including the labeled samples) and computing the average loss, then replacing part of the122

loss for labeled samples with the loss on provided labels. Although the loss uses the information of123

the unlabeled samples and f̂ , the performance can be bad when the predictor is not accurate.124

On the other hand, we propose an alternative loss, which simply replaces the weight 1/(m+ n) in125

the last two terms with 1/n:126

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi). (1)

As we will show later, this is a doubly-robust estimator. We provide an intuitive interpretation here:127

• In the case when the given predictor is always accurate, i.e. f̂(X) ≡ Y always holds (which128

also means that Y |X = x is a deterministic function of x), the last two terms cancel, and the129

loss is exactly minimizing the average loss 1
m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)) on all the data provided.130

The effective sample size is m+ n, compared with effective sample size n for training only on131

labeled dataset LTL. In this case, the loss LDR is much better than LTL, and comparable to LSL.132

We may as well relax the assumption of f̂(X) = Y to E[ℓθ(X, f̂(X))] =133

E[ℓθ(X,Y )]. As n grows larger, the loss is approximately minimizing the average loss134
1

m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)).135

• On the other hand, no matter how bad the given predictor is, the difference between the first two136

terms vanishes as either of m,n goes to infinity since the labeled samples Xm+1, · · · , Xm+n137

follow the same distribution as X1, · · · , Xm. Thus asymptotically the loss is minimizing138
1
n

∑m+n
i=m+1 ℓθ(Xi, Yi), which discards the bad predictor f̂ and only focuses on the labeled139

dataset. Thus in this case, the loss LDR is much better than LSL, and comparable to LTL.140

This loss shall only be used when the covariate distributions between labeled and unlabeled samples141

match. In the case where there is a distribution mismatch, we propose an alternative loss in Section 2.4.142

A similar idea is also proposed in Angelopoulos et al. (2023) for constructing the confidence interval143

with a given teacher model. However, they focus on the case where the teacher model is accurate to144

tighten the confidence interval, while we focus on the doubly-robust property of the estimator.145

2.2 Motivating example: mean estimation146

As a concrete example, in the case of one-dimensional mean estimation we can take ℓθ(X,Y ) =147

(θ − Y )2. Our target is to find some θ⋆ that satisfies148

θ⋆ = argmin
θ

E(X,Y )∼PX×PY |X [(θ − Y )2].

One can see that θ⋆ = E[Y ]. In this case, the loss for training only on labeled data becomes149

LTL
D1,D2

(θ) =
1

n

m+n∑
i=m+1

(θ − Yi)
2.

1There are several variants of the traditional self-training loss. For example, Xie et al. (2020) introduces an
extra weight (m+ n)/n on the labeled samples, and adds noise to the student model; Sohn et al. (2020a) uses
confidence thresholding to filter unreliable pseudo-labels. However, both of the alternatives still suffer from the
inconsistency issue. In this paper we focus on the simplest form LSL.
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And the optimal parameter is θ̂TL = 1
n

∑m+n
i=m+1 Yi, which is a simple empirical average over all150

observed Y ’s.151

For a given pre-existing predictor f̂ , the loss for self-training becomes152

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

(θ − f̂(Xi))
2 +

m+n∑
i=m+1

(θ − Yi)
2

)
It’s straightforward to see that the minimizer of the loss is the unweighted average between the
unlabeled predictors f̂(Xi)’s and the labeled Yi’s, i.e.

θ⋆SL =
1

m+ n

(
m∑
i=1

f̂(Xi) +

m+n∑
i=m+1

Yi

)
.

In the case of m ≫ n, the mean estimator is almost the same as the average of all the predicted value153

on the unlabeled dataset, which can be far from θ⋆ when the predictor f̂ is inaccurate.154

On the other hand, for the proposed doubly robust estimator, we have155

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

(θ − f̂(Xi))
2 − 1

n

m+n∑
i=m+1

(θ − f̂(Xi))
2 +

1

n

m+n∑
i=m+1

(θ − Yi)
2

=
1

m+ n

m+n∑
i=1

(θ − f̂(Xi))
2 +

1

n

m+n∑
i=m+1

2(f̂(Xi)− Yi)θ + Y 2
i − f̂(Xi)

2.

