
A Appendix: Main ideas of proofs

The main idea of the proof will be outlined and the relevant theorems will be presented. Further
detailed definitions will be provided later.

⌦ is a probability space and b(t,x),�B(t,x),�L(t,x) are a scalar function from Rd to R a under

some smooth condition. If a Rd-valued stochastic process (
!
Xt)t2[0,T ] is a solution of a Stochastic

Differential Equations (SDE) driven by Lévy process, d
!
Xt = b(t,

!
Xt�)dt + �L(t,

!
Xt�)dL↵

t , the
generator Lt satisfies

Ltu(x) = b(t,x)ru(x) +
Z

[u(x+ �L(t,x)y)� u(x)�ru(x) · �L(t,x)y] ⌫(dy). (14)

where ⌫ is a symmetric Lévy measure of L↵
t . If for all (t,x), �L(t, x) > 0, then

Ltu(x) = b(t,x)ru(x) +
Z

[u(x+ y)� u(x)�ru(x) · y] 1

�d
L(t,x)

⌫̃(dy). (15)

where ⌫̃(A) = ⌫(��1(A)) such that A is a borel measurable sets and � is a function, �(x) =
�L(t,x) · x.

We know the form of generator Lt of the given a weak solution of the SDE. Therefore we can get the
time-reversal formula of the operator Lt [7] such that

 
Ltu(x) =

 
b (t,x)·ru(x)+

Z

Rn

Z
[u(x+ y)� u(x)�ru(x) · y] 1

�d
L(t)

pt(x+ y)

pt(x)
⌫̃(dy). (16)

where pt(x) is a marginal density function of the solution (
!
Xt)t2[0,T ] and the drift

 
b (t,x) is given

by

b(t,x) +
 
b (t,x) =

Z

Rn

y ·
⇣
1 +

pt(x+ y)

pt(x)

⌘ 1

�d
L(t)

⌫̃(dy) pt � a.e. (17)

Time-reversal of SDEs driven by Lévy process takes the form of Lévy-type stochastic integral.
This means that the equation (16) can be seen as the generator for a solution of some Lévy-type
stochastic integral. It is uncertain whether the SDE exists in its precise form and whether

 
b (t,x) can

be expressed in a simple manner. To answer these questions, the proof is divided into two parts. The
first part is to determine the SDE representation of a generator Lt of the form (16), and the second
part is to find the exact form of

 
b (t,x).

B Time-reversal of SDE

In this chapter, we present proof that, under certain conditions, the time-reversal formula can be
transformed into an exact formula based on the generator of a general Markov process with a jump
kernel. First, we will briefly review some essential lemmas. Lemma B.1 states that there always exists
a homogeneous Markov process that corresponds to an inhomogeneous Markov process. Lemma
B.1 explains that there exists an SDE representation of a homogeneous Markov process with a
particular generator. Lemma B.5 introduces the general time-reversal formula. By transforming
time-inhomogeneous Markov processes and finding the SDE representation for a specific generator,
we can determine the SDE representation for the generator of the reverse-time process. From these
lemmas, we can derive the reverse-time SDE and obtain stochastic samplings.

B.1 Time-Reversal of General Markov process with jump kernel

Let
!
Xt be an Rd-valued continuous time inhomogeneous Markov process on an probability space

(⌦,A,P) where ⌦ is a set, A is a �-algebra, and P is a probability measure. The evolution system is
defined as

T (s, t)u(x) = E(u(
!
Xt)|

!
Xs = x) for s  t, s, t 2 [0, 1]. (18)
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and this operator is well-defined on the set of Borel measurable function u on Rd, denoted by B(Rd).
The operator is linear and positive preserving with T (s, t)I = I and T (s, t) = T (s, r)T (r, t) for
s  r  t where I is a identity operator. This operator is also strongly continuous such that for
each v, w 2 R, v  w and s  t lim(s,t)!(v,w) ||U(s, t)u � U(v, w)u||1 = 0 where || · ||1 is
the supreme norm. For all u 2 C1(Rd), the set of a continuous function with vanishing at1, the
generators of the evolution system is given by

Lsu = lim
h!0

T (s, s+ h)u� u

h
for each s 2 R. (19)

A family of linear operators T (s, t) on C1 is a Feller evolution system if it is a strongly continuous,
positive, contraction semigroup on C1.
Definition B.1 (Space-time process). Let B be a Borel algebra in Rd and an a state space (R+⇥Rd

, B̃)
with x̃ 2 R+ ⇥ Rd and �-algebra B̃ = {B 2 R+ ⇥ Rd|Bs 2 B} where the cuts Bs := {x :
(s, x) 2 B} are elements of the Borel �-algebra on Rd, and a new sample space (⌦̃, Ã) with
w̃ = (s, w)2 R+ ⇥⌦ = ⌦̃ and Ã = {A ⇢ R+ ⇥⌦|As 2 A, 8s 2 R+}. A space-time process (X̃t)
is defined by

X̃t(w̃) = (s+ t,

!
Xs+t(w)). (20)

with the probability measure for A 2 Ã and x̃ 2 R+ ⇥ Rd such that P̃x̃(A) = P̃ (A|X̃0 = (s,x))
.
=

P (As|
!
Xs = x) and the transition probabilities are given by P̃ (X̃t 2 B|X̃0 = x̃) = P̃ (X̃t 2

B|X̃0 = (s,x)) = P (
!
Xs+t 2 Bs+t|

!
Xs = x) where B 2 B̃, x̃ 2 R+ ⇥ Rd. The transition function

is defined by P̃ (t, x̃, B) = P (s,x; s+ t, Bs+t).
Lemma B.1. Given a inhomogeneous Markov process (Xt), the space-time process (X̃t) on
(⌦̃, Ã, P̃ ) is a homogeneous Markov process.

Proof. See Transformation 3.1 in [4].

Lemma B.2. Let (
!
Xt) be the stochastic process with a Feller evolution system U(s, t) and the

generator of (
!
Xt) be Lt. Let eXt be its space-time process with associated the semigroup T (t) by

Ttu(x̃) = Ẽ(u(X̃t)|X̃0 = x̃) for x̃ 2 R+ ⇥ Rd and u 2 Bb(R+ ⇥ Rd), the set of bounded Borel
measurable functions. Then the extended generator L̃ of Tt is given for all u 2 C1

�
[0, 1]⇥ Rd

�

satisfying some conditions,

L̃u(ex) = @

@s
u(s,x) + Lsus(x) where ex = (s,x) and us(x) = u(s,x). (21)

Proof. See Theorem 3.2 in [4].

A Markov process typically has a generator that takes the form

Lu(x) = 1

2

dX

i,j=1

aij(x)
@
2

@xi@xj
u(x) + b(x) ·ru(x)

+

Z

Rd

(u(x+ y)� u(x)� 1B1(y)y ·ru(x)) ⌘(x, dy).

(22)

where b(x) is a locally bounded Rd-valued function and (aij) is a locally bounded and d ⇥ m

matrix-valued function, B1 is the ball with a radius of one and a center of zero and ⌘ satisfies
Z

Rd

1 ^
��y2
�� ⌘(x, dy) <1. (23)

Suppose there exist � : Rd⇥S ! [0, 1], �̂ : Rd⇥S ! Rd, and a �-finite measure v on a measurable
space (S,S), where S is a set satisfying S ⇢ dom(�) and S is a �-algebra defined on S such that

⌘(x,�) =

Z

S
�(x,y)1�(�̂(x,y))⌫(dy). (24)
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We decompose S into S1 [ S2 such that 1S1 = 1B1(�̂((s,x),y)) and 1S2 = 1Bc
1
(�̂((s,x),y)). We

can rewrite the form of the generator is

Lu(x) = 1

2

dX

i,j=1

aij(x)
@
2

@xi@xj
u(x) + b(x) ·ru(x)

+

Z

S
�(x,y)u(x, �̂(x,y))� u(x)� 1S1(y)�̂(x,y) ·ru(x))⌫(dy).

Lemma B.3. Let the generator L be the form of (22). Let ⇠ be a Poisson random measure on
[0, 1]⇥ S ⇥ [0,1) with mean measure m⇥ ⌫ ⇥m. We define ⇠ as

e⇠(A) = ⇠(A)�m⇥ ⌫ ⇥m(A). (25)

and (S,S) be a measurable space, µ be a �-finite measure on (S,S) . Assume that for each compact
K ⇢ Rd,

sup
x2K

⇣
|b(x) +

Z

S1

�(x,u)|�̂(x,u)|2⌫(du)
Z

S2

�(x,u)|�̂(x,u)| ^ 1⌫(du)
⌘
<1. (26)

Then
!
Xt satisfies a stochastic differential equation of the form

!
Xt =

!
X0 +

Z t

0

b(
!

Xs�)ds

+

Z s=t

s=0

Z

S1

Z v=�(
!
Xs�,u)

v=0

�̂(
!
Xs�,u)e⇠(dv ⇥ du⇥ ds)

+

Z s=t

s=0

Z

S2

Z v=�(
!
Xs�,u)

v=0

�̂(
!
Xs�,u)⇠(dv ⇥ du⇥ ds).

(27)

Proof. See Theorem 2.3 in [19]

Lemma B.4. Let �((s,x),y) = ps(x+y)
ps(x)

�
↵
L(s) for �L(s) � 0 and �̂((s,x),y) be (0,y) and ⌫(dy)

be a Lévy measure such that it is a Borel measure on Rd and ⌫({0}) = 0 and
R
Rd(||x||2^1)⌫(dx) <

1 with S1 = B1(y). If (
!
Xt) has the corresponding generator Lt

Ltu(x) = b(x)·ru(x)+
Z

Rd

[u(x+ y)� u(x)� y ·ru(x)1S1(y)]
pt(x+ y)

pt(x)
�
↵
L(t)⌫(dy). (28)

where u 2 Bb(Rd). Then the corresponding generator L̃ of the space-time process X̃t is

L̃u(s,x) = (1, b(x)) ·ru(s,x) +
Z

Rd

[u((s,x)

+ �̂((s,x),y))� u(s,x)� �((s,x),y) ·ru(s,x)1S1(y)]�((s,x),y)⌫(dy).
(29)

where u 2 C1([0, 1]⇥ Rd).
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Proof.

L̃u(s,x) = @

@s
u(s,x) + Lsus(x) for us(x) = u(s,x) (30)

=
@

@s
u(s,x) + b(x) ·rus(x)

+

Z
[us(x+ y)� us(x)� y ·rus(x)1S1(y)]

pt(x+ y)

pt(x)
�
↵
L(t)⌫(dy)

(31)

= (1, b(x)) ·ru(s,x)

+

Z
[u(s,x+ y)� u(s,x)� (0,y) ·ru(x)1S1(y)]

pt(x+ y)

pt(x)
�
↵
L(t)⌫(dy)

(32)

= (1, b(x)) ·ru(s,x)

+

Z
[u((s,x) + (0,y))� u(s,x)� (0,y) ·ru(x)1S1(y)]

pt(x+ y)

pt(x)
�
↵
L(t)⌫(dy).

(33)

Theorem B.1. A generator Lt has a jump kernel driven by the isotropic ↵-stable Lévy process with
Lévy measure ⌫ represented by (28). ⇠ be a Poisson random measure on R+⇥Rd⇥ [0,1) with mean
measure m⇥⌫⇥m such that E[⇠(dv⇥dy⇥ds)] = dv⇥⌫(dy)⇥ds and ⇠̃(A) = ⇠(A)�m⇥⌫⇥m(A).
Then the SDE representation of the generator L̃ satisfies

!
Xt =

!
X0 +

Z t

0

b(s,
!
Xs�)ds+

Z s=t

s=0

Z

||y||<1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠̃(dv ⇥ dy ⇥ ds)

+

Z s=t

s=0

Z

||y||�1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠(dv ⇥ dy ⇥ ds)

=
!
X0 +

Z t

0

b(s,
!
Xs�)ds+ Yt.

