A Appendix: Main ideas of proofs

The main idea of the proof will be outlined and the relevant theorems will be presented. Further
detailed definitions will be provided later.

() is a probability space and b(t,x), o5(t,x), o (t,x) are a scalar function from R to R a under
—
some smooth condition. If a R%-valued stochastic process (X t)tefo,] is a solution of a Stochastic

— — —
Differential Equations (SDE) driven by Lévy process, dX; = b(t, X;_)dt + o, (¢, X;_)dL§, the
generator L, satisfies

QUQ):MLQVUQ%+/h¢VHm@$b0—UQ)—VUQXOMt@ﬂVMw- (14)
where v is a symmetric Lévy measure of LY. If for all (¢,x), or,(¢,x) > 0, then

Liu(x) = b(t,x)Vu(x) + / [u(x +y) —u(x) = Vu(x) - y| — ! v(dy). (15)

¢ (t,x)

where 7(A) = v(¢p~1(A)) such that A is a borel measurable sets and ¢ is a function, ¢(x) =
orp(t,x) - x.

We know the form of generator £, of the given a weak solution of the SDE. Therefore we can get the
time-reversal formula of the operator £; [7] such that

I p(x+y)

O R

— —
Loulx) = bt Vu+ [ [ fux+y) ~ ) - Vu) 5] )
— —
where p;(x) is a marginal density function of the solution (X);c[o,7) and the drift b (Z,x) is given
by

b(t,x) + Z(t, X) = / y- (1 + %) a%l(t) v(dy) pi-—ae. (17

Time-reversal of SDEs driven by Lévy process takes the form of Lévy-type stochastic integral.
This means that the equation (16) can be seen as the generator for a solution of some Lévy-type

=
stochastic integral. It is uncertain whether the SDE exists in its precise form and whether b (¢,x) can
be expressed in a simple manner. To answer these questions, the proof is divided into two parts. The
first part is to determine the SDE representation of a generator £; of the form (16), and the second

pl
part is to find the exact form of b (¢, x).

B Time-reversal of SDE

In this chapter, we present proof that, under certain conditions, the time-reversal formula can be
transformed into an exact formula based on the generator of a general Markov process with a jump
kernel. First, we will briefly review some essential lemmas. Lemma B.1 states that there always exists
a homogeneous Markov process that corresponds to an inhomogeneous Markov process. Lemma
B.1 explains that there exists an SDE representation of a homogeneous Markov process with a
particular generator. Lemma B.5 introduces the general time-reversal formula. By transforming
time-inhomogeneous Markov processes and finding the SDE representation for a specific generator,
we can determine the SDE representation for the generator of the reverse-time process. From these
lemmas, we can derive the reverse-time SDE and obtain stochastic samplings.

B.1 Time-Reversal of General Markov process with jump kernel

—

Let X, be an R?-valued continuous time inhomogeneous Markov process on an probability space
(Q, A, P) where (2 is a set, A is a g-algebra, and IP is a probability measure. The evolution system is
defined as

T (s, )u(x) = E(u(X)| X, = x) fors < £, 5,¢ € [0, 1]. (18)
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and this operator is well-defined on the set of Borel measurable function u on R?, denoted by B(R?).
The operator is linear and positive preserving with 7 (s, ¢)I = I and 7 (s,t) = T (s,r)7 (r,t) for
s < r < t where I is a identity operator. This operator is also strongly continuous such that for
each v,w € R,v < wand s < t lim, ) (0,w) [|U(s,t)u — U(v,w)u||oc = 0 where || - [|oo is
the supreme norm. For all u € Co, (]Rd), the set of a continuous function with vanishing at oo, the
generators of the evolution system is given by

Lou= lim TS TR chs € R, (19)
h—0 h

A family of linear operators 7 (s,t) on C is a Feller evolution system if it is a strongly continuous,
positive, contraction semigroup on Co,

Definition B.1 (Space-time process). Let 3 be a Borel algebra in R and an a state space (R ; x R?, 5’)
with X € R} x R? and o-algebra B = {B € R, x RY B, € B} where the cuts B, := {z :
(s,z) € B} are elements of the Borel o-algebra on R, and a new sample space (€2, .A) with

W= (s,w)e Ry x 2 =Qand A = {A C R, x Q|A, € A Vs € R,}. A space-time process (X;)
is defined by

~ —
Xe(Ww) = (s +t, Xyt (w)). (20)
with the probability measure for A € A and X € R, x R% such that Px(A) = P(A|Xy = (s,%)) =
— -~
P(A|X, = x) and the transition probabilities are given by P(X; € B|X, = %) = P(X; €

~ — — ~
B| X, = (s, xz) = P(X44¢ € Bsy4|Xs = x) where B € B, % € R, x R% The transition function
is defined by P(t,%, B) = P(s,%x;s + t, Bs1t).