Note that the loss is still convex, and we have156

θ⋆DR =
1

m+ n

m+n∑
i=1

f̂(Xi)−
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi).

This recovers the estimator in prediction-powered inference (Angelopoulos et al., 2023). Assume that157

f̂ is independent of the labeled data. We can calculate the mean squared error of the three estimators158

as follows.159

Proposition 1. Let Var[f̂(X)− Y ] = E[(f̂(X)− Y )2 − E[(f̂(X)− Y )]2]. We have160

E[(θ⋆ − θ̂TL)
2] =

1

n
Var[Y ],

E[(θ⋆ − θ̂SL)
2] ≤ 2m2

(m+ n)2
E[(f̂(X)− Y )]2 +

2m

(m+ n)2
Var[f̂(X)− Y ] +

2n

(m+ n)2
Var[Y ],

E[(θ⋆ − θ̂DR)
2] ≤ 2min

(
1

n
Var[Y ] +

m+ 2n

(m+ n)n
Var[f̂(X)],

m+ 2n

(m+ n)n
Var[f̂(X)− Y ] +

1

m+ n
Var[Y ]

)
.

The proof is deferred to Appendix E. From the proposition, we can see the double-robustness of θ̂DR:161

no matter how bad estimator f̂(X) is, the rate is always upper bounded by 4
n (Var[Y ] + Var[f̂(X)]).162

On the other hand, when f̂(X) is accurate estimator of Y (i.e. Var[f̂(X)− Y ] is small), the rate163

can be improved to 2
m+nVar[Y ]. In contrast, the self-training loss always has a non-vanishing term164

2m2

(m+n)2E[(f̂(X)− Y )]2 when m ≫ n, unless the predictor f̂ is accurate.165

On the other hand, when f̂(x) = β̂⊤
(−1)x+ β̂1 is a linear predictor trained on the labeled data with166

β̂ = argminβ=[β1,β(−1)]
1
n

∑m+n
i=m+1(β

⊤
(−1)Xi + β1 − Yi)

2, our estimator reduces to the estimator in167

the semi-supervised mean estimator in Zhang et al. (2019). Let X̃ = [1, X]. We have the following168

result that reveals the superiority of the doubly robust estimator compared to the other two options.169

Proposition 2 ((Zhang et al., 2019)). We provide the asymptotic behavior when f̂ is a linear predictor170

trained on the labeled data:171

• Self-training θ̂SL is biased and thus inconsistent:172

E[θ̂DR − θ⋆] =
m

m+ n
E[β⊤X̃ − Y ]
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• Training only on labeled data θ̂TL is unbiased but large variance:173
√
n(θ̂TL − θ⋆) → N (0,E[(Y − β⊤X̃)2] + β⊤

(−1)Σβ(−1))

• Doubly Robust θ̂DR is unbiased with smaller variance:174

√
n(θ̂DR − θ⋆) → N (0,E[(Y − β⊤X̃)2] +

n

m+ n
β⊤
(−1)Σβ(−1))

Here β = argminβ E[(Y − β⊤X̃)2], Σ = E[(X − E[X])(X − E[X])⊤].175

2.3 Guarantee for general loss176

In the general case, we show that the doubly robust loss function still provides a good landscape. In177

particular, as n,m goes to infinity, the global minimum of the original loss is also a critical point of178

the new doubly robust loss, no matter how bad the predictor f̂ is.179

Let θ⋆ be the minimizer of EPX,Y
[ℓθ(X,Y )]. Let f̂ be a pre-existing model that does not depend on180

the dataset D1,D2. We also make the following regularity assumptions.181

Assumption 1. The loss ℓθ(x, y) is differentiable at θ⋆ for any x, y.182

Assumption 2. The random variables ∇θℓθ(X, f̂(X)) and ∇θℓθ(X,Y ) have bounded first and183

second moments.184

With this assumption, we denote ΣY−f̂
θ = Cov[∇θℓθ(X, f̂(X)) − ∇θℓθ(X,Y )], Σf̂

θ =185

Cov[∇θℓθ(X, f̂(X))], ΣY
θ = Cov[∇θℓθ(X,Y )].186

Theorem 2. Under Assumption 1 and 2, we have that with probability at least 1− δ,187

∥∇θLDR
D1,D2

(θ⋆)∥2 ≤Cmin

(
∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
+ ∥ΣY−f̂

θ⋆ ∥2

√
d

nδ
,

∥Σf̂
θ⋆∥2

(√
d

(m+ n)δ
+

√
d

nδ

)
+ ∥ΣY

θ⋆∥2

√
d

nδ

)
.