(34)

where

Yt =

Z s=t

s=0

Z

||y||<1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠̃(dv ⇥ dy ⇥ ds) (35)

+

Z s=t

s=0

Z

||y|>1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠(dv ⇥ dy ⇥ ds) (36)

such that the characterstic function of Yt follows:

exp
⇣Z t

0

�
↵
L(s)

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘
ps(y + x)

ps(x)
d⌫(y)

�
ds

⌘
. (37)

We also decompose Yt in such a way that

Yt =

Z t

0

�L(s)dL
↵
s + Zt (38)

where the Levy symbol for Zt is expressed as
Z t

0

�
↵
L(s)

Z
1

0

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘ hy,rps(x+ uy)i
ps(x)

⌫(dy)du

�
ds. (39)

Furthermore, dZt is characterized by the intensity measure ⌫̃(x, dy) following

⌫̃(x, dy) =
1

ps(x)

⌧
y,

Z
1

0

rps(x+ u · y)du
�
⌫(dy). (40)

This ensures that
R
||y||<1

||y||⌫̃(x, dy) < 1, providing the guarantee of finite variation for Zt in
accordance with Remark 7.12 in [28].
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Proof. �((s,x),y) is ps(x+y)
ps(x)

�
↵
L(s) for �L(s) � 0 and �̂((s,x),y) is (0,y) with S1 = {||y|| < 1}

and S2 = {||y|| � 1}. We know � satisfies
Z

R
�((s,x),y)1S1(y)||r((s,x),y)||2 + 1S2(y)⌫(dy) (41)

=

Z

||y||<1


ps(x+ y)

ps(x)
�
↵
L(s)||y||2⌫(dy)

�
dy +

Z

||y||�1

ps(x+ y)

ps(x)
�
↵
L(s)⌫(dy) <1. (42)

Since
R
S1
�((s,x),y)||�̂((s,x),y)||2⌫(du) +

R
S2

R
�((s,x),y)|�̂((s,x),y)| ^ 1⌫(du)) is well-

defined and continuous with respect to (s,x) and b(s,x) is locally bounded R-valued function,
we can apply Lemma B.2 to the transformed homogeneous generator L̃ of the inhomogeneous gener-
ator Lt from Lemma B.4. Now, we find the corresponding stochastic process Yt by using Lemma
B.3 such that

Yt =

Z s=t

s=0

Z

||y||<1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠̃(dv ⇥ dy ⇥ ds)

+

Z s=t

s=0

Z

||y||>1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠(dv ⇥ dy ⇥ ds).

(43)

We know that

E [exphihu, Yti] = E
h
exphiu,

Z s=t

s=0

Z

||y||<1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(s)

v=0

y · ⇠̃(dv ⇥ dy ⇥ ds)i

+

Z s=t

s=0

Z

||y||>1

Z v=
ps(y+

!
Xs�)

ps(
!
Xs�)

�↵
L(t)

v=0

y · ⇠(dv ⇥ dy ⇥ ds)i
i
.

(44)

Thus,

E[exp(i(u, Yt))] = E
h
exp(ihu,

Z s=t

s=0

Z

||y||<1

Z v= ps(y+x)
ps(x) �↵

L(s)

v=0

y · ⇠̃(dv ⇥ dy ⇥ ds) (45)

+

Z s=t

s=0

Z

||y||�1

Z v= ps(y+x)
ps(x) �↵

L(s)

v=0

y · ⇠(dv ⇥ dy ⇥ ds)i)
i

(46)

= exp
⇣Z t

0

Z

Rd

Z ps(y+x)
ps(x) �↵

L(s)

0

(eihu,yi � 1� ihu,yi · 1||y||<1(y))dv ⇥ ⌫(dy)⇥ ds)
⌘

(47)

= exp
⇣Z t

0

�
↵
L(s)

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘
ps(y + x)

ps(x)
⌫(dy)

�
ds

⌘
. (48)

Given that s is within the interval [0, 1] and x,y belong to Rd, we can obtain an useful a representation
for ps(x+y)

ps(x)
by applying Fundamental theorem of calculus [12],

ps(x+ y)

ps(x)
= 1 +

Z
1

0

hy,rps(x+ uy)i
ps(x)

du. (49)

Hence, we can break down the characteristic function of Yt in a manner such that

E [exp (hihu, Yti)] = exp
⇣Z t

0

�
↵
L(s)

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘
⌫(dy)

�
ds

⌘
+

exp
⇣Z t

0

�
↵
L(s)

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘Z 1

0

hy,rps(x+ uy)i
ps(x)

⌫(dy)du

�
ds

⌘

(50)

= E

exp

✓
ihu,

Z t

0

�L(s)dL
↵
s

◆�
· E[exp (ihu, Zt)] (51)
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in which the Levy symbol for Zt is expressed as
Z t

0

�
↵
L(s)

Z
1

0

Z

Rd

⇣
e
ihu,yi � 1� ihu,yi · 1||y||<1(y)

⌘ hy,rps(x+ uy)i
ps(x)

⌫(dy)du

�
ds. (52)

so that Yt =
R t
0
�L(s)dL↵

s + Zt.

Up until now, we have established that inhomogeneous Markov processes which fulfill specific
conditions have SDE representations. Later, we will look into how the time-reversal of the generator
appears in the case of a homogeneous Markov process. The Lemma B.1 will be utilized to derive the
time-reversal formula for SDE driven by Lévy process. We will then use the time-reversal formula
from Theorem 5.7 in [7] to introduce a new type of generative model called LIM.

Lemma B.5. Consider a Markov process (
!
Xt) with a generator Lt that is defined on the set of

continuous functions with compact support, C1

c (Rd) such that Ltu(x) = b(t, x)·ru(x)+
R
Rn [u(y)�

u(x)�ru(x) · [y � x]�]
!
J t,x(dy), (t,x) 2 [0, T ]⇥ Rn for some � > 0, where b(t,x) is a vector

field, and the jump kernel is
!
J t,x(dy). Let [x]� .

= 1||x||�x. Under certain conditions, the generator

of the reverse-time process,
 
Lt, is given by.

 
Ltu(x) =

 
b (t,x) ·ru(x) +

Z

Rn

Z
[u(y)� u(x)�ru(x) · [y � x]�

 
J t,x(dy). (53)

where pt(dy) is a marginal distribution of (
!
Xt) such that it satisfies pt(dy)

 
J t,x(dx) =

pt(dx)
!
J t,x(dy) for almost every t and the backward drift

 
b (t,x) is given by

b(t,x) +
 
b (t,x) =

Z

Rn

[y � x]�(
!
J t,x +

 
J t,x)(dy) pt � (a.e). (54)

Proof. See Theorem 5.7 in [7].

Assuming the marginal distribution has a density function pt(x) such that pt(dx) = pt(x)dx and
!
J t,x(dy) is a symmetric kernel with

!
J t,x(dy) = vt(y � x)dy for some isotropic Lévy measure vt

that is a Borel measure such that vt({0}) = 0 and
R
1 ^ ||y||2vt(dy) <1 for each t 2 [0, T ]. Then

 
J t,x(dy) =

pt(y)
pt(x)

vt(y� x)dy. It satisfies b(t,x) +
 
b (t,x) =

R
||y||� y · pt(y+x)

pt(x)
vt(y)dy. Since vt

is symmetric, � can be1 such that
 
Ltu(x) =

 
b (t,x) ·ru(x) +

Z

Rn

⇥
u(y + x)� u(x)�ru(x) · [y]�

⇤
⌫t(dy)

=
 
b (t,x) ·ru(x) +

Z

Rn

[u(y + x)� u(x)�ru(x) · y] ⌫t(dy).

Thus,

b(t,x) +
 
b (t,x) =

Z

Rn

y · pt(y + x)

pt(x)
⌫t(y)dy pt � (a.e). (55)

B.2 Fractional Calculus

Fractional calculus is a concept that extends differentiation. To begin with, we will define the
Fractional Laplacian, which is utilized to depict the drift term

 
b (t,x) of the time-reverse formula for

SDEs driven by isotropic ↵-stable Lévy process.
Definition B.2 (Fractional Laplacian). Let the fourier transformation of f be F{f}(u) =R
x2Rd e

ihx,ui
f(x)dx. The fractional Laplacian �

↵
2 for ↵ > �1 follows,

�
↵
2 f(x) =

1

(2⇡)d

Z

Rd

||u||↵F{f}(u)e�ihu,xidu. (56)

The fractional Laplacian is a linear operator that is a more general version of the original Laplacian,
represented as �↵

2 . The minus sign is omitted in the fractional Laplacian for ease of use, as stated in
[27].
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B.3 1-dimensional isotropic alpha-stable Lévy processs

We will focus on the case of one-dimensional isotropic ↵-stable Lévy process. This type of process
has a isotropic Lévy measure ⌫ that follows ⌫(dy) = C

|y|1+↵ dy, where C = �(↵+1) sin(↵⇡/2)
⇡ . Using

equation (55), we can estimate the drift term
 
b (t, x).

Lemma B.6. Given a R-valued stochastic process (
!
Xt) that solves the equation d

!
Xt = ��(t)

↵

!
Xt +

(�(t))1/↵dL↵
t , the jump kernel of

!
Xt can be represented as follows.

!
J t(x, dy) =

�(↵+ 1) sin(↵⇡/2)

⇡

�
↵
L(t)dy

|y � x|↵+1
. (57)

Proof. See Lemma 4.6 in [32].

By Lemma B.6, the drift term of the R-valued solution (
!
Xt) to d

!
Xt = ��(t)

↵

!
Xt� + (�(t))1/↵dL↵

t
satisfies

b(t, x) +
 
b (t, x) =

�(↵+ 1) sin(↵⇡/2)

⇡
�
↵
L(t)

Z

Rn

y · pt(x+ y)

pt(y)

1

|y|1+↵
dy pt � (a.e). (58)

Therefore, the Markov generator
 
Lt of (

 
Xt) is the form of (28). So, we can use Theorem B.1 to

 
Lt such that the reverse-time SDE of

 
Xt is d

 
Xt = �

 
b (t,

 
Xt+)dt̄ + �

↵
L(t)dL̄

↵
t + dZ̄t where d̄t

is an infinitesimal negative timestep, L̄↵
t is the backward version of the isotropic ↵-stable Lévy

process, and Z̄t is the backward version of Zt where Zt is a Lévy-type stochastic integral [3] such
that E[Zt] = 0 with finite variation. See more detail in Theorem B.1 for the definition of Zt.

We shall now figure out the exact form of the integral representation of
 
b (t, x). We arrive at an useful

equation for it.
Lemma B.7.

R1
0

sin x
x↵ dx = cos(⇡↵

2
) · �(1� ↵).

Lemma B.8. For 1 < ↵ < 2,
R1
�1

y
|y|↵+1 e

�i(u,y)
dy = �2 · iu|u|↵�2 cos(⇡↵

2
)�(1� ↵).

Proof. Let uy = k. If u > 0,
Z 1

�1

y

|y|↵+1
e
�i(u,y)

dy = |u|↵�1
Z 1

�1

k

|k|↵+1
e
ik
dk.

If u < 0, Z 1

�1

y

|y|↵+1
e
�i(u,y)

dy = �|u|↵�1
Z 1

�1

k

|k|↵+1
e
�ik

dk.

Therefore,
Z

y

|y|↵+1
e
�i(u,y)

dy = �sgn(u)|u|↵�1
Z 1

�1

k

|k|↵+1
e
ik
dk

= �2iu|u|↵�2
Z 1

0

sin k

k↵
dk = �2 · iu|u|↵�2 cos(⇡↵

2
)�(1� ↵).