Lemma B.1. Given a inhomogeneous Markov process (X;), the space-time process (X;) on
(Q, A, P) is a homogeneous Markov process.

Proof. See Transformation 3.1 in [4]. O

5
Lemma B.2. Let (X;) be the stochastic process with a Feller evolution system U (s,t) and the

generator of (;( +) be L. Let )N(t be its space-time process with associated the semigroup T (t) by
Tiu(X) = E(u(X,)|Xo = X) for x € Ry x R and u € By(Ry x RY), the set of bounded Borel
measurable functions. Then the extended generator L of Ty is given for all u € Cae ([O, 1] x ]Rd)
satisfying some conditions,

. 0 ~

Lu(X) = 8—u(s, x) + Lous(x)  where X = (s,%) and us(x) = u(s, x). (21)
s

Proof. See Theorem 3.2 in [4]. ]

A Markov process typically has a generator that takes the form

d 2

0
Lu(x) = 5”21 i (x )8 9z, ~u(x) + b(x) - Vu(x) )

+AJMX+w—u@yamxwyNM@»m&a&

where b(x) is a locally bounded R¢-valued function and (a;;) is a locally bounded and d x m
matrix-valued function, B; is the ball with a radius of one and a center of zero and 7 satisfies

/ 1A ’yQ‘ n(x,dy) < co. (23)
R4

Suppose there exist A : R? x .S — [0,1],4 : RY x S — R%, and a o-finite measure v on a measurable
space (S, S), where S is a set satisfying S C dom(\) and S is a o-algebra defined on .S such that

n@U:LwathwH y). (24)
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We decompose S into Sy U 3 such that 15, = 1p, (((s,%),y)) and 15, = 1p¢(5((s,%),y)). We
can rewrite the form of the generator is

1< 2

L) = 5 D (30 55 ) + ) - Vu(x)

ij=1

+/S/\(XJ)U(XW(X, y)) —u(x) — 15, (y)3(xy) - Vu(x))v(dy).

Lemma B.3. Let the generator L be the form of (22). Let £ be a Poisson random measure on
[0,1] x S x [0, 00) with mean measure m X v x m. We define £ as

£(A) = €(A) —m x v x m(A). (25)

and (S, S) be a measurable space, i be a o-finite measure on (S, S) . Assume that for each compact
K C R4,

sup (|b(x) +/a Alx, w)[5(x, w) 20 (du) /&A(x, w)|5(x, u)| A ly(du)) <o, (26)

xeK

-
Then X satisfies a stochastic differential equation of the form

— — t —
X, = X, +/ b(X,_)ds
0

s=t v:A()?s,,u) - _
+/ / / (X s—,u)é(dv x du x ds) 27
s=0 S Jv=0
s=t v:/\(?{s,,u) -
+ / / / 5(X o WE(dv x du x ds).
s=0 J Sy Ju=0
Proof. See Theorem 2.3 in [19] O

Lemma B4. Let A\((s,x),y) = ’ﬁixi&)y)a%(s)for or(s) > 0and 4((s,x),y) be (0,y) and v(dy)

be a Lévy measure such that it is a Borel measure on R* and v({0}) = 0 and Jra(IX[P AL (dx) <

N
oo with S1 = B1(y). If (Xt) has the corresponding generator L

Liu(x) = b(x)-Vu(x)—i—/Rd [u(x+y)—ux) —y-Vu(x)ls, (y)] %U%(t)u(dy). (28)

where u € By(R?). Then the corresponding generator L of the space-time process X, is

Lu(s,x) = (1,b(x)) - Vu(s,x) + /]Rd [u((s,x)

+9((s,x),¥)) = uls,x) = v((s,%),¥) - Vu(s,x)Ls, (y)]A((s, x), y)v(dy).

29

where u € Coo([0,1] x RY).



Proof.