Here C is some universal constant, and LDR
D1,D2

is defined in Equation (1).188

The proof is deferred to Appendix F. From the example of mean estimation we know that one can189

design instances such that ∥∇θLSL
D1,D2

(θ⋆)∥2 ≥ C for some positive constant C.190

When the loss ∇θLDR
D1,D2

is convex, it implies that the global minimum of ∇θLDR
D1,D2

converges191

to θ⋆ as both m,n go to infinity. When the loss ∇θLDR
D1,D2

is strongly convex, it also implies that192

∥θ̂ − θ⋆∥2 converges to 0 as both m,n go to infinity, where θ̂ is the minimizer of ∇θLDR
D1,D2

.193

When f̂ is a perfect predictor with f̂(X) ≡ Y (and Y |X = x is deterministic), one has LDR
D1,D2

(θ⋆) =194

1
m+n

∑m+n
i=1 ℓθ(Xi, Yi). The effective sample size is m+ n instead of n in LSL

D1,D2
(θ).195

When f̂ is also trained from the labeled data, one may apply data splitting to achieve the same196

guarantee up to a constant factor. We provide more discussions in Appendix D.197

2.4 The case of distribution mismatch198

We also consider the case where the marginal distributions of the covariate of the labeled199

and unlabeled datasets are different. Assume that we are given a set of unlabeled samples200

D1 = {X1, X2, · · · , Xm}, drawn from a fixed distribution PX , a set of labeled samples201

D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)} drawn from some joint distribution202

QX × PY |X , and a pre-trained model f̂ . In the case when the labeled samples do not follow the same203

distribution as the unlabeled samples, we may need to introduce the importance weight π(x). This204

introduces the following doubly robust estimator:205

LDR2
D1,D2

(θ) =
1

m

m∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

1

π(Xi)
ℓθ(Xi, f̂(Xi)) +

1

n

m+n∑
i=m+1

1

π(Xi)
ℓθ(Xi, Yi).
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Note that we not only introduce the extra importance weight π, but also change the first term from206

the average of all the m+ n samples to the average of n samples.207

Proposition 3. We have E[LDR2
D1,D2

(θ)] = EPX,Y
[ℓθ(X,Y )] as long as one of the following two208

assumptions hold:209

• For any x, π(x) = PX(x)
QX(x) .210

• For any x, ℓθ(x, f̂(x)) = EY∼PY |X=x
[ℓθ(x, Y )].211

The proof is deferred to Appendix G. The proposition implies that as long as one of the π or f̂ is212

accurate, the expectation of the loss is the same as that of the target loss. When the distributions213

between unlabeled and labeled samples match each other, it reduces to the case in the previous214

sections. In this case, taking π(x) = 1 guarantees that the expectation of the doubly-robust loss is215

always the same as that of the target loss.216

3 Experiments217

3.1 Optimization of the Doubly Robust Loss218

In practice, we train a neural network with mini-batched stochastic gradient descent. Although we219

have shown in Theorem 2 that the true parameter remains a local minimum of the doubly robust220

loss, the optimization landscape might be completely different for the new doubly robust loss. We221

observed in the experiments that directly minimizing the doubly robust loss in Equation (1) leads to222

instability. Instead, we propose to minimize the curriculum-based loss in each epoch:223

LDR,t
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))− αt ·

(
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi)

)
.