Theorem B.2. If d
!
Xt = b(t,

!
Xt�)dt+�L(t)dL↵

t then the reverse-time SDE with respect to backward

integral is d
 
Xt = �

 
b (t,

 
Xt+)d̄t+ �(t)dL̄↵

t + dZ̄t with
 
b (t, x) satisfying

b(t, x) +
 
b (t, x) = �

↵
L(t) · ↵ · �

↵�2
2 rxpt(x)

pt(x)
. (59)
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Proof.

�
↵�2
2 rpt(x) = �

1

(2⇡)d

Z
iu|u|(↵�2)e�i(u,x)p̂t(u)du

=
1

(2⇡)d
· 1

2 · cos(⇡↵/2)�(1� ↵)

Z Z
y

|y|↵+1
e
�i(u,y+x)

p̂t(u)dudy

=
1

2 · cos(⇡↵/2)�(1� ↵)

Z
pt(x+ y)

y

|y|↵+1
dy

=
1

↵

Z
C · pt(x+ y)

y

|y|↵+1
dy for C =

sin(⇡↵/2)�(↵+ 1)

⇡
.

since �(1�↵)�(↵) = ⇡
sin⇡↵ and �(↵+1)

�(↵) = ↵. Thus, b(t, x)+
 
b (t, x) = �

↵
L(t)·↵·

�
↵�2
2 rxpt(x)
pt(x)

.

For one dimension, we have so far identified the exact form of the time-reversal formula. Let we
derive the exact form for the d-dimensional isotropic ↵-stable Lévy process based on this.

B.4 d-dimensional isotropic alpha-stable Lévy process

Lemma B.9. Let the constant C satisfies

1

C
= 2

Z 1

0

1� cos k

k↵+1
dk ·

Z

|✓d�1|<⇡
2

(cos ✓d�1)
↵
d�(✓1, . . . , ✓d�1) (60)

=
⇡

�(↵+ 1) sin(↵⇡/2)
·
Z

✓d�1<
⇡
2

(cos ✓d�1)
↵
d�(✓1, . . . , ✓d�1). (61)

For 1 < ↵ < 2, the integral
R
u2Rd

e�ihu,yi�1
||y||d+↵ dy follows

Z

u2Rd

e
�ihu,yi � 1

||y||d+↵
dy = � 1

C
||u||↵. (62)

Proof. Let I =
R
u2Rd

eihu,yi�1
||y||d+↵ dy. The integral I converges since 1

||y||d+↵ is a Lévy measure. For
given u, we fix an axis which is parallel to the direction of u and take û = u

||u|| . As the dimension of
Rd is d, we can find an orthogonal basis B̃ such that

B̃ = {ẽ1, . . . , ẽd�1, û}. (63)

The standard basis B is denoted by B = {ê1, . . . , êd}. For any y 2 Rd, we can represent y as
y =

Pd
j=1

yj êj =
Pd

i=1
ũiẽi. Since B̃ is orthogonal, the measure dy follows the equation,

dy = dy1 · · · dyn = dũ1 · · · dũd. (64)

From the observation, we apply a spherical coordinate to the basis B̃ following,

ũ1 = r sin ✓1

d�1Y

i=2

sin ✓i (65)

and

ũm = r cos ✓m�1

d�1Y

k=m

sin ✓k (66)

for m 2 {2, . . . , d� 1}, and ũd = r cos ✓d�1. Since I converges in the sense of improper integral,
we can use the change of variable for the integral with the spherical measure d� such that

d� = d�(✓1 . . . , ✓d�1) =
d�1Y

k=2

sink�1 ✓kd✓1, . . . d✓d�1. (67)
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From the coordinate transformation, we obtain a polar-coordinate-based representation of the above
integral.

Z

u2Rd

e
�ihu,yi � 1

||y||d+↵
dy =

Z

�2Sd�1

Z 1

r=0

e
�i||u||r cos ✓d�1 � 1

|r|↵+1
drd� (68)

=

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

e
�i||u||r cos ✓d�1 � 1

|r|↵+1
drd�

+

Z

�2Sd�1,⇡>✓d�1>
⇡
2

Z 1

r=0

e
�i||u||r cos ✓d�1 � 1

|r|↵+1
drd�

(69)

=

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

e
�i||u||r cos ✓d�1 � 1

|r|↵+1
drd�

+

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

e
i||u||r cos ✓d�1 � 1

|r|↵+1
drd�

(70)

= 2

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

cos(||u||r cos ✓d�1)� 1

|r|↵+1
drd�. (71)

If k = ||u||r cos ✓d�1, r = k
||u|| cos ✓d=1

, dr = dk
||u|| cos ✓d�1

,

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

cos(||u||r cos ✓d�1)� 1

|r|↵+1
drd� (72)

=

Z

�2Sd�1,0<✓d�1<
⇡
2

Z 1

r=0

cos(k)� 1

|k|↵+1
||u||↵(cos ✓d�1)↵dkd� (73)

=
⇣
� 2

Z 1

0

1� cos k

k↵+1

Z

�2Sd�1,|✓d�1|<⇡
2

(cos ✓d�1)
↵
d�

⌘
||u||↵ (74)

=
⇡

�(↵+ 1) sin(↵⇡/2)
·
Z

�2Sd�1,✓d�1<
⇡
2

(cos ✓d�1)
↵
d�(✓1, . . . , ✓d�1) (75)

.
=

1

C
(76)

Thus, if a Lévy process Xt has the Lévy measure ⌫(dy) = C
||y||d+↵ dy, then the characteristic function

 (u) = E[eihu,xi] follows  (u) = e
�||u||↵

.

Lemma B.10. Let 1 < ↵ < 2. Then the integral
R
Rd

C·e�ihu,yiy
||y||d+↵ dy can be represented as:

Z

Rd

C · e�ihu,yiy
||y||d+↵

dy = �↵iu||u||↵�2. (77)

Proof. Because ↵ is greater than 1 and less than 2, the mean is finite, so
R
u2Rd

C·e�ihu,yiy
||y||d+↵ dy

is defined in the sense of an improper integral, and convergence is guaranteed. Let I =R
u2Rd

C·e�ihu,yiy
||y||d+↵ dy. Similar to B.9, transforming to spherical coordinates and expressing I is

as follows.
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Z

u2Rd

C · e�ihu,yiy
||y||d+↵

dy (78)

=

Z

�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓

r↵
(sin ✓1

d�1Y

k=2

sin ✓d�1k ũ1ẽ1

+
d�2X

m=2

cos ✓m�1

d�1Y

k=m

sin ✓kũmẽm + cos ✓d�1û)drd�

(79)

= I1ẽ1 + · · ·+ Imẽm + · · ·+ Idû = Idû. (80)
(81)

where

I1 =

Z

�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓d�1

r↵
(sin ✓1

d�1Y

k=2

sin ✓d�1k ũ1)drd� = 0 (82)

since
R
0<✓1<2⇡ sin ✓1d✓1 = 0. For m 2 {2, . . . , d� 1},

Im =

Z

�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓d�1

r↵
(cos ✓m�1

d�1Y

k=m

sin ✓kũm)drd� = 0. (83)

since

Z

0<✓m�1<2⇡
cos ✓m�1 sin

m�2
✓m�1 sin ✓m�1d✓m�1 = 0 for m = 2 (84)

and

Z

0<✓m�1<⇡
cos ✓m�1 sin

m�2
✓m�1 sin ✓m�1d✓m�1 = 0 for m 2 {3, . . . , d� 1} (85)

and

Id =

Z

0<✓d�1<
⇡
2 ,�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓

r↵
(cos ✓d�1)drd� (86)

=

Z

0<✓d�1<
⇡
2 ,�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓

r↵
(cos ✓d�1)drd� (87)

+

Z

⇡
2 <✓d�1<⇡,�2Sd�1

Z 1

r=0

Ce
�i||u||r cos ✓d�1

r↵
(cos ✓d�1)drd� (88)

= �2i
Z

0<✓d�1<
⇡
2 ,�2Sd�1

Z 1

r=0

C sin(||u||r cos ✓d�1)
r↵

(cos ✓d�1)drd�. (89)

If k = ||u||r cos ✓d�1 then r = k
||u|| cos ✓d�1

, dr = dk
||u|| cos ✓d�1

and we can get the equation:
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Idû =
⇣
� 2i

Z

0<✓d�1<
⇡
2 ,�2Sd�1

Z 1

r=0

C sin(||u||r cos ✓d�1)
r↵

(cos ✓d�1)drd�
⌘
û (90)

=
⇣
� 2i

Z

0<✓d�1<
⇡
2 ,�2Sd�1

Z 1

k=0

C sin(k)

k↵
(||u||↵�1(cos ✓d�1)↵ cos ✓d�1)dkd�

⌘
û (91)

=
⇣
� 2i

Z 1

k=0

sin(k)

k↵
dk

Z

0<✓d�1<
⇡
2 ,�2Sd�1

((cos ✓d�1)
↵ cos ✓d�1)d� · C · ||u||↵�1

⌘
û (92)

= �2i cos(⇡↵
2
)�(1� ↵)

·
�(↵+ 1) sin(⇡↵

2
)

⇡

R
0<✓d�1<

⇡
2 ,�2Sd�1((cos ✓d�1)↵ cos ✓d�1)d�

R
0<✓d�1<

⇡
2 ,�2Sd�1((cos ✓d�1)↵ cos ✓d�1)d�

||u||↵�1û
(93)

= �2i
cos(⇡↵

2
) sin(⇡↵

2
)

⇡
�(↵+ 1)�(1� ↵)û (94)

= �i sin(↵⇡)
⇡

�(↵+ 1)

�(↵)

⇡

sin(↵⇡)
û (95)

= �i↵||u||↵�1û (96)

= �i↵u||u||↵�2. (97)

Theorem B.3. b(t,x) +
 
b (t,x) =

R
u2Rd �iu||u||

↵�2e�i↵hu,xip̂t(u)du

pt(x)
for �L = 1. If �L 6= 1 then

b(t,x) +
 
b (t,x) = �

↵
L(t) ·

R
u2Rd �iu||u||↵�2e�i↵hu,xip̂t(u)du

pt(x)

Proof. When �L(t) = 1,

b(t,x) +
 
b (t,x) =

Z

y2Rd

pt(x+ y)

pt(x)

C

||y||d+↵
ydy (98)

=

R
y2Rd

R
u2Rd p̂t(u)e�ihu,x+yi C

||y||d+↵ydudy

pt(x)
(99)

=

R
u2Rd p̂t(u)e�ihu,xi[

R
y2Rd e

�ihu,yi C
||y||d+↵ydydu

pt(x)
(100)

=

R
u2Rd �i↵u||u||↵�2e�ihu,xip̂t(u)]du

pt(x)
(101)

=
�

↵�2
2 rpt(x)
pt(x)

. (102)

Corollary B.1. If d
!
Xt = b(t,

!
Xt)dt+ �L(t)dL↵

t is given, then the time-reversal of SDE follows

d

 
Xt =

⇣
b(t,

 
Xt+)�

�
↵�2
2 rpt(

 
Xt+)

pt(
 
Xt+)

⌘
d̄t+ �L(t)d̄L

↵
t + d̄Zt. (103)

where d̄t is an infinitesimal negative timestep, L̄↵
t is the backward version of the isotropic ↵-stable

Lévy process, and Z̄t is the backward version of Zt where Zt is a Lévy-type stochastic integral [3]
such that E[Zt] = 0 with finite variation.
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B.5 Combined models

The forward carré du champ is a process that is defined as
!
�t(u, v) = Lt(uv)�uLtv� vLtu, where

dom

!
�t = (u, v);u, v, uv 2 dom Lt. The IbP of the Carré du champ is as follows: if u 2 dom

 
L

and
 
Lu 2 L

1(q), then for almose every t

Z

Rn

n
(Ltu+

 
Ltu)v +

 
�t(u, v)

 
dqt = 0. (104)

By (104), the proof of the time-reversal formula is based on the integration by parts formula for the
carré du champ. As a result, the reverse-formula is dependent on the form of the Carré du champ.