Bulsx) = Doule, ) + Loua(x)  for () = u(s, ) (30)
= Ll %) +b(x) - V() o
# [Tt y) - 0~ y - Va1, 0 20 o )
— (1,b(x)) - Vu(s, %)
+ [ Tuts x4 3) = s, = (0.3) - Va1, 0] = EV o 0v(ay) ¢
= (1,b(x)) - Vu(s,x)
[0+ 0.3) = s = 03) - TuGts, ] “ X g wptay).
O

Theorem B.1. A generator L, has a jump kernel driven by the isotropic a-stable Lévy process with
Lévy measure v represented by (28). & be a Poisson random measure on R+ x R x [0, 00) with mean

measure mx vxm such that E[¢ (dvx dy x ds)] = dvxv(dy)xds and £(A) = £(A)—mxvxm(A).
Then the SDE representation of the generator L satisfies

pe(y#—X5 ) O‘(s)

— — t — 3
X, :X0+/ b(s,Xs_)ds—i-/ / / peles) y - £(dv x dy x ds)
0 llyll<1 Jv=0

ps(y+X _) "‘(s)

a2y F 34
+ - y - &(dv x dy x ds)
s=0 J|ly|[>1

IR
:X0+/ b(s, Xy_)ds + Y.
0

where
ps(y+X _) ry(s)
Yt:/ / / P (Xa) y - £(dv x dy x ds) (35)
s= llyll<1 Jv=0
ps(y+ Ps(y+Xs_) o%(s)

+/ / / ey g(do x dy x ds) (36)
s [ly|>1Jv=0

such that the characterstic function of Yy follows:

exp (/Ot or(s) [/Rd (e Hwy) 1 —ifu,y) - 1|\y|\<1(y)> I(Z(:)X)dy(y)} ds>, (37)

We also decompose Y in such a way that

t
Y, = / or(s)dL® + Z, (38)
0

where the Levy symbol for Z, is expressed as

/aL U [ (e =1 =ity 1)) <y’vp“((x)+“y” (dy)du} ds. (39)

Furthermore, dZ, is characterized by the intensity measure U(x, dy) following

5, dy) = (X< / Vpa(x - y)du> v(dy). (40)

This ensures that nyH<1 [lyl|7(x,dy) < oo, providing the guarantee of finite variation for Zy in
accordance with Remark 7.12 in [28].



Proof. M((s,%),y) is 222305 (s) for o (s) > 0 and 4((s, %), y) is (0,y) with Sy = {|ly|| < 1}

and S2 = {||y|| > 1}. We know \ satisfies

/R/\((&XLynsl W)l ((s, %), 911 + Ls, (y)v(dy) (41

ps(x+y) 2 ps(x+y)

= ———0(s)|lylI*v(dy ] dy +/ ———For(s)v(dy) <oco. (42)
/y<1[ ps(x) * Fridy) lyl>1 Ps(x) tle)viay)

Since [, M(5,x), 91 3((5, %), )[P(du) + 5, [ M(5,%), 9)I3((5,%), )| A To(du) is well-

defined and continuous with respect to (s,x) and b(s, x) is locally bounded R-valued function,

we can apply Lemma 5.2 to the transformed homogeneous generator £ of the inhomogeneous gener-
ator £; from Lemma B.4. Now, we find the corresponding stochastic process Y; by using Lemma
B.3 such that

ps(y+Xc ) “(s)

y;:/ / / P (X o) y - E(dv x dy x ds)
s= llyll<1l Jv=0

(43)
Ps (y+ Ps(Y+Xs_) o%(s)
+/ / / ra (X, y - &(dv x dy X ds).
s [lyl|>1 Jv=0
We know that
Ds (y+Xs )oz(s)
E [exp(i(u, V)] = E [ exp(iu. / / = y - &(dv x dy x ds))
s llyll<1 Jv=0
44)
ps(y+ s—) o (t)
+/ / / pe(X.s y - €(dv x dy x ds)>]
s |ly||>1 Jv=0

Thus,

Ps(¥y+x) o (s)

Efexp(i(u, Y,))] = E[ exp(iu, / /| B | T Edoxdy xds) @)
s [ly

ps(y+X) a

/s 0 /y|>1 /UU_ : y - &ldv > dy x ds)»} (46)

Ps(y+x)

//Rd/ P (X)
:eXp(/o o (s) [/Rd ( ) — 1 —i(u,y) - 1\|y\|<1(y)) g(:)}()V(dy)} ds)- 48)