Here we set αt = t/T , where T is the total number of epochs. For object detection experiments,224

we introduce the labeled samples only in the final epoch, setting αt = 0 for all epochs before225

setting αt = 1 in the final epoch. Intuitively, we start from the training with samples only from the226

pseudo-labels, and gradually introduce the labeled samples in doubly robust loss for fine-tuning. We227

observe that this greatly stabilizes the training landscape in the experiments below.228

3.2 Image Classification229

Datasets and Settings. We evaluate our doubly-robust self-training on the ImageNet100 dataset,230

which contains random 100 classes from ImageNet-1k (Russakovsky et al., 2015), with a number231

of 120K training images (approximately 1,200 samples per class) and 5,000 validation images (50232

samples per class). To further test the effectiveness of our algorithm in a low-data scenario, we create233

an additional dataset called mini-ImageNet100 by randomly sampling 100 images per class from234

ImageNet100. Two carefully-selected models are evaluated: 1) DaViT-T (Ding et al., 2022), a popular235

vision transformer architecture with state-of-the-art performance on ImageNet, and 2) ResNet50 (He236

et al., 2016), a classic and powerful convolutional network to verify the generality of our algorithm.237

Baselines. In addition to doubly-robust self-training, we establish 3 baselines: 1) ‘Labeled Only’ for238

training on labeled data only (partial training set) with a loss LTL, 2) ‘Pseudo Only’ for training with239

pseudo labels generated for all training samples, 3) ‘Labeled + Pseudo’ for a mixture of pseudo-labels240

and labeled data, with the loss LSL. See Appendix for more implementation details and ablations.241

Results on ImageNet100. We first conduct experiments on ImageNet100 by training the model242

for 20 epochs using different fractions of labeled data from 1% to 100%. From the results shown243

in Fig. 1, we observe that: 1) Our model outperforms all baseline methods on both two networks244

by large margins. For example, we achieve 5.5% and 5.3% gains (Top-1 Acc) on DaViT over the245

‘Labeled + Pseudo’ method for 20% and 80% labeled data, respectively. 2) The ‘Labeled + Pseudo’246

method consistently beats the ‘Labeled Only’ baseline. 3) While ‘Pseudo Only’ works for smaller247

fractions of the labeled data (less than 30%) on DaViT, it is inferior to ‘Labeled Only’ on ResNet50.248

Results on mini-ImageNet100. We also perform comparisons on mini-ImageNet100 to demonstrate249

the performance when the total data volume is limited. From the results in Table 1, we see our model250
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Figure 1: Comparisons on ImageNet100 using two different network architectures. Both Top-1 and
Top-5 accuracies are reported. All models are trained for 20 epochs.

Table 1: Comparisons on mini-ImageNet100, all models trained for 100 epochs.

Labeled Data Percent Labeled Only Pseudo Only Labeled + Pseudo Doubly-Robust Loss
top1 top5 top1 top5 top1 top5 top1 top5

1 2.72 9.18 2.81 9.57 2.73 9.55 2.75 9.73
5 3.92 13.34 4.27 13.66 4.27 14.4 4.89 16.38

10 6.76 20.84 7.27 21.64 7.65 22.48 8.01 21.90
20 12.3 31.3 13.46 30.79 13.94 32.63 13.50 32.17
50 20.69 46.86 20.92 45.2 24.9 50.77 25.31 51.61
80 27.37 55.57 25.57 50.85 30.63 58.85 30.75 59.41

100 31.07 60.62 28.95 55.35 34.33 62.78 34.01 63.04

generally outperforms all baselines. As the dataset size decreases and the number of training epochs251

increases, the gain of our algorithm becomes smaller. This is expected, as 1) the models are not252

adequately trained and thus have noise issues, and 2) there are insufficient ground truths to compute253

the last term of our loss function. In extreme cases, there is only 1 labeled sample (1%) per class.254

3.3 3D Object Detection255

Doubly-Robust Object Detection. Given some visual representation of a scene, 3D object detection256

aims to generate a set of 3D bounding box predictions {bi}i∈[m+n] and a set of corresponding class257

predictions {ci}i∈[m+n]. Thus, each single ground-truth annotation Yi ∈ Y is a set Yi = (bi, ci)258

containing a box and a class. During training, the object detector is supervised with a sum of the box259

regression loss Lloc and the classification loss Lcls, i.e. Lobj = Lloc + Lcls.260