If the forward generator Lt can be decomposed into Lt = L1

t + L2

t , then its Carré de champ also can

be decomposed into
!
�t(u, v) =

!
�

1

t (u, v) +
!
�

2

t (u, v) such that
!
�

1

t (u, v) is the Carré du champ of

L1

t and
!
�

2

t (u, v) is the Carré du champ of L2

t [9]. Since Carreé du champ
!
�t is only determined by

operator Lt, and if it satisfies
!
�t(u, v) =

!
�

1

t (u, v) +
!
�

2

t (u, v) then

Z

Rn

 
(Ltu)v =

Z

Rn

(Ltu)v +
 
�t(u, v)dqt (105)

=

Z

Rn

(Ltu)v +

Z

Rn

!
�

1

t (u, v) +

Z

Rn

!
�

2

t (u, v)dqt. (106)

The reverse-formula is derived from the decomposition of
R
Rn

!
�

1

t (u, v)dqt and
R
Rn

!
�

2

t (u, v)dqt.
Knowing the terms of each integral allows one to find the time-reversal formula for Lt. From this,
we can extend the result to the time-reversal of jump-diffusion processes. The general form of the
reverse SDE is given by:

d

 
Xt =

⇣
b(t,

 
Xt+)� �2

B(t)r log pt(
 
Xt+)� �↵

L(t) · ↵ · S(↵)
t (

 
Xt+)

⌘
d̄t

+ �B(t)dB̄t + �L(t)dL̄
↵
t + dZ̄t.

(107)

where d̄t is an infinitesimal negative timestep, L̄↵
t is the backward version of the isotropic ↵-stable

Lévy process, and Z̄t is the backward version of Zt where Zt is a Lévy-type stochastic integral [3]
such that E[Zt] = 0 with finite variation.

C Probability ODE

C.1 Probability ODE for isotropic alpha-stable Lévy process

In this chapter, we discuss the fractional Fokker-Planck equation, which is a extended version of the
Fokker-Planck equation that considers fractional derivatives. The goal of this equation is to determine
the existence of probability fractional ODEs. Before proving the existence of probability fractional
ODEs, some useful lemmas will be presented.

Lemma C.1. Let 1 < ↵ < 2. One can divide fractional Laplacian into �
↵
2 f(x) =

Pd
i=1

⇣
�

@
2

xi
�

↵�2
2 f(x)

⌘
=
Pd

i=1

⇣
� @xi�

↵�2
2 @xif(x)

⌘
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Proof.

�
↵
2 f(x) =

1

(2⇡)d

Z
||u||↵f̂(u)e�ihu,xidu (108)

=
1

(2⇡)d

Z
||u||2 · ||u||↵�2f̂(u)e�ihu,xidu (109)

=
1

(2⇡)d

Z dX

i=1

|ui|2||u||↵�2f̂(u)e�ihu,xidu (110)

=
1

(2⇡)d

dX

i=1

Z
|ui|2||u||↵�2f̂(u)e�ihu,xidu (111)

=
1

(2⇡)d

dX

i=1

Z
ui||u||↵�2uif̂(u)e

�ihu,xi
du (112)

=
dX

i=1

⇣
� @2xi

�
↵�2
2 f(x)

⌘
(113)

=
dX

i=1

⇣
� @xi�

↵�2
2 @xif(x)

⌘
. (114)

Lemma C.2 (Fractional Fokker-Planck equation for isotropic ↵-stable Lévy process). Given the SDE
d

!
Xt = b(t,

!
Xt�)dt + �L(t)dL↵

t , where b(t,x) and �L(t) are measurable and satisfy a Lipschitz
condition, then the marginal density function pt(x) follows the fractional Fokker-Planck equation for
isotropic ↵-stable Lévy process as

@pt(x)

@t
= �r · [b(t,x)pt(x)]� �↵

L(t)�
↵
2 pt(x). (115)

The proof of this result can be found in [35].
Theorem C.1 (Existence of Probability ODE ). If the marginal density function pt(x) follows the
fractional Fokker-Planck equation, it can be expressed as:

@pt(x)

@t
= �r ·

⇣
[b(t,x)pt(x)]� �↵

L(t)
�

↵�2
2 rpt(x)
pt(x)

⌘
pt(x) (116)

And the SDE for
!
Xt becomes:

d

!
Xt =

⇣
b(t,

!
Xt)� �↵

L(t)
�

↵�2
2 rpt(

!
Xt)

pt(
!
Xt)

⌘
dt (117)

Proof.
@p(x)

@t
= �r · [b(t,x)pt(x)]� �L(t)�

↵
2 pt(x) (118)

= �
dX

i=1

@xi(bi(t,x)pt(x)) +
dX

i=1

�
↵
L(t)@xi�

↵�2
2 @xipt(x) (119)

= �
dX

i=1

h
@xibi(t,x)pt(x)� �↵

L(t)@xi�
↵�2
2 @xipt(x)

i
(120)

= �
nX

i=1

@xi

 "
bi(t, xt)� �↵

L(t)
�

↵�2
2 @xipt(x)

pt(x)

#
pt(x)

!
(121)

= �r ·
h⇣

(b(t,x)� �↵
L(t)

�
↵�2
2 rpt(x)
pt(x)

⌘
pt(x)

i
. (122)
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Lemma C.3 (General fractional Fokker-Planck equation). If the Lévy-driven stochastic SDE is given
as

d

!
Xt = b(t,

!
Xt�)dt+ �B(t)dBt + �L(t)dL

↵
t . (123)

then the marginal density function pt(x) satisfies the General fractional-Fokker-Planck equation,

@pt(x)

@t
= �r · [b(t,x)pt(x)] +

�
2

B(t)

2
rpt(x)� �↵

L(t)�
↵
2 pt(x). (124)

Corollary C.1 (The general Probability ODE). If pt(x) follows the fractional Fokker-Planck equation,
then the marginal density function pt(x) satisfies the following expression:

@pt(x)

@t
= �r ·

"
b(t,x)� �

2

B(t)

2
r log pt(x)� �↵

L(t)
�

↵�2
2 rpt(x)
pt(x)

#
. (125)

The process
!
Xt also satisfies the following differential equation:

d

!
Xt

d
=

2

4b(t,
!
Xt�)�

�
2

B(t)

2
r log pt(

!
Xt�)� �↵

L(t)
�

↵�2
2 rpt(

!
Xt�)

pt(
!
Xt�)

3

5 dt. (126)

Proof. We apply the same method in Lemma C.3.

D General OU process

The weak solution to the SDE,
!
Xt = x0e

��t+(↵ ·�)1/↵
R t
0
e
��(t�s)

dL
↵
s in (127) can be expressed

as

d

!
Xt = ��

!
Xtdt+ (↵ · �)1/↵dL↵

t . (127)

the solution of the SDE for
!
X0 = x0 is
!
Xt

d
= x0e

��t + (↵ · �)1/↵
Z t

0

e
��(t�s)

dL
↵
s . (128)

In the following section, we will investigate how to derive the solution of equation (127).
Lemma D.1. Given ↵ with 1 < ↵ < 2 and f is a measurable function such that f : [0, T ]! R with
R T
0
|f(s)|↵ds <1. Let Rd-valued

!
Xt =

R t
0
f(s)dL↵

s then

!
Xt ⇠ S↵S

✓Z t

0

|f(s)|↵ds)1/↵
◆
. (129)

Proof. If f(t) =
PN

i=1
ai�(ti�1,ti] with t0 = 0, tN = t,

!
Xt =

Z t

0

NX

i=1

ai1(ti�1,ti](s)dL
↵
s =

nX

i=1

ai[L
↵
ti � L

↵
ti�1

]
d
=

NX

i=1

aiL
↵
�ti , �ti = ti � ti�1. (130)

Using the above equation,

E
h
e
ihu,

!
Xti
i
= E

h
e
ihu,

PN
i=1 aiL

↵
�ti
i
i
=

NY

i=1

E
h
e
ihu,aiL

↵
�ii
i
i

(131)

=
NY

i=1

e
�||u||↵|ai|↵�ti = e

�
PN

i=1 |ai|↵�ti||u||↵ = e
�(

R t
0 |f(s)|↵ds)||u||↵

. (132)

Thus, we conclude that
!
Xt ⇠ S↵S

⇣R t
0
|f(s)|↵ds)1/↵

⌘
.

The proof for the lemma is demonstrated for a case where the function f is not a simple function.
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For simplicity, it is assumed that f(t) is non-negative, but if it is not, it can be decomposed into two
non-negative functions f+(t) and f

�(t). Then, a sequence of simple functions fn that approaches
f(t) can be constructed. The vector-valued process Xn

t is defined as the integral of fn(s)dL↵
s from 0

to t. As the integral of |f(s)|↵ is finite, the dominated convergence theorem [12] can be applied to
show that the limit of Xn

t as n approaches infinity is equal to Xt for all values of t in the interval
[0, T ].

E[eihu,
!
Xti] = lim

n!1
E[eihu,

!
X

n

t i] = lim
n!1

e
�(

R t
0 |fn(s)|↵ds)||u||↵ = e

�(
R t
0 |f(s)|↵ds)||u||↵

. (133)

Thus, we obtain
!
Xt ⇠ S↵S

⇣R t
0
|f(s)|↵ds)1/↵

⌘
when f is a measurable function.

Theorem D.1. If a(t) is equal to e
��t, �(t) is equal to (1 � e

�↵�t)1/↵ = (1 � (a(t))↵)1/↵, and
!
Xt is equal to a(t)x0 + �(t)✏ for some random variable ✏ with the ↵-stable distribution S↵S,

then
!
Xt is a weak solution to the stochastic differential equation (SDE), d

!
Xt = ��

!
Xtdt + (↵ ·

�)1/↵dL↵
t . Furthermore, any weak solution of this SDE can be represented as

!
Xt

d
= x0e

��t + (↵ ·
�)1/↵

R t
0
e
��(t�s)

dL
↵
s .

Proof. Use Lemma D.1.

Lemma D.2. If
!
Xt is a weak solution to the SDE d

!
Xt = ��(t)

↵

!
Xtdt+ �(t)1/↵dL↵

t , then it can be
represented by

!
Xt

d
= e
�

R t
0

�(s)
↵ ds

!
X0 +

Z t

0

e
�

R t
u

�(s)
↵ ds

�(u)1/↵dL↵
u . (134)

The function a(t) = e
�

R t
0

�(s)
↵ ds is defined and it is stated that the scale parameter �(t) ofR t

0
e
�

R t
u

�(s)
↵ ds(�(u)1/↵dL↵

t satisfies �↵(t) = (1� a
↵(t)).

Proof.

d(e
R t
0

�(s)
↵ ds) = e

R t
0

�(s)
↵ ds · �(t)

↵
dt+ e

R t
0

�(s)
↵ ds

⇣
� �(t)

↵

!
Xtdt+ (�(t))1/↵dL↵

t

⌘

= e

R t
0

�(s)
↵ ds(�(t))1/↵dL↵

t .

!
Xt = e

�
R t
0

�(s)
↵ ds

X0 +
R t
0
e
�

R t
u

�(s)
↵ ds

�(u)1/↵dL↵
t . If we set a(t) = e

�
R t
0

�(s)
↵ ds then d

dt log a(t) =

��(s)
↵ . And the scale parameter �(t) satisfies

�
↵(t) =

Z t

0

a(t)↵

a(u)↵
(�(u))du =

Z t

0

a
↵(t)

a↵(u)
(�↵) d

dt
log a(u)du = a

↵(t)

Z t

0

�↵
a↵(u)

a
0(u)

a(u)
du.

= a
↵(t)

Z t

0

(�↵) a
0(u)

a↵+1(u)
du = a

↵(t)

Z t

0

d

du
(a�↵(u))du = a

↵(t)[a�↵(t)� a
�↵(0)].

= (1� a
↵(t)).