Given that s is within the interval [0, 1] and x, y belong to R?, we can obtain an useful a representation

p;fsxi(:)y) by applying Fundamental theorem of calculus [12],

ar(s)

(€09 — 1 —ifuy) Ly (v))do x v(dy) x ds))  (47)

for

ps(x+y) /1 (v, Vps(x +uy)) |
ps(x) 0 ps(x)
Hence, we can break down the characteristic function of Y; in a manner such that

E [exp ((i(u, Y;))] = exp (/Ot af(s) URI (6““’” —1—i(uy)- 1uy||<1(y)) I/(dy)} ds>+

exp (/Ot o%(s) {/Rd (ei<u7y> —1-i(u,y)- 1\|y||<1(Y)) /01 <y,VzZ((>;;r uy)>y(dy)du} ds)
(50

= &fowp (itu. [ ouls)azs )| - Biewp ifu. 2) 1)

u. 49)
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in which the Levy symbol for Z; is expressed as

/Ot o (s) {/1 /Rd ei<“’y> —1—i(u,y)- 1Hy\|<1(Y)) —<y’v"[j;s(();;— uY)>U(dy)du ds. (52)

sothatY; = fo or(s)dLS + Z,. O
Up until now, we have established that inhomogeneous Markov processes which fulfill specific
conditions have SDE representations. Later, we will look into how the time-reversal of the generator
appears in the case of a homogeneous Markov process. The Lemma B.1 will be utilized to derive the

time-reversal formula for SDE driven by Lévy process. We will then use the time-reversal formula
from Theorem 5.7 in [7] to introduce a new type of generative model called LIM.

—
Lemma B.5. Consider a Markov process (X:) with a generator L, that is defined on the set of
continuous functions with compact support, C2(R?) such that Liu(z) = b(t, z)-Vu(x)+ [, [u(y)—

5

u(x) — Vu(x) - [y — x]°]J ¢ x(dy), (t,x) € [0,T] x R™ for some § > 0, where b(t,x) is a vector
=

field, and the jump kernel is J; x(dy). Let [x]° = 1jjx||<s. Under certain conditions, the generator
—

of the reverse-time process Ly, is given by.
-
[,tu( )= b(t x) - Vu(x) +/ / —u(x) = Vu(x) - [y — x]° Jrx(dy).  (53)

where pt(dy) is a marginal distribution of (Xt) such that it satisfies pt(dy)Jt <(dx) =
p:(dx) Jt x(dy) for almost every t and the backward drift b (t,x) is given by

b(t7 X) + b (tv X) = / [y - X]a(Jt,x + Jt,x)(dY) Pt — (a.e). (54)

Proof. See Theorem 5.7 in [7]. O

Assuming the marginal distribution has a density function p;(x) such that p;(dx) = p;(x)dx and

— —
Jtx(dy) is a symmetric kernel with J; «(dy) = v;(y — x)dy for some isotropic Lévy measure v;
that is a Borel measure such that v;({0}) = 0 and f LA |ly|[?ve(dy) < oo foreach t € [0, 7). Then

th(dy) = gg‘;vt(y x)dy. It satisfies b(t, x) + b(t X) = fllyl\ééy % +(y)dy. Since v,

is symmetric,  can be oo such that

Ztu(x) = Z(t,x) - Vu(x) +/ [u(y +x) — u(x) — Vu(x) - [y]°] v¢(dy)

R~

= bt Val) + [ uly + %)~ ulx) = Vu(x) -yl i(ay).

Thus,

b(t, %) + b (t,x) = / ny-%w(y)dy D — (a.0). (55)

B.2 Fractional Calculus

Fractional calculus is a concept that extends differentiation. To begin with, we will define the

Fractional Laplacian, which is utilized to depict the drift term Z(t, x) of the time-reverse formula for
SDEs driven by isotropic a-stable Lévy process.

Definition B.2 (Fractional Laplacian). Let the fourier transformation of f be F{f}(u)
Jera ¢! f(x)dx. The fractional Laplacian A% for a > —1 follows,

A F0) = g [ Il e (56)

The fractional Laplacian is a linear operator that is a more general version of the original Laplacian,
represented as Az . The minus sign is omitted in the fractional Laplacian for ease of use, as stated in
[27].
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B.3 1-dimensional isotropic alpha-stable Lévy processs

We will focus on the case of one-dimensional isotropic a-stable Lévy process. This type of process
has a isotropic Lévy measure v that follows v(dy) = ‘yl%dy, where C' = M Using

-
equation (55), we can estimate the drift term b (¢, z).