In the self-training for object detection, pseudo-labels for a given scene Xi are selected from261

the labeler predictions f(Xi) based on some user-defined criteria (typically the model’s detection262

confidence). Unlike in standard classification or regression, Yi will contain a differing number of263

labels depending on the number of objects in the scene. Furthermore, the number of extracted264

pseudo-labels f(Xi) will generally not be equal to the number of scene ground-truth labels Yi due to265

false positive/negative detections. Therefore it makes sense to express the doubly-robust loss function266

in terms of the individual box labels as opposed to the scene-level labels. We define the doubly-robust267
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Table 2: Performance comparison on nuScenes val set.

Labeled Data Fraction Labeled Only Labeled + Pseudo Doubly-Robust Loss
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 7.60 17.32 8.18 18.33
1/16 11.15 20.55 11.60 21.03 12.30 22.10
1/4 25.66 41.41 28.36 43.88 27.48 43.18

Table 3: Per-class mAP (%) comparison on nuScenes val set using 1/16 of total labels in training.
Car Ped Truck Bus Trailer Barrier Traffic Cone

Labeled Only 48.6 30.6 8.5 6.2 4.0 6.8 4.4
Labeled + Pseudo 48.8 30.9 8.8 7.5 5.7 6.7 4.0

Improvement +0.2 +0.3 +0.3 +1.3 +1.7 -0.1 -0.4
Doubly-Robust Loss 51.5 32.9 9.6 8.2 5.2 7.2 4.5

Improvement +2.9 +2.3 +1.1 +2.0 +1.2 +0.4 +0.1

object detection loss as follows:268

LDR
obj(θ) =

1

M +Nps

M+Nps∑
i=1

ℓθ(Xi, f(Xi))−
1

Nps

M+Nps∑
i=M+1

ℓθ(X
′
i, f(X

′
i)) +

1

N

M+N∑
i=M+1

ℓθ(Xi, Yi).

where M is the total number of pseudo-label boxes from the unlabeled split, N is the total number of269

labeled boxes, X ′
i is the scene with pseudo-label boxes from the labeled split, and Nps is the total270

number of pseudo-label boxes from the labeled split. We note that the last two terms now contain271

summations over a differing number of boxes, an upshot of the discrepancy between the number of272

manually-labeled boxes and pseudo-labeled boxes. Both components of the object detection loss273

(localization/classification) adopt this form of doubly-robust loss.274

Dataset and Setting. To evaluate doubly-robust self-training in the autonomous driving setting, we275

perform experiments on the large-scale 3D detection dataset nuScenes Caesar et al. (2020). nuScenes276

is comprised of 1000 scenes (700 training, 150 validation and 150 test) with each frame containing277

sensor information from RGB camera, LiDAR, and radar scans. Box annotations are comprised of278

10 classes, with the class instance distribution following a long-tailed distribution, allowing us to279

investigate our self-training approach for both common and rare classes. The main 3D detection280

metrics for nuScenes are mean Average Precision (mAP) and the nuScenes Detection Score (NDS), a281

dataset-specific metric consisting of a weighted average of mAP and five other true-positive metrics.282

For the sake of simplicity, we train object detection models using only LiDAR sensor information.283

Results. After semi-supervised training, we evaluate our student model performance on the nuScenes284

val set. We compare three settings: training the student model with only the available labeled data285

(i.e. equivalent to teacher training), training the student model on the combination of labeled/teacher-286

labeled data using the naive self-training loss, and training the student model on the combination of287

labeled/teacher-labeled data using our proposed doubly-robust loss. We report results for training288

with 1/24, 1/16, and 1/4 of the total labels in Table 2. We find that the doubly-robust loss improves289

both mAP and NDS over using only labeled data and the naive baseline in the lower label regime,290

whereas performance is slightly degraded when more labels are available. Furthermore, we also291

show a per-class performance breakdown in Table 3. We find that the doubly robust loss consistently292

improves performance for both common (car, pedestrian) and rare classes. Notably, the doubly-robust293

loss is even able to improve upon the teacher in classes for which pseudo-label training decreases294

performance when using the naive training (e.g. barriers and traffic cones).295

4 Conclusion296

In this paper, we propose the new doubly-robust loss for self-training. Theoretically, we analyze297

the double-robustness property of the proposed loss and show its statistical efficiency when the298

pseudo-labels are accurate. Empirically, we see large improvements in both image classification and299