E Numerical methods and Convergences

The practical way to solve SDEs is to use a numerical method, and the Euler-Maruyama method is a
popular choice for this. The approximation of the solution obtained from the Euler-Maruyama method
denoted as (X̃t)t2[0,T ], and the actual solution of the SDE, (Xt)t2[0,T ], both have their own measures,
referred to as µ⌘ and µ respectively. For the Euler-Maruyama method to converge, it’s important
that these two measures are similarly distributed. To assess the accuracy of the approximation, it’s
necessary to measure the difference between the measures, which can be done using either the
Wasserstein-1 distance W1 or the bounded Lipschitz distance WbL.
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Theorem E.1. A function b(t,x) : R⇥ Rd ! R is considered twice continuously differentiable for

x and �L(t) : Rd ! R is a bounded function. Given a SDE d

!
Xt = b(t,

!
Xt)dt+ �L(t)dL↵

t , there
exists constants ✓1, ✓2 > 0 and ✓3,K � 0 such that hb(t,x)� b(t,y),x� yi  �✓1||x� y||2 +K

for 8x,y 2 Rd and ||rb(t,x) · ⌫||  ✓2||⌫||, ||⌫1 ·r2
⌫2||  ✓3||⌫1||||⌫2|| for 8⌫1, ⌫2 2 Rd

. Then,
there exists a constant C such that for every step size ⌘ < min{1, ✓1/(✓22), 1/✓1}, the Wasserstein-1
distance between two measures µ and µ⌘ satisfies W1(µ, µ✓)  C⌘

2
↵�1.

Proof. See more detail in Theorem 1.2 in [6].

Theorem E.2. Let a function b(t,x) : R⇥ Rd ! R be twice continuously differentiable for x 2 Rd

and satisfies Assumption A [6] for uniformly in t, and �L(t) : Rd ! R are bounded. Given a SDE

d

!
Xt = b(t,

!
Xt)dt+ �L(t)dL↵

t , there exists a constant C such that for small step size ⌘ << 1, the
Wasserstein-1 distance between two measures µ and µ⌘ satisfies W1(µ, µ✓)  C⌘

2
↵�1.

Proof. We can deduce Theorem [6] by following exactly the proof of Theorem 1.2 in [6]. If we use the
quadratic schedule to the stochastic sampling of LIM, the bound of the Wasserstein-1 distance between
the invariant measure of the solution and of an approximation satisfies W1(µ, µ 1

N2
)  C⌘

3
↵�1 where

µ 1
N2

is the invariant measure of the approximation following the Euler-Maruyama scheme.

Let eZ1,
eZ2, · · · be an iid sequence of d-dimensional random vectors, which are Pareto distributed, i.e.

eZ1 ⇠ p(z) =
↵

�d�1||z||↵+d
�(1,1)(||z||)

We denote by �d�1 = 2⇡
d
2 /�

�
d
2

�
the surface area of the unit sphere Sd�1 ⇢ Rd. We will approxi-

mate the SDE (1.1) by the following Euler-Maruyama scheme:

Y0 = x, Yk+1 = Yk + ⌘k+1b (⌘1 + · · ·+ ⌘k, Yk) +
⌘
1/↵
k+1

�
�L(⌘1 + . . .+ ⌘k) eZk+1, k = 0, 1, 2, . . .

(135)

where �↵ = ↵/ (�d�1Cd,↵). We denote the initial point X0 = x for a given x 2 Rd. we use this
also for Y y

k for a given y 2 Rd. By Pt, Qk and Qk we denote the Markov semigroups of Xt, Yk and
Yk, respectively, i.e.

Ptf(x) = E[f (Xx
t )], Q⌘1+···+⌘kf(x) = E[f (Y x

k )]. (136)

for a bounded measurable function f : Rd ! R,x 2 Rd
, t � 0 and k = 0, 1, 2, . . . For i 2

{1, . . . , N}, i-th step size ⌘i follows ⌘i =
2(N�i)+1

N2 for the quadratic schedule. The key idea for
deriving the bounds of the Wasserstein-1 distance is to use the Duhamel principle:

P⌘1+···+⌘Nh(x)�Q⌘1+···+⌘Nh(x) =
NX

i=1

Q⌘1+···+⌘i�1

�
P⌘N�i+1 �Q⌘i

�
P⌘1+···+⌘(N�i)

h(x).

(137)

Through the Duhamel principle,

W1 (law (X⌘1+···+⌘N ) , law (Y⌘1+···+⌘N )) = sup
h2Lip(1)

|P⌘1+···+⌘Nh(x)�Q⌘1+···+⌘Nh(x)|

(138)


NX

i=1

sup
h2Lip(1)

��Q⌘1+···+⌘i�1

�
P⌘N�i+1 �Q⌘i

�
P⌘1+···+⌘(N�i)

h(x)
�� (139)

We can find the upper bound of the Wasserstein-1 distance. The difference from [6] is that the paper
assumes a constant step size, but in the case of a quadratic schedule, it depends on i. When these
differences are taken into account, the following holds.
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��P⌘N�i+1f(x)�Q⌘if(x)
��  C(1 + |x|)

⇣
krfk1 +

��r2
f
��
HS,1

⌘
max2/↵(⌘N�i+1, ⌘i). (140)

Using the Lemma 3.1 [6],

���P⌘N�i+1 �Q⌘i

�
P⌘1+···+⌘N�ih(x)

�� (141)

 C(1 + ||x||)
⇣��rP⌘1+···+⌘N�ih

��
1 +

��r2
P⌘1+···+⌘N�ih

��
HS,1

⌘
max2/↵(⌘N�i+1, ⌘i) (142)

 C(1 + ||x||)[⌘1 + · · ·+ ⌘N�i]
�1/↵max2/↵(⌘N�i+1, ⌘i) (143)

 C(1 + ||x||) 1

N�2/↵

h (N � i) · (N + i)

N2
]�1/↵max2/↵(⌘N�i+1, ⌘i) (144)

 C̃(1 + ||x||) 1

N�2/↵
(N � i)�

1
↵ (N + i)�

1
↵ max

2
↵ (⌘N�i+1, ⌘i). (145)

Combining this with the equation (2.4) in [6], then

sup
h2Lip(1)

��Q⌘1+···+⌘i�1

�
P⌘N�i+1 �Q⌘i

�
P⌘1+···+⌘(N�i)

h(x)
�� (146)

 C
�
1 + E[

��Y x
i�1
��]
� 1

N�2/↵
(N � i)�

1
↵ (N + i)�

1
↵ max2/↵(⌘N�i+1, ⌘i) (147)

 C((1 + ||x||) 1

N�2/↵
(N � i)�

1
↵ (N + i)�

1
↵ max2/↵(⌘N�i+1, ⌘i) (148)

When i  N+1

2
,max2/↵(⌘N�i+1, ⌘i) = ⌘

2/↵
i , i > N+1

2
,max2/↵(⌘N�i+1, ⌘i) = ⌘

2/↵
N�i+1

. Thus,
NX

i=1

1

N�2/↵
(N � i)�

1
↵ (N + i)�

1
↵ max2/↵(⌘N�i+1, ⌘i) (149)

=

N+1
2X

i=1

1

N2/↵
(N � i)�

1
↵ (N + i)�

1
↵

⇣
2i� 1

⌘2/↵

+
NX

i=N+3
2

1

N2/↵
(N � i)�

1
↵ (N + i)�

1
↵

⇣
2(N � i) + 1

⌘2/↵
(150)

 1

N2/↵

Z N+1
2

0

(N � y)�
1
↵ (N + y)�

1
↵ (2y � 1)2/↵dy (151)

+
1

N2/↵

Z N

N+1
2

(N � y)�
1
↵ (N + y)�

1
↵ (2(N � y) + 1)2/↵dy. (152)

Since
Z N+1

2

0

(N � y)�
1
↵ (N + y)�

1
↵ (2y � 1)2/↵dy (153)


⇣Z N+1

2

0

(N2 � y
2)�

2
↵ dy

⌘ 1
2
⇣Z N+1

2

0

(2y � 1)
4
↵ dy

⌘ 1
2

(154)

 C1(
1

N
)�1 (155)

for some constant C1 and
Z N

N+1
2

(N � y)�
1
↵ (N + y)�

1
↵ (2(N � y) + 1)

2
↵ dy (156)


⇣Z N

N+1
2

(N2 � y
2)�

2
↵ dy

⌘ 1
2
⇣Z N

N+1
2

(2(N � y) + 1)
4
↵ dy

⌘ 1
2

(157)

 C2(
1

N
)�1 (158)
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for some constants C2.

This gives the upper bound

N�1X

i=1

sup
h2Lip(1)

��Q⌘1+···+⌘i�1

�
P⌘N�i+1 �Q⌘i

�
P⌘1+···+⌘(N�i)

h(x)
��  C

⇤(1 + ||x||)
⇣ 1

N

⌘ 2
↵�1

.

(159)

From the same technique in [6], we can get the conclusion, W1(µ, µ 1
N2

)  C
⇤
⇣

1

N

⌘ 2
↵�1

. It
is possible to obtain the bound of the Wasserstein-1 distance W1(µ, µ 1

N
2) when applying the

quadratic schedule to the fast stochastic sampling, replacing the inequality max2/↵(⌘N�i+1, ⌘i)
with max1+

1
↵ (⌘N�i+1, ⌘i) and following the same proof above.

Given the specific form of the drift term
 
b (t,x) in the reverse-time SDE (107), It can be confirmed

that the fractional score function meets the requirements outlined in Theorem E.2 if pdata is distributed
according to a Gaussian distribution. Applying the Euler-Maruyama method to the diffusion process,
it’s been shown that the bounded Lipschitz distance between the invariant measures of the solution
and its approximation using the Euler-Maruyama scheme with step size ⌘ is bounded by O(⌘

1
2 ) [36].

Additionally, since WbL W1, it follows that WbL(µ, µ⌘) = O(⌘
2
↵�1).

Corollary E.1 (Euler-Maruyama). Suppose the fractional score function in the SDE satisfies the
conditions stated in Theorem E.2, and a(t), �(t) are bounded. Then, there exists a Markov chain (xt)
that follows the Euler-Maruyama scheme:

xt =

✓
1 +

�(s)

↵
·�t

◆
xs + ↵ · (�(s) ·�t)S(↵)

t (xs) + (�(s)�t)1/↵✏. (160)

Here, ✏ ⇠ S↵Sd(1) for s > t, and �t = s� t⌧ 1 such that the time step �t is small. As a result
of the conditions being satisfied, the Wasserstein-1 distance between the invariant measures of the
solution and (xt) is bounded by (�t)

2
↵�1 [6].

For t < s, the solution of equation (5) can be represented as an integral, utilizing the semi-linear
structure of the reverse SDE,

xt =
a(t)

a(s)
xs � ↵ · a(t)

Z t

s

�(u)

a(u)
S
(↵)
u (xu)du+

Z t

s
(�(u))

1
↵
a(t)

a(u)
dL̄

↵
t (161)

=
a(t)

a(s)
xs � ↵2 · a(t)

Z t

s

d

du

⇣ 1

a(u)

⌘
S
(↵)
u (xu)du+

Z t

s
(�(u))

1
↵
a(t)

a(u)
dL̄

↵
t . (162)

From (161), We can get more faster sampling method by using an approximation for the second termR t
s

�(u)
a(u)S

(↵)
u (xu)du. This term can be approximated as (

R t
s

�(u)
a(u)du) · S

(↵)
s (xs) and it is possible to

calculate
R t
s �(u)

a(t)
a(u) , the scale parameter � of which follows �↵ =

���
R t
s

d
du

⇣
e
�

R t
u �(k)

⌘���.