— — —
Lemma B.6. Given a R-valued stochastic process (X+) that solves the equation dX; = —@X t+
—
(B(t))Y*dL, the jump kernel of X can be represented as follows.

- I'(a+ 1)sin(an/2) o (t)dy
Il dy) = DO/ : 5(x)|a+1. 57)
Proof. See Lemma 4.6 in [32]. O

— — —
By Lemma B.6, the drift term of the R-valued solution (X;) to dX; = —@Xt, + (B(t)/>dLy
satisfies

- r 1)si 2 1
bt,z) + b(t,x) = (a+ );m(om/ )o%(t) /n Y- % PED dy ps—(ae). (58)

— —
Therefore, the Markov generator £; of (X;) is the form of (28). So, we can use Theorem B.1 to

— “— “— — “—
L, such that the reverse-time SDE of X, is dX; = — b (t, X;4 )dt + 0% (¢)dLY + dZ; where dt
is an infinitesimal negative timestep, L is the backward version of the isotropic a-stable Lévy
process, and Z; is the backward version of Z; where Z, is a Lévy-type stochastic integral [3] such
that E[Z;] = 0 with finite variation. See more detail in Theorem B.1 for the definition of Z;.

-
We shall now figure out the exact form of the integral representation of b (¢, z). We arrive at an useful
equation for it.

LemmaB.7. [ 882dz = cos(%2) - I'(1 — o).

LemmaB8. Forl <a <2, [~ ‘y‘%ﬂe_i(“*y)dy = =2 quful*? cos(Z)I(1 — o).

Proof. Letuy =k.Ifu > 0,

* Yy —i(u, _ja—1 * k ik
/,oo ey = Jul / o et

Ifu<O,

—i(u, _ a— —i
/_ |y|a+1e Dy = —|ul / |k|o‘+1€ dk.

Therefore,

o0

Yy —1(u, a— k A
/|y|a+le (9 dy = —sgn(u)|ul 1/_00 |k|a+1ekdk

o0 : k
_ —2¢u|u|a*2/ R gk = 2. uful* =2 cos( ST (1 - a).
0

O

— —
Theorem B.2. IfdX; = b(t, X;_)dt+o,(t)dL then the reverse-time SDE with respect to backward

—

t
«— _ _ _ <
integral is dX; = — b (t, X4 )dt + o(t)dLE + dZy with b (L, x) satisfying

A (YEZ va:pt (CE)

b(t,2) + b (t,x) = 0%(t) - - o

(39
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“z 1 ; a— —i(u,x) n
ATszt(x) = —W/ZUM( ) gmilus )pt(u)du
_ 1 1 Yy —i(uytz) A
~ (2m)d 2. cos(ma/2)I(1 — a) // [yla+1® pe(u)dudy

B 1 y
~ 2-cos(ma/2)T(1 — a) /pt(x ) ly[o+t
sin(ra/2)I(a + 1)

1 Y
=—[C- +y)—=—dy for C = .
/ pe(x y)|y‘a dy for C

dy

“— a=2
since T(1—a)T'(a) = 2 and S = o Thus, b(t, 2)+ b (¢, 2) = 0f(t)-- 223228 O

For one dimension, we have so far identified the exact form of the time-reversal formula. Let we
derive the exact form for the d-dimensional isotropic a--stable Lévy process based on this.

B.4 d-dimensional isotropic alpha-stable Lévy process

Lemma B.9. Let the constant C satisfies

1 1 —cosk
— =2 —dk - 1) o0
c /0 ot /0d1|<g(0089d 1)%do(01,...,04-1) (60)
m «@
- T -/edl<g(cosﬁd1) do(6y,. .. 6a_1). ©1)

e—i(uy) _q

For1 < a <2, the integral [, _g. “yomara

dy follows

—i{uy) _q 1
e

—ioiara 4y = — =l (62)
/ueRd [[y[|4+e C
Proof. Let I = fu cRrd elf;l\#dy The integral I converges since HyHld += 1s a Lévy measure. For
given u, we fix an axis which is parallel to the direction of u and take 1 = 5. As the dimension of