3D object detection datasets. As part of future work, it would be interesting to understand how the300

doubly robust loss can be applied to other domains of questions, including model distillation, transfer301

learning, and continual learning. It is also important to find practical and efficient algorithms when302

the labeled and unlabeled data do not match in distribution.303
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A Implementation Details of Image Classification422

We evaluate our doubly-robust self-training on the ImageNet100 and mini-ImageNet100 datasets,423

which are subsets of ImageNet-1k from ImageNet Large Scale Visual Recognition Challenge424

2012 (Russakovsky et al., 2015). Two models are evaluated: 1) DaViT-T (Ding et al., 2022),425

a state-of-the-art 12-layer vision transformer architecture with a patch size of 4, a window size426

of 7, and an embedding dim of 768, and 2) ResNet50 (He et al., 2016), a classic and powerful427

convolutional network with 50 layers and embedding dim 2048. We evaluate all the models on the428

same ImageNet100 validation set (50 samples per class). For the training, we use the same data429

augmentation and regularization strategies following the common practice in Liu et al. (2021b);430

Lin et al. (2017); Ding et al. (2022). We train all the models with a batch size of 1024 on 8 Tesla431

V100 GPUs (the batch size is reduced to 64 if the number of training data is less than 1000).432

We use AdamW (Loshchilov and Hutter, 2017) optimizer and a simple triangular learning rate433

schedule (Smith and Topin, 2019). The weight decay is set to 0.05 and the maximal gradient norm is434

clipped to 1.0. The stochastic depth drop rates are set to 0.1 for all models. During training, we crop435

images randomly to 224× 224, while a center crop is used during evaluation on the validation set.436

We use a curriculum setting where the αt grows linearly or quadratically from 0 to 1 throughout the437

training. To show the effectiveness of our method, we also compare model training with different438

curriculum learning settings and varying numbers of epochs.439

B Ablative Experiments on Image Classification440

Table 4: Ablation study on different curriculum settings on ImageNet-100. All models are trained in
20 epochs.

Methods
30% GTs 50% GTs 70% GTs 90% GTs

top1 top5 top1 top5 top1 top5 top1 top5
Naive Labeled + Pseudo 28.01 54.63 37.6 66.72 43.76 73.42 47.74 77.15
Doubly-Robust, αt = 1 28.43 56.65 38.06 67.18 43.22 73.18 48.52 77.21
Doubly-Robust, αt = t/T (linear) 30.87 60.98 40.18 71.06 46.60 75.80 50.44 78.88
Doubly-Robust, αt = (t/T )2 (quadratic) 31.15 61.29 40.86 71.14 45.50 75.11 49.64 77.77

Ablation Study on Curriculum Settings. There are three options for the curriculum setting: 1)441

αt = 1 throughout the whole training, 2) grows linearly with training iterations αt = t/T , 3) grows442

quadratically with training iterations αt = (t/T )2. From results in Table 4, we see: the first option443

achieves comparable performance with the ‘Naive Labeled + Pseudo’ baseline. Both the linear and444

quadratic strategies show significant performance improvements: the linear one works better when445

more labeled data is available, e.g., 70% and 90%, while the quadratic one prefers less labeled data,446

e.g. 30% and 50%.447

Table 5: Ablation study on the number of epochs. All models are trained using 10% labeled data on
ImageNet-100.