Theorem E.3 (Variant of Euler-Maruyama with dynamic time increment). Suppose the fractional
score function in the SDE satisfies the conditions stated in Theorem E.2, and a(t), �(t) are bounded.
Then, there exists a Markov chain (xt) that follows:

xt =
a(t)

a(s)
xs + ↵

2

⇣
a(t)

a(s)
� 1
⌘
S
(↵)
s (xs) +

⇣⇣
a(t)

a(s)

⌘↵
� 1
⌘ 1

↵
✏ (163)

Here, ✏ ⇠ S↵Sd(1) for s > t, and �t = s� t⌧ 1. As a result of the conditions being satisfied, the
Wasserstein-1 distance between the invariant measures of the solution and (xt) is bounded by (�t)

1
↵

[6]. A modified version of the variant-Euler-Maruyama(v-Euler-Maruyama) exists to improve sample
quality.

The paper [6] outlines a way to find bounds on the Wasserstein-1 distance by determining bounds
for the approximation of the drift term, J1, and the approximation of the stochastic term, J2. In the
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equation, only the bound for the approximation of the drift term, J1, is utilized. Furthermore, since
the law of a weak solution is same to the law of the strong solution, the the Wasserstein-1 distance
between the invariant measures for the strong solution and the approximation can be used for the that
of the weak solution and the approximation as well.
Theorem E.4 (Probability fractional ODE). Let b(t,x) : Rd ! R and �L(t) : R! R be functions

that satisfy the Lipschitz condition as stated in [31]. For the SDE d

!
Xt = b(t,

!
Xt�)dt + �(t)dL↵

t ,
the solution (Xt)t2[0,T ] of the SDE satisfies the following ODE:

d

!
Xt

d
=

✓
b(t,

!
Xt�)� �↵

L(t)S
(↵)
t (

!
Xt�)

◆
dt. (164)

Due to its semilinear structure, the solution to (164) can be represented as an integral. This is shown
in Lemma D.2. The Euler method can then be used to find the solution.
Corollary E.2 (Deterministic ODE sampling). If the drift term in (164) is Lipschitz continuous and
the solution xt has a bounded second derivative, then a sequence (xt) can be obtained using the
Euler-scheme:

xt =
a(t)

a(s)
xs + ↵ ·

⇣
a(t)

a(s)
� 1
⌘
· S(↵)

s (xs) (165)

where s > t. When the step size is �t, the global truncation error is bounded by O(�t) [5].

F Fractional score function for Lévy-Itō Models

Lemma F.1. The density function of S↵Sd(1) for x 2 Rd is represented by q↵(x). Given an initial
value x0 that follows the distribution pdata and a random variable ✏ that follows the distribution
S↵Sd(1), the value of Xt can be represented as xt = a(t)x0+�(t)✏. The transition density function
pt(xt|x0) given x0, can be expressed as pt(xt|x0) =

q↵(✏)
�d(t) .

Proof. For x,y 2 Rs, we denote x  y if [x]i  [y]i for all i 2 {1, . . . , d}. Let
!
Xt and Y be

defined on a probability space (⌦,A,P) where the transition density function of
!
Xt is pt(xt|x0) =

dP(
!
Xtxt|

!
Xt=x0)

dxt
and the density function of Y is q↵(y) =

dP(Yy)
dy . Let

!
Xt = a(t)x0+�(t)✏. Then

P(
!
Xt  xt|

!
X0 = x0) = P(a(t)x0 + �(t)Y  xt) since

!
Xt = a(t)x0 + �(t)Y (166)

= P(Y  xt � a(t)x0

�(t)
) (167)

= P(Y  ✏). (168)

Since the probability density function q↵(✏) satisfies the relation q↵(✏) =
@···@P(Y✏)
@✏1 ···@✏d

, we obtain

pt(xt|x0) =
q↵(✏)
�d(t) .

Theorem F.1 (Fractional Denoishing Score Matching (fDSM)). For parameter ✓, we define two
losses L1(✓, t) and L2(✓, t) for t 2 [0, 1] such that

L1(✓, t) = Ext⇠pt(xt)

2

4
�����S✓(xt, t)�

�
↵�2
2 rpt(xt)

pt(xt)

�����

2

2

3

5 . (169)

and

L2(✓, t) = Ex0⇠pdata(x0),xt⇠pt(xt|x0)

2

4
�����S✓(xt, t)�

�
↵�2
2 rpt(xt|x0)

pt(xt|x0)

�����

2

2

3

5 . (170)

Then two losses are equivalent, meaning that there exists a constant C satisfying L1(✓, t) = L2(✓, t)+
C.
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Proof. For t 2 [0, 1], due to the monotone convergence theorem, it holds that

L1(✓, t) = Ext⇠pt(xt)

2

41
2

�����S✓(xt, t)�
�

↵�2
2 rpt(xt)

pt(xt)

�����

2

2

3

5 (171)

= lim
r!1

Z

|x|<r
pt(x)

1

2

�����S✓(x, t)�
�

↵�2
2 rpt(x)
pt(x)

�����

2

2

dx (172)

where the last integral can be decomposed into two terms L1(✓, t; r) and C1(r) as follows:
Z

|x|<r
pt(x)

1

2

�����S✓(x, t)�
�

↵�2
2 rpt(x)
pt(x)

�����

2

2

dx (173)

=

Z

|x|<r
pt(x)

"
1

2
kS✓(x, t)k22 �

*
S✓(x, t),

�
↵�2
2 rpt(x)
pt(x)

+#
dx (=: L1(✓, t; r)) (174)

+

Z

|x|<r

1

2
pt(x)

�����
�

↵�2
2 rpt(x)
pt(x)

�����

2

2

dx (=: C1(r)) (175)

= L1(✓, t; r) + C1(r). (176)

Note that C1(r) is independent of ✓ and well-defined for any r > 0 provided that pdata has the
compact support or pdata(x) ⇠ e

�|x|2 . Similarly, due to the monotone convergence theorem,

L2(✓, t) = Ex0⇠pdata(x0),xt⇠pt(xt|x0)

2

41
2

�����S✓(xt, t)�
�

↵�2
2 rpt(xt|x0)

pt(xt|x0)

�����

2

2

3

5 (177)

= lim
r!1

Z

|x|<r

Z

Rd

pdata(x0)pt(x|x0)
1

2

�����S✓(x, t)�
�

↵�2
2 rpt(x|x0)

pt(x|x0)

�����

2

2

dx0dx (178)

where the last integral term can be decomposed into two terms L2(✓, t; r) and C2(r) as follows:
Z

|x|<r

Z

Rd

pdata(x0)pt(x|x0)
1

2

�����S✓(x, t)�
�

↵�2
2 rpt(x|x0)

pt(x|x0)

�����

2

2

dx0dx (179)

=

Z

|x|<r

Z

Rd

pdata(x0)pt(x|x0)

"
1

2
kS✓(x, t)k22 �

*
S✓(x, t),

�
↵�2
2 rpt(x|x0)

pt(x|x0)

+#
dx0dx (180)

+

Z

|x|<r

Z

Rd

1

2
pdata(x0)pt(x|x0)

�����
�

↵�2
2 rpt(x|x0)

pt(x|x0)

�����

2

2

dx0dx = L2(✓, t; r) + C2(r).

(181)

Also, note that C2(r) is independent of ✓ and well-defined for any r > 0 with the same condition
as we already mentioned. However, C1(r) and C2(r) may diverge as r ! 1. Thus, we control
C3(r) := C1(r)� C2(r) instead of controlling C1 and C2 individually. Observe that for any r > 0,

Z

|x|<r
pt(x)

*
S✓(x, t),

�
↵�2
2 rpt(x)
pt(x)

+
dx =

Z

|x|<r

D
S✓(x, t),�

↵�2
2 rpt(x)

E
dx (182)

=

Z

|x|<r

⌧
S✓(x, t),

Z

Rd

pdata(x0)�
↵�2
2 rpt(x|x0)dx0

�
dx (183)

=

Z

|x|<r

*
S✓(x, t),

Z

x0

pdata(x0)pt(x|x0)
�

↵�2
2 rpt(x|x0)

pt(x|x0)

+
dx0dx (184)

=

Z

|x|<r

Z

Rd

pdata(x0)pt(x|x0)

*
S✓(x),

�
↵�2
2 rpt(x|x0)

pt(x|x0)

+
dx0dx. (185)
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Thus, we can conclude that L1(✓, t; r) = L2(✓, t; r) for any r > 0 so that

L1(✓, t; r) + C1(r) = L2(✓, t; r) + C1(r) = L2(✓, t; r) + C2(r) + C3(r). (186)

Recall that L1(✓, t; r) + C1(r) " L1(✓, t) and L2(✓, t; r) + C2(r) " L2(✓, t) as r ! 1. Thus, the
limit of C3(r) exists as r !1 and we write it as C3. Therefore,

L1(✓, t) = lim
r!1

(L1(✓, t; r) + C1(r)) (187)

= lim
r!1

(L2(✓, t; r) + C2(r) + C3(r)) = L2(✓, t) + C3. (188)

Consequently, we show that L1(✓, t) and L2(✓, t) are equivalent.

According to Theorem 4.3, the label of the fractional SDM is

�
↵�2
2 rpt(x|x0)

pt(x|x0)
=

1

�
↵�1
L (t)

R
u2Rd

⇣
� iu||u||↵�2e�ih

x�a(t)x0
�L(t) ,ui

e
�||u||↵

⌘
du

R
u2Rd

⇣
e
�ih x�a(t)x0

�L(t) ,ui
e�||u||

↵
⌘
du

(189)

=
1

�
↵�1
L (t)

�
↵�2
2 rq↵(x)
q↵(x)

. (190)

where x = x�a(t)x0

�L(t) .

Even though it may seem complex, the integral representation of the label of fDSM can be simplified
to a straightforward linear function.

Lemma F.2.
�

↵�2
2 rq↵(x)
q↵(x) has a 2-dimensional integral representation such as

�i
R ⇡
0

R1
0

e
�ir||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓

R ⇡
0

R1
0

e�ir||x|| cos ✓e�r
↵
rd�1 sind�2 ✓drd✓

x

||x|| . (191)

Proof. With a fixed x in Rd, we select an axis that is aligned with the direction of x. Then, we
define x̂ as x

||x|| and include it as the last component of an orthogonal basis B̃ of Rd, where B̃ =

ẽ1, . . . , ẽd�1, x̂(
.
= ẽd). The choice of points does not affect the independence of the two bases. B̃ is

formed by rotating the basis B so that the absolute value of the determinant of the jacobian @(u1,...,ud)

@(ũ1,...,ũd)

is 1. If f = f1ê1 + · · · fdêd, we denote [f ]B as [f ]B = (f1, . . . , fd) for basis B, [f ]B̃ = (f̃1, . . . , f̃d)
for basis B̃. Given u 2 Rd, u can represented as u = u1ê1 + . . . + umêm + . . . + udêd =
ũ1ẽ1 + · · ·+ ũmẽm + · · ·+ ũdx̂ and x = x1ê1 + · · ·xdêd = ||x||x̂ with [u]B = u = (u1, . . . , ud)
and [u]B̃ = ũ = (ũ1, . . . ũd), [x]B = (x1, . . . , xd) 2 Rd, x̃ = (0, . . . , 0, ||x||).

Then um =
Pd

j=1
ũjhêm, ẽji =

Pd
j=1

ũj(u)hêm, ẽji for each m 2 {1, . . . , d} by orthogonality of
the basis B.

Lemma F.3 (Change of variable). T is a 1-1 C0-mapping of an open set E ⇢ R
d into R

d such that
JT (x) 6= 0 for all x 2 E. Iff is a continuous function on R

k whose support is compact and lies in
T (E), then Z

Rd

f(y)dy =

Z

Rd

f(T (x)) |JT (x)| dx. (192)

We recall that JT is the Jacobian of T .