[Tull

R? is d, we can find an orthogonal basis B such that
B={é1,...,é4_1,0}. (63)

The standard basis B is denoted by B = {é;1,...,é4}. Forany y € R?, we can represent y as
y= Z?zl yjé; = Zle u;€;. Since B is orthogonal, the measure dy follows the equation,

dy = dy; - - dyn = dit; - - - ditg. (64)

From the observation, we apply a spherical coordinate to the basis B following,

d—1
iy =rsinfy [ ] sin6; (65)
i=2
and
d—1
Uy, = 7 COS O,y —1 H sin 0y, (66)
k=m
form € {2,...,d — 1}, and g = r cos 64_1. Since I converges in the sense of improper integral,
we can use the change of variable for the integral with the spherical measure do such that
d—1
do=do(0y...,001) = [ ] sin* " 0kdby, ... d4 1. (67)
k=2
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From the coordinate transformation, we obtain a polar-coordinate-based representation of the above

integral.
/ e—iuy) _ 1 / / e—illullrcos a1 _ 1d p 6
rdo (68)
ucR? Hy||d+a ce8Se—1 Jr=0 |r‘a+1

/ /OO —i||lul|rcosO4_1 __ 1d y
= rdo
0€84-1,0<0,4_1<% Jr=0 |r[e+t 6
oo —i||lul|rcosfq_1 1 (69)
—|—/ / drdo
0ESI=L,m>04_1>% Jr=0 ||t
/ /OO 7i|\u\|7‘ cosfg_1 _ |
= drdo
0€SI-1,0<04_1< % ||t 70
1Hu|\7‘c050d 11 (70)
+/ / o ———————drdo
065’1*1,0<9d—1<% "I"|
> O4—1)—1
- 2/ cos(lullr cosbar) =14, 45, (71)
0€891,0<04-1<% Jr=0 ||
_ _ k _ dk
Ifk = ||UH7’COSGd_1, r = W, dr = W,
e 0i—1) — 1
/ / cos(||u||rczs+1d ) drdo (72)
0€81-1,0<04-1<F Jr=0 Ir|
o0
k
_ / / €0sh) 1) )2 (cos 04 *dkdo (73)
0€84-1,0<0q_1<% Jr=0 ‘k|
> 1—cosk
(- 2/ 7/ (cos Hd_l)“da> I|u]| (74)
( o ket Joesa-i o, )<z
m
= . . (cosBq—1)%do(01,...,04-1) (75)
I(a+ 1)sin(ar/2) /Uesdlﬂng
1
== (76)
Thus, if a Lévy process X has the Lévy measure v(dy) = ] == dy, then the characteristic function
u) = E[e("X] follows 1)(u) = e~ 1U/1", O
(u)
Lemma B.10. Let 1 < o < 2. Then the integral fRd Wmdy can be represented as:
C . 67i<u7)'>y . a2

. . . Le—i(w,y)
Proof. Because « is greater than 1 and less than 2, the mean is finite, so qu]Rd Wdy

is defined in the sense of an improper integral, and convergence is guaranteed. Let [ =
C.e”Huyly .. . . . . .
fu cRd Wdy' Similar to B.9, transforming to spherical coordinates and expressing [ is

as follows.
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C e Huyly
d+a dy
ueR? | |y| |
d—1

Ce—zHuHrcosH
/ / —————(sin#; H 51n9 Liq 6,
oce8Sd-1

+ Z cos 0, —1 H Sin Ok Uy, €, + cOs Og_10)drdo

m=2 k=m

=1y + -+ Lyl + -+ Iga = I,

where

0 Ce—i”uHrcos Oa—1
I = / / —_— (sin 6y H sm9 u1 )drde =0
oceSi—1 Jr=0 r

since f0<91<2ﬂ sinf;df; = 0. Form € {2,...,d — 1},

d—1

o —i||ul|rcos04_1
I, = / / e—(cos Orm—1 H sin Oy, )drdo = 0.
ceSd—1 Jr=0 re

k=m

since

/ €08 Oy SIN" 20,1 SiN 00— 1d0m—1 =0 form =2
0<0,m 1 <27

and

/ 08 Oy 5N "2 0,,_15in 0y, _1d0,_1 =0 form e {3,...,d—1}
0<O0pm_1<m

and
© —i||ul|r cos 0
e
1, :/ / 7a(cos9d,1)drda
0<04_1< % ,0€89-1 Jr=0 r
> —i||ul|r cos 6
e
:/ / —————(costy_1)drdo
0<04_1<Z,0€89=1 Jr=0 r
© —i||ul|rcosO4_1
e
+/ / ——————(cosfg-1)drdo
2 <04_1<m,oeSI1 Jr=0 r
> Csi 0
. sin(||ul|r cos 04_1
= —2@/ / (i ||a )(Cosﬁd_l)drda.
<0q-1<%,0€84"1 Jr=0 r
_ _ k _ dk T
If ki = [|uf[rcos 61 then r = [rlm-— dr = mreosg,— and we can get the equation:
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(78)