Training epochs
Labeled Only Pseudo Only Labeled + Pseudo Doubly-Robust Loss

top1 top5 top1 top5 top1 top5 top1 top5
20 16.02 39.68 17.02 38.64 19.38 41.96 21.88 47.18
50 25.00 51.21 28.90 53.74 30.36 57.04 36.65 65.68

100 35.57 64.66 44.43 71.56 42.44 68.94 45.98 70.66

Ablation Study on the Number of Epochs. We conduct experiments on different training epochs.448

The results are shown in Table 5. Our model is consistently superior to the baselines. And we can449

observe the gain is larger when the number of training epochs is relatively small, e.g. 20 and 50.450

C Implementation Details of 3D Object Detection451

Our experiments follow the standard approach for semi-supervised detection: we first initialize two452

detectors, the teacher (i.e. labeler) and the student. First, a random split of varying sizes is selected453
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from the nuScenes training set. We pre-train the teacher network using the ground-truth annotations454

in this split. Following this, we freeze the weights in the teacher model and then use it to generate455

pseudo-labels on the entire training set. The student network is then trained on a combination of the456

pseudo-labels and ground-truth labels originating from the original split. In all of our semi-supervised457

experiments, we use CenterPoint with a PointPillars backbone as our 3D detection model (Yin et al.,458

2021; Lang et al., 2019). The teacher pre-training and student training are both conducted for 10459

epochs on 3 NVIDIA RTX A6000 GPUs. We follow the standard nuScenes training setting outlined460

in Zhu et al. (2019), with the exception of disabling ground-truth paste augmentation during training461

to prevent data leakage from the labeled split. To select the pseudo-labels to be used in training the462

student, we simply filter the teacher predictions by detection confidence, using all detections above463

a chosen threshold. We use a threshold of 0.3 for all classes, as in Park et al. (2022). In order to464

conduct training in a batch-wise manner, we compute the loss over only the samples contained within465

the batch. We construct each batch to have a consistent ratio of labeled/unlabeled samples to ensure466

the loss is well-defined for the batch.467

D Discussions when f̂ is trained from labeled data468

In Theorem 2, we analyze the double robustness of the proposed loss function when the predictor f̂469

is pre-existing and not trained from the labeled dataset. In practice, one may only have access to the470

labeled and unlabeled dataset without a pre-existing teacher model. In this case, one may choose to471

split the labeled samples D2 into two parts. The last n/2 samples are used to train f̂ , and the first472

n/2 samples are used in the doubly-robust loss:473

LDR2
D1,D2

(θ) =
1

m

m∑
i=1

ℓθ(Xi, f̂(Xi))−
2

n

m+n/2∑
i=m+1

1

π(Xi)
ℓθ(Xi, f̂(Xi)) +

2

n

m+n/2∑
i=m+1

1

π(Xi)
ℓθ(Xi, Yi).

Since f̂ is independent of all samples used in the above loss, the result in Theorem 2 continues to474

hold. Asymptotically, such doubly-robust estimator is always no worse than the estimator trained475

only on the labeled data.476

E Proof of Proposition 1477

For the labeled-only estimator θ̂TL, we have478

E[(θ⋆ − θ̂TL)
2] = E

(E[Y ]− 1

n

m+n∑
i=m+1

Y

)2
 =

1

n
Var[Y ].

For the self-training loss, we have479

E[(θ⋆ − θ̂SL)
2] = E

(E[Y ]− 1

m+ n

(
m∑
i=1

f̂(Xi) +

m+n∑
i=m+1

Yi

))2


≤ 2

E

( m

m+ n

(
E[Y ]− 1

m

m∑
i=1

f̂(Xi)

))2
+ E

( n

m+ n

(
E[Y ]− 1

n

m+n∑
i=m+1

Yi

))2


≤ 2m2

(m+ n)2
E[(f̂(X)− Y )]2 +

2m

(m+ n)2
Var[f̂(X)− Y ] +

2n

(m+ n)2
Var[Y ].
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For the doubly robust loss, on one hand, we have480

E[(θ⋆ − θ̂DR)
2] = E

(E[Y ]− 1

m+ n

m+n∑
i=1

f̂(Xi) +
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


≤ 2E

(E[Y ]− 1

n

m+n∑
i=m+1

Yi

)2
+ 2E

(E[f̂(X)]− 1

n

m+n∑
i=m+1

f̂(Xi)

)2


+ 2E

(E[f̂(X)]− 1

m+ n

m+n∑
i=1

f̂(Xi)

)2


=
2

n
Var[Y ] +

(
2

m+ n
+

2

n

)
Var[f̂(X)].