For a given x 2 Rd, let us define a rotation operator Tx : Rd ! Rd such that Tx(u) = ũ where

um =
dX

j=1

ũjhẽj , êmi =
dX

j=1

Projj(Tx(u))hêm, ẽji, m 2 {1, . . . , d} (193)
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where Proji(x) = xi is the projection map onto the corresponding basis of B̃. Also, note that
kTx(u)k = kuk and hx,ui = kxk · Projd(Tx(u)) holds for any u 2 Rd. Then for each m,

Z

u2Rd

(�ium||u||↵�2e�ihx,uie�||u||
↵

)du (194)

(193)
= �i

Z

Rd

dX

j=1

Projj(Tx(u))hêm, ẽji||u||↵�2e�ihx,uie�||u||
↵

du (195)

= �i
dX

j=1

hêm, ẽji
Z

Rd

Projj(Tx(u))kTx(u)k↵�2e�ikxk·Projd(Tx(u))e
�kTx(u)k↵du (196)

(192)
= �i

dX

j=1

hêm, ẽji
Z

Rd

Projj(ũ)kũk↵�2e�ikxk·Projd(ũ)e�kũk
↵

dũ (197)

= �i
dX

j=1

hêm, ẽji
Z

Rd

ũjkũk↵�2e�ikxk·ũde
�kũk↵

dũ. (198)

Therefore, we get

(�)
↵�2
2 rq↵(x) =

Z

Rd

�iukuk↵�2e�ihx,uie�kuk
↵

du (199)

Def.
=

dX

m=1

✓Z

Rd

�Qumkuk↵�2e�ihx,uie�kuk
↵

du

◆
êm (200)

(198)
=

dX

m=1

0

@�i
dX

j=1

hêm, ẽji
Z

Rd

ũjkũk↵�2e�ikxk·ũde
�kũk↵

dũ

1

A êm (201)

=
dX

j=1

✓
�i
Z

Rd

ũjkũk↵�2e�ikxk·ũde
�kũk↵

dũ

◆
ẽj (202)

where the last equality holds since ẽj =
Pd

m=1
hêm, ẽjiêm for each j 2 {1, . . . , d}.

The Cartesian coordinates are converted to spherical coordinates to perform the above integration.
For j = 1,

I1 :=

Z

Rd

ũ1kũk↵�2e�ikxk·ũde
�kũk↵

dũ (203)

=

Z

Sd�1

Z 1

0

r
↵�1 sin ✓1e

�irkxk cos ✓d�1e
�r↵

d�1Y

k=2

sin ✓kdrd�d�1, (204)

The same calculation is performed for j 2 {2, . . . , d� 1}, and the results are represented as

Ij :=

Z

Rd

ũjkũk↵�2e�ikxk·ũde
�kũk↵

dũ (205)

=

Z

Sd�1

Z 1

0

r
↵�1 cos ✓j�1e

�irkxk cos ✓d�1e
�r↵

d�1Y

k=j

sin ✓kdrd�d�1 (206)

and for j = d,

Id :=

Z

Rd

ũdkũk↵�2e�ikxk·ũde
�kũk↵

dũ (207)

=

Z

Sd�1

Z 1

0

r
↵�1 cos ✓d�1e

�irkxk cos ✓d�1e
�r↵

drd�d�1 (208)

=

Z
2⇡

0

Z ⇡

0

· · ·
Z ⇡

0

Z 1

0

r
↵�1 cos ✓d�1e

�irkxk cos ✓d�1e
�r↵

Jddrd✓d�1

�
· · · d✓1. (209)

36



Here Jd denotes the Jacobian

Jd = (�1)d�1rd�1
d�1Y

k=2

sink�1 ✓k, (210)

where ✓1 2 [0, 2⇡) and ✓j 2 [0,⇡) for j 2 {2, . . . , d}. It is shown that I1 = I2 = · · · = Id�1 = 0
holds. while q↵(x) can be calculated as an integral over Rd.

q↵(x) =

Z

Rd

e
�ihx,ui

e
�kuk↵

du (211)

=

Z

Sd�1

Z 1

0

e
�irkxk cos ✓d�1e

�r↵
drd�d�1 (212)

=

Z
2⇡

0

Z ⇡

0

· · ·
Z ⇡

0

Z 1

0

e
�irkxk cos ✓d�1e

�r↵
Jddrd✓d�1

�
· · · d✓1 =: I0. (213)

Then we get the desired result

(�)
↵�2
2 rq↵(x)
q↵(x)

=
dX

j=1

Ij

I0
ẽj =

Id

I0
ẽd =

Id

I0

x

kxk . (214)

Id and I0 have the same term,
R
2⇡
0

R ⇡
0
· · ·
R ⇡
0

Qd�1
k=2

sink�1 ✓kd✓d�2 · · · d✓1, Id
I0

can be represented
as the 2-dimensional integral,

(�)
↵�2
2 rq↵(x)
q↵(x)

=
(�i

R ⇡
0

R1
0

e
�ir|||x|| cos ✓d�1e

�r↵
r
d+↵�2 cos ✓d�1 sin

d�2
✓d�1drd✓d�1)

(
R ⇡
0

R1
0

e�ir|||x|| cos ✓d�1e�r
↵
rd�1 sind�2 ✓d�1drd✓d�1)

x

|||x|| .

(215)

Lemma F.4.
�i

R ⇡
0

R 1
0 e�ir|||x|| cos ✓e�r↵rd+↵�2

cos ✓ sin ✓d�2drd✓
R ⇡
0

R 1
0 e�ir|||x|| cos ✓d�1e�r↵rd�1 sin ✓d�2drd✓

x
|||x|| = �

x
↵ .

Proof. The integral is split into two parts and then combined to form a final result. We first estimate
the numerator of the integral.

Id : =

Z ⇡

0

Z 1

0

e
�ir||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓ (216)

=

Z ⇡/2

0

Z 1

0

e
�ir||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓ (217)

+

Z ⇡

⇡/2

Z 1

0

e
�ir||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓ (218)

=

Z ⇡/2

0

Z 1

0

e
�ir||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓ (219)

�
Z ⇡/2

0

Z 1

0

e
ir|||x|| cos ✓

e
�r↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓ (220)

= �2i ·
Z ⇡/2

0

Z 1

0

sin(r|||x|| cos ✓)e�r
↵

r
d+↵�2 cos ✓ sind�2 ✓drd✓. (221)

The expression is then changed to a new form by using y = r cos ✓ and the relationship between y, r,
and ✓. The integral is simplified by using the derivative of (r2 � y

2)(d�1)/2 with respect to y and
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then integrated to arrive at the final result.

Id = �2i ·
Z 1

0

Z ⇡/2

0

sin(r||x|| cos ✓)e�r
↵

r
d+↵�2 cos ✓ sind�2 ✓d✓dr (222)

= �2i ·
Z 1

0

e
�r↵

r
d+↵�2

dr

h Z r

0

sin(||x||y) · y
r
· sind�2 ✓ 1

r sin ✓
dy

i
(223)

= �2i ·
Z 1

0

e
�r↵

r
d+↵�2

r
�d+1

dr

h Z r

0

sin(||x||y) · y · (r2 � y
2)

d�3
2 dy

i
(224)

= �2i ·
Z 1

0

e
�r↵

r
↵�1

dr

h Z r

0

sin(||x||y) · y · (r2 � y
2)

d�3
2 dy

i
. (225)

The integral
R r
0
sin(||x||y) · y · (r2 � y

2)
d�3
2 dy is simplified as follows. Using the property y(r2 �

y
2)(d�3)/2 = � 1

d�1
d
dy (r

2 � y
2)(d�1)/2, we can rewrite the integral as

Z r

0

sin(||x||y)y(r2 � y
2)(d�3)/2dy = � 1

d� 1

Z r

0

sin(||x||y) d

dy
(r2 � y

2)(d�1)/2dy (226)

= � 1

d� 1
(r2 � y

2)(d�1)/2 sin(||x||y)
��r
0
+

||x||
d� 1

Z r

0

(r2 � y
2)(d�1)/2 cos(||x||y)dy (227)

=
||x||
d� 1

Z r

0

(r2 � y
2)(d�1)/2 cos(||x||y)dy. (228)

We then focus on estimating ||x||
d�1

R r
0
(r2 � y

2)(d�1)/2 cos(||x||y)dy.
Z r

0

(r2 � y
2)(d�1)/2 cos(||x||y)dy = r

(d�1)
Z r

0

(1� (
y

r
)2)

d�1
2 cos(||x||y)dy (229)

=
r
d�1

||x||

Z ||x||r

0

(1� (
y

||x||r )
2)

d�1
. 2 cos(y)dy. (230)

Setting y = ||x||r cos k, yields dy = ||x||r(� sin k)dk and results in y = 0 ) k = ⇡
2

, and
y = r||x||) k = 0. Hence,

Z r

0

(r2 � y
2)(d�1)/2 cos(||x||y)dy = r

(d�1)
Z r

0

(1� (
y

r
)2)

d�1
2 cos(||x||y)dy (231)

= r
d

Z ⇡
2

0

sind�1(k) cos(||x||r cos(k))dk. (232)

Finally, using the integral representation of the Bessel function of the first kind (as given in [1] .360,
9.1.20),

J⌫(z) =

�
1

2
z
�⌫

⇡
1
3�
�
⌫ + 1

2

�
Z ⇡

0

cos(z cos ✓) sin2⌫ ✓d✓ (233)

) r
d

Z ⇡
2

0

sind�1(k) cos(||x||r cos(k))dk = r
d/22

d
2�1
p
⇡
�(d

2
+ 1

2
)

||x||d/2
J d

2
(r||x||). (234)

Thus ||x||
d�1

R r
0
(r2 � y

2)(d�3)/2 cos(||x||y)dy = r
d/22

d
2�1
p
⇡

�(
d
2+

1
2 )

||x||d/2�1(d�1)J d
2
(r||x||).

The denominator of the integral is estimated as follows:

I0 :=

Z ⇡

0

Z 1

0

e
�ir|||x|| cos ✓d�1e

�r↵
r
d�1 sin ✓d�2d�1drd✓d�1 (235)

=

Z ⇡/2

0

Z 1

0

e
�ir|||x|| cos ✓

e
�r↵

r
d�1 sind�2 ✓drd✓ (236)

+

Z ⇡

⇡/2

Z 1

0

e
�ir||x|| cos ✓

e
�r↵

r
d�1 sind�2 ✓drd✓ (237)

= 2 ·
Z 1

0

e
�r↵

rdr

Z ⇡/2

0

cos(r|||x|| cos ✓) sind�2 ✓d✓. (238)
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To estimate the denominator, a change of variables is made: y = r cos ✓. Then cos ✓ = y
r , sin ✓ =

(r2�y2
)
1/2

r , and dy = �r sin ✓d✓ with d✓ = � dy
r sin ✓ . The integral becomes:

I0 = 2 ·
Z 1

0

e
�r↵

r
d�2

dr

h Z r

0

cos(||x||y) sind�3 ✓dy
i

(239)

= 2 ·
Z 1

0

e
�r↵

r
d�2

dr

h Z r

0

cos(||x||y)r�d+3(r2 � y
2)

d�3
2 dy

i
(240)

= 2 ·
Z 1

0

e
�r↵

rdr

h Z r

0

cos(||x||y)(r2 � y
2)

d�3
2 dy

i
. (241)

In a similar manner, the integral
R r
0
(r2 � y

2)(d�3)/2 cos(||x||y)dy can be estimated.
Z r

0

(r2 � y
2)(d�3)/2 cos(||x||y)dy = r

d
2�12

d
2�2
p
⇡
�(d

2
� 1

2
)

||x|| d2�1
J d

2�1
(r||x||). (242)

The formula for I is rearranged as follows:

I = �

R1
0

e
�r↵

r
d
2 2

d
2�1r↵�1

p
⇡�(d

2
+ 1

2
)J d

2
(r||x||)dr 1

||x||
d
2 (d�1)R1

0
e�r

↵
r

d
2�1r2

d
2�2
p
⇡�(d

2
� 1

2
)J d

2�1
(r||x||)dr 1

||x||
d
2
�1

(243)

= �
R1
0

r
↵�1+d/2

e
�r↵

Jd/2(r||x||)drR1
0

rd/2e�r
↵
Jd/2�1(r||x||)dr

. (244)

(245)
The integral of I is represented as a series of r using the series representation of the Bessel function
of the first kind: ([1], p.360, 9.1.10),

J↵(x) =
1X

m=0

(�1)m

m!�(m+ ↵+ 1)

⇣
x

2

⌘2m+↵
. (246)

The result is:
Z 1

0

r
↵�1+d/2

e
�r↵

Jd/2(r||x||)dr =

Z 1

0

r
2m+↵�1+d

e
�r↵

1X

m=0

(�1)m

m!�(m+ d
2
+ 1)

(
||x||
2

)2m+
d
2 dr.