(79)

(80)
8D

(82)

(83)

(84)

(85)

(86)

87)

(88)

(89)



L= ( B Qi/ / C'sin(||u|r cos4_1) (cos Qd,l)drda)ﬁ (90)
0<04-1<%,0€8¢-1 Jr

=0 re

= (— 21’/ / CSH;(k)(HuHa_l(cos 04-1)% cos 6’d_1)dkd0)ﬁ 1)
0<04-1<%,0€8%1 Jk=0 k

oo 1 k
= (— Qi/ bmi )dk/ ((cosBgq—1)* cosby_1)do - C - HuHO‘_l)ﬁ (92)
k=0 K 0<0q_1<%,0€84-1

= -9 cos(%)F(l —a)

(o + 1) sin(%*) f0<9d_1<%7065d,1((COSOd,l)O‘ C()S‘gdfl)dUH o1g ©3)
. u a
v f0<9d71<%7aesd,1((cos 04—1)% cosBy_1)do
_ ;SO b L e — )i (94)
m
_ 7Z_s1n(a7r) MNa+1) T4 9%
™ I(a) sin(an)

~ —iallul* 4 96)
= —iaul[u|*72. 97)
O

|2 gmia(ux)

pt(u)du

h —iul|u
Theorem B.3. b(t,x) + b (t,x) = Jueze ~ullul forop = 1. If oy # 1 then

pt(X)
fueRd —iul[u||*~2e~ WX 5 (u)du

b(t,x) + Z(t x) = og(t) - pe(x)

Proof. When oy, (t) =1,

- c
b(t,x) + b(t, :/ p(x+y) d 08

f Rd fu Rd ﬁt (u)efi(u,x+y) LdﬂxydUdy
ye c [lyll

- pe(x) ©9)
fueRd ﬁt(u)eilm’x) [fyeRd 672<u’y> Hyu%ydydu 00
= (%) (100)
fueRd —ioal|ul|* 2e”HwX)j, (u)]du
N pe(x) (aon
AT Vpy(x
== (Xi’;t( ). (102)
t
]

— —
Corollary B.1. [fdX; = b(t, X;)dt + o (t)dLS is given, then the time-reversal of SDE follows
AT Vp (X
< — 2 — — —
dX, = (b(t, X)) — w)dt +op(t)dLE + dZ,. (103)
pe(Xey)
where dt is an infinitesimal negative timestep, Eta is the backward version of the isotropic a-stable

Lévy process, and Z, is the backward version of Z; where Z; is a Lévy-type stochastic integral [3]
such that E[Z;] = 0 with finite variation.
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B.5 Combined models

>

The forward carré du champ is a process that is defined as I'; (u, v) = £, (uv) — uLv — vLyu, where
— —

domT'; = (u,v);u,v,uv € dom L;. The IbP of the Carré du champ is as follows: if u € domL
—

and Lu € L!(q), then for almose every ¢

/ {(Ctu + Louyo + Ty (u,v) }dgy = 0. (104)

By (104), the proof of the time-reversal formula is based on the integration by parts formula for the
carré du champ. As a result, the reverse-formula is dependent on the form of the Carré du champ.

If the forward generator L, can be decomposed into £; = L} + L2, then its Carré de champ also can
2 -1

be decomposed into r +(u,v) = Ft (u,v) + r ; (u, v) such that Ft (u,v) is the Carré du champ of

L} and F (u v) is the Carré du champ of £2 [9]. Since Carree du champ Ft is only determined by

operator L;, and if it satisfies Ft(u7 v) = I‘t (u,v) + I‘t (u, v) then

/ (ztu)v :/ ([,tu)er(I?t(uw)dqt (105)
1 2
— [ s [ Towo+ [ T (106)
n n RTL
1 2

The reverse-formula is derived from the decomposition of f]Rn , (u,v)dg; and fRn (u,v)dgy.
Knowing the terms of each integral allows one to find the time- reversal formula for £,. From this,
we can extend the result to the time-reversal of jump-diffusion processes. The general form of the
reverse SDE is given by:

< < 2 < ((x) < —
aX, = (b(t, X01) — 0} ()V log pu(Xes) — o5 (1) - SI (X))t
+op(t)dB; + op(t)dLY + dZ,.