On the other hand, we have481

E[(θ⋆ − θ̂DR)
2] = E

(E[Y ]− 1

m+ n

m+n∑
i=1

f̂(Xi) +
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


≤ 2E

(E[Y ]− 1

m+ n

m+n∑
i=1

Yi

)2
+ 2E

(E[f̂(X)− Y ]− 1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


+ 2E

(E[f̂(X)− Y ]− 1

m+ n

m+n∑
i=1

(f̂(Xi)− Yi)

)2


=

(
2

m+ n
+

2

n

)
Var[f̂(X)− Y ] +

2

m+ n
Var[Y ].

The proof is done by taking the minimum of the two upper bounds.482

F Proof of Theorem 2483

Proof. We know that484

∥∇θLDR
D1,D2

(θ⋆)− E[∇θLDR
D1,D2

(θ⋆)]∥2

=
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))]) +
1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2

≤
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2
.

From the multi-dimensional Chebyhshev’s inequality (Bibby et al., 1979; Marshall and Olkin, 1960),485

we have with probability at least 1− δ/2, for some universal constant C,486 ∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
≤ C∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
.

Similarly, we also have with probability at least 1− δ/2,487 ∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2
≤ C∥ΣY−f̂

θ⋆ ∥2

√
d

nδ
.
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Furthermore, note that488

E[∇θLDR
D1,D2

(θ⋆)] = E[∇θℓθ⋆(X,Y )] = ∇θE[ℓθ⋆(X,Y )] = 0.

Here we use Assumption 1 and Assumption 2 to ensure that the expectation and differentiation are489

interchangeable. Thus we have with probability at least 1− δ,490

∥∇θLDR
D1,D2

(θ⋆)∥2 ≤ C

(
∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
+ ∥ΣY−f̂

θ⋆ ∥2

√
d

nδ

)
.

On the other hand, we can also write the difference as491

∥∇θLDR
D1,D2

(θ⋆)− E[∇θLDR
D1,D2

(θ⋆)]∥2

=
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))]) +
1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X,Y )]

)
− 1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X,Y )]

)∥∥∥
2

+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤C

(
∥Σf̂

θ⋆∥2

(√
d

(m+ n)δ
+

√
d

nδ

)
+ ∥ΣY

θ⋆∥2

√
d

nδ

)
.

Here the last inequality uses multi-dimensional Chebyshev’s inequality and holds with probability at492

least 1− δ. This finishes the proof.493

G Proof of Proposition 3494

Proof. We have495

E[LDR2
D1,D2

(θ)] =
1

m

m∑
i=1

EXi∼PX
[ℓθ(Xi, f̂(Xi))]−

1

n

m+n∑
i=m+1

EXi∼QX

[
1

π(Xi)
ℓθ(Xi, f̂(Xi))

]

+
1

n

m+n∑
i=m+1

EXi∼QX ,Yi∼PY |Xi

[
1

π(Xi)
ℓθ(Xi, Yi)

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX ,Y∼PY |X

[
1

π(X)
ℓθ(X,Y )

]
.

In the first case when π(x) ≡ PX(x)
QX(x) , we have496

E[LDR2
D1,D2

(θ)] = EX∼PX
[ℓθ(X, f̂(X))]− EX∼QX

[
PX(X)

QX(X)
ℓθ(X, f̂(X))

]
+ EX∼QX ,Y∼PY |X

[
PX(X)

QX(X)
ℓθ(X,Y )

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼PX

[
ℓθ(X, f̂(X))

]
+ EX∼PX ,Y∼PY |X [ℓθ(X,Y )]

= EX,Y∼PX,Y
[ℓθ(X,Y )] .
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In the second case when ℓθ(x, f̂(x)) = EY∼PY |X=x
[ℓθ(x, Y )], we have497

E[LDR2
D1,D2

(θ)] = EX∼PX
[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX

EY∼PY |X

[
1

π(X)
ℓθ(X,Y ) | X

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
= EX∼PX

[ℓθ(X, f̂(X))]

= EX,Y∼PX,Y
[ℓθ(X,Y )] .

This finishes the proof.498
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