(247)
The Dominanted Convergence Theorem [13], Theorem 2.25 on p. 55) can be used to exchange the
series and the integral, but first, we must check the convergence of the series. For this, we need
to perform the test on the absolute series. Let fm = (�1)m

m!�(m+
d
2+1)

r
2m+↵+d�1

e
�r↵( ||x||

2
)2m+d/2.

The absolute value of this can be expressed as |fm| = 1

m!�(m+
d
2+1)

r
2m+↵+d�1

e
�r↵( ||x||

2
)2m+d/2,

and the integral of this from 0 to infinity is
R1
0
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the right-hand side of (247) becomes
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use the Dominanted Convergence Theorem if we can show that the series converges. Let am =
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By applying the Ratio test, it has been determined that the series converges. As a result, the Domi-
nanted Convergence Theorem can be used on the numerator of I .

Z 1

0

r
↵�1+d/2

e
�r↵

Jd/2(r||x||)dr =
1X

m=0

(�1)m

m!�(m+ d
2
+ 1)

Z 1

0

r
2m+↵+d�1

e
�r↵

dr

· ( ||x||
2

)2m+d/2

(252)
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By changing the variable from r to k = r
↵, the integral of r2m+↵+d�1

e
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can be estimated as 1

↵

R1
0

e
�k

k
2m+d+1

↵ �1
dk =

�(
d+2m+↵

↵ )

↵ . The calculation of the denominator of I
follows the same method.
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We have determined the expressions for both the numerator and denominator of the integral I . Now,
we will find the linear formula for I .

I = �
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Let’s proceed to examine the fractional score function of the marginal density function of the solution

(127). According to Lemma F.1 pt(xt|x0) =
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This representation (269) also can be applied to any integrable function pt(x) since the normalization
term cancels out in both the numerator and denoimiator. If pt(x) =
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Let’s consider the function �(x, t) defined as follows:
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Then the fractional score function is represeted as:
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Since pdata(x) is an integrable function, it can be expressed as a simple function of the form
pdata(x) =
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ai�Ei(x), then the Fourier transform of pdata, denoted by Fpdata, follows the
following relationship:
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By taking the gradient of equation (273),
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Thus,
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Now, let’s consider the general cases where pdata is not a simple function but an integrable function.
In this case, since the integrable function is measurable, we can find a sequence of simple functions,
denoted by {pn}1n=1

, such that as n approaches infinity, pn ! pdata almost everywhere and under the
L1 norm with pn  pn+1 for all n 2 N.
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By the Dominant Convergence Theorem,
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We need to show that limn!1 �n(x, t) = �(x, t). Since pn converges to pdata in the L1 norm,
it follows that F{pn} converges to F{pdata} almost everywhere. By the Dominant Convergence
Theorem, we get
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By the generalized Dominant Convergence Theorem [12][Excercise 20 on p 59],
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From this result, we can get limn!1 �n(x, t) = �(x, t). Thus,
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Combining (292) and (272) , we conclude
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Therefore, we obtain the integral representation of the fractional score function from the perspective
of the data distribution. This representation allows us to precisely understand the direction indicated
by the fractional score function.

G Experiment Detail

G.1 Model architecture

Our model uses U-Net [31] following DDPM [15], which replaces weight normalization [30] with
group normalization [37] for simple implementation. We set the hidden layer dimension of our model
suitable for the dataset, such that CIFAR10 (32 ⇥ 32) is [128, 256, 256, 256], CelebA (64 ⇥ 64)
is [128, 256, 256, 256, 1024], and both CelebA-HQ and LSUN (256 ⇥ 256) are [128, 256, 256,
256, 1024, 1024], but fix the number of residual blocks with 2 in each resolution level, and add
self-attention block only in 16⇥ 16 resolution level. These setups are also following DDPM([15],
[39]). We also use extended model architecture, NCSN++ (deep) following [39] to improve sample
quality on CIFAR10. It has 8 residual blocks in each resolution level.

The exponential moving average(EMA) rate set to be 0.9999 for CIFAR10 and CelebA, 0.999 for
CelebA-HQ and LSUN, because it works better for models trained with VP perturbations.

Continuous diffusion time t 2 [0, 1) is injected into the model through Transformer sinusoidal
position embedding [34] after adding with 0.00001, and we use swish function for all datasets as the
activation function.

We train our CIFAR10 model for 200k steps with batch size 256, CelebA model for 600k steps with
batch size 256, and CelebA-HQ, LSUN model for 1.3M steps with batch size 16. All training and
experiments are conducted on NVIDIA A100 GPU, NVIDIA V100 GPU and NVIDIA GeForce RTX
3090, and we tune the batch size for sampling adjusted for computation resources.

G.2 Noise scheduling

We use cosine noise schedule as [25], and limit the maximum time T = 0.9946 for all datasets. We
consider the variance preserving type with modification which is suitable for Lévy noise, so it can
have different value according to ↵.

We can get �(t) and marginal log↵t from
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(295)

where s = 0.008, following [25]. The scale parameter can be computed by the relation �(t) =
(1� a

↵(t))
1
↵ .
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G.3 Smooth L1 Loss

� FID Precision Recall
0.5 3.90 0.752 0.688

1.0 3.37 0.752 0.688

2.0 4.02 0.754 0.686
3.0 4.02 0.756 0.687
4.0 3.90 0.753 0.688

Table 7: � selection table.

L2 loss has been widely used for stable training because
it is differentiable in entire range, but it is sensitive to
outliers due to its square term. Therefore, we choose
smooth L1 Loss for stable training instead of L2 Loss,
since Lévy noise has much more outliers than Gaussian
noise. For smooth L1 Loss, as � varies, the L1 segment
of the loss has a constant slope of 1. As the � approaches
to zero, smooth L1 Loss converges to L1 Loss, but as the
� approaches to1, it converges to a constant 0 loss. We
evaluate sample quality according to � in the CIFAR10 dataset with FID, and Precision-Recall at
NFE 500.
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G.4 Clamping / Threshold

Different from Gaussian distribution, ↵-stable distribution can have large-scale noise at lower ↵
values, which leads to sample quality degradation. To prevent this problem, we use 2 kinds of
heuristics in the training and sampling phase.

↵-stable distributions can be simulated by generating samples of 1-dimensional ↵-stable distribution
and gaussian distribution. If 0 < ↵ < 2, A ⇠ S

�
↵/2, 1, 2(cos⇡↵/4)2/↵, 0

�
and G ⇠ N(0, Q), then

↵-stable distribution follows this relation [25]:

X = A
1/2G (296)

A will actually increase up to 10000 or more if no action is taken. However, excessive noise can
make sampling poor since the pixel values of image data range from 0 to 1. To address this issue,
we introduce the clamping method, A clamp(A,�20, 20). Thus, we generate samples of ↵-stable
distribution as follow:

X = clamp(A,�20, 20)1/2G (297)

Another heuristic is the clamp threshold, which is re-normalization in the sampling phase. The
clamp threshold is a heuristic that aids in the convergence of a sequence during sampling. At each
reverse sampling step, the normalization of the norm is done using that threshold if the norm of the
sample exceeds the threshold. It can be observed that the generated images vary slightly and there are
differences in quality depending on the clamp threshold.

CLAMP THRESHOLD: 800 CLAMP THRESHOLD:1000CLAMP THRESHOLD: 600CLAMP THRESHOLD: 400 CLAMP THRESHOLD: 700CLAMP THRESHOLD: 500

Figure 9: The effect of the clamp threshold on CelebA-HQ.

G.5 Evaluation metrics

G.5.1 FID (Fréchet Inception Distance) score and Recall

To evaluate generated sample quality, we choose traditional metric, FID score [14] where a lower
score means better sample quality. Moreover, we use Recall [20] , where a higher score is better, as
metric to evaluate sample diversity, since Recall measures the fraction of the training data manifold
covered by the generator.

After computing both mean/variance of distributions in the training dataset and generating the same
number of samples as training dataset (CIFAR10: 50k, CelebA-HQ: 30k). In CelebA and LSUN,
which have large training dataset, we randomly choose 50k samples from training dataset 5 iteration.
Then we calculate the distance between two distributions as FID score and the probability that
generated samples falls within the support of distribution of training dataset by using the pre-trained
Inception-V3 model.

G.5.2 Likelihood computation

We can compute the exact likelihood on any input data in the same way as [39]. By replacing the
score rx log pt(Xt) with score model S✓(Xt, t), we can rewrite (164) as

d

!
Xt =

✓
b(t,

!
Xt)� S✓(

!
Xt, t)�

↵
L(t)

◆

| {z }
=:f̃✓(

!
Xt,t)

dt. (298)
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Then we can compute the log-likelihood of p0(X0) such that

log p0(
!
X0) = log pT (

!
XT ) +

Z T

0

r · f̃✓(
!
Xt, t)dt. (299)

where
 
XT is noise mapping to

 
X0 which can be obtained by solving the probability ODE in (298)

with ODE solver. Because of the expensive computation of r · f̃✓(
!
Xt, t), we estimate it by using the

Skilling-Hutchinson trace estimator [38][16].

To solve the integral term, we choose the RK45 ODE solver [10] which can be used as solve-ivp
function in scipy.integrate library. We also set parameters atol=1e-5, rtol=1e-5. We use a
test dataset applied uniform dequantization, and take the average of the bits/dim values over 5 repeats
for exact likelihood computation. By changing initial time t0 of integral

R T
t0
r · f̃✓(

!
Xt, t)dt after

adding 0.001, we compute bits/dim with varied number of function evaluations(NFE).

G.6 Wall clock time

Previously, Lévy sampling supported by scipy.stats library was much slower than pytorch based
Gaussian noise sampling since it is a numpy based method. Therefore, we migrate it to pytorch
version to raise the speed of Lévy sampling upto Gaussian noise. As you can see in below table, our
wall clock time per NFE become as fast as Gaussian, and we show that the halved NFE leads to a
reduction in the actual sampling speed.

Model wall clock time/NFE (sec) NFE total wall clock time (sec) FID#
CIFAR10 (32⇥ 32)
DDPM cont. (VP) [35] 0.0261 1000 26.0675 3.24
LIM-DDPM cont. (Ours) 0.0285 500 14.2709 3.37
CelebA (64⇥ 64)
DDPM cont. (VP) [35] 0.0800 1000 79.9665 3.21
LIM-DDPM cont. (Ours) 0.0763 500 38.1757 1.57

Table 8: Wall clock time on CIFAR10 (32⇥ 32) and CelebA (64⇥ 64).

46



G.7 Imputation: Additional samples

Figure 10: Additional imputation results using CelebA-HQ dataset. Diffusion model(DM) generates
only similar eyes and lips, while LIM generates much more diverse range of shape and color of eyes
and lips.

G.8 Additional samples on high dimensional datasets

We also evaluate our model on high dimensional datasets, such as CelebA-HQ, LSUN-Bedroom, and
LSUN-Church (256⇥ 256), which are reported in below figures.

47



Figure 11: Additional samples for CelebA-HQ (256⇥ 256) at NFE 200.
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Figure 12: Additional samples for LSUN-Bedroom (256⇥ 256) at NFE 200.
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Figure 13: Additional samples for LSUN-Church (256⇥ 256) at NFE 200.
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