(107)

where dt is an infinitesimal negative timestep, L¢ is the backward version of the isotropic a-stable
Lévy process, and Z; is the backward version of Z; where Z; is a Lévy-type stochastic integral [3]
such that E[Z;] = 0 with finite variation.

C Probability ODE

C.1 Probability ODE for isotropic alpha-stable Lévy process

In this chapter, we discuss the fractional Fokker-Planck equation, which is a extended version of the
Fokker-Planck equation that considers fractional derivatives. The goal of this equation is to determine
the existence of probability fractional ODEs. Before proving the existence of probability fractional
ODEs, some useful lemmas will be presented.

Lemma C.1. Let 1 < a < 2. One can divide fractional Laplacian into A% f(x) = 2?21 ( —

)) =L (- 0,470, ()
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Proof.

[e3 1 A .
A% f(0) = sz [ Il Fe (108)
1 . .
= @ny / [l - [[uf]*7 f(w)e™" 2 du (109)
1 d
_ ; 2 a—2¢ —i(u,x)d 110
gt | Sl e (10)
Ly (%)
_ 7;2 a—2¢ 7iu,xd 111
2y 2 Pl = e (1)
Ly (ux)
_ ; a—2 i £ —i{ux) g 112
D3 [l sy d (112)
d a—2
:Z(—aiATf(X)) (113)
=1
d a—2
:Z(famiATazif(x)). (114)
=1
O

Lemma C.2 (Fractional Fokker-Planck equation for isotropic a-stable Lévy process). Given the SDE

— —
dX; = b(t,X¢_)dt + or(t)dLy, where b(t,x) and or,(t) are measurable and satisfy a Lipschitz
condition, then the marginal density function p,(x) follows the fractional Fokker-Planck equation for
isotropic a-stable Lévy process as

0 X a
P 9 bt X0 0] ~ 0 (AT ). (115)
The proof of this result can be found in [35].
Theorem C.1 (Existence of Probability ODE ). If the marginal density function p(x) follows the
fractional Fokker-Planck equation, it can be expressed as:

Ope(x) o AT Vpi(x)
5 =~V (B0 X)) = o2 () = 5 o) (116)
And the SDE for ;( + becomes:
X, = <b(t7)_>(t) _ oA vft(Xt))dt (117)
pt(Xt)
Proof.
) 5 bt 9m 0]~ 01(0A () 118)
d d
= =30, (it X)pe (%)) + D 08 ()00, AT 0y, pi(x) (119)
i=1 =1
d
== > [0 bu(t 300 — 07 (105, A7 0 ()] (120)
— =0, (|t — o2 (12
i—1 pe(x)
o ATV (x)
= = [(062) — of ()= 55 Jn0)]. (122)
O
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Lemma C.3 (General fractional Fokker-Planck equation). If the Lévy-driven stochastic SDE is given
as

— —
dX; =b(t, X )dt + op(t)dB; + or(t)dLy. (123)
then the marginal density function p;(x) satisfies the General fractional-Fokker-Planck equation,
Op(x ot
P 9 bt 30 00] + P () — 0 (AT ). (120

Corollary C.1 (The general Probability ODE). If p; (x) follows the fractional Fokker-Planck equation,
then the marginal density function p;(x) satisfies the following expression:

Opt(x) o (t) AT Vp, (x)
= -V |b(t,x) - BV] —of(t)————— 125
N
The process Xy also satisfies the following differential equation:
= = 2 A X
aX, 2 (bt X) ~ 2OV 1o (X0 - ot 0 AT g,
pe(Xi-)
Proof. We apply the same method in Lemma C.3. O

D General OU process

5
The weak solution to the SDE, X; = xpe ! + (a- B)1/ f e A=) L% in (127) can be expressed
as

— —
dX, = —BXdt + (o - B)YdLS. (127)
N

the solution of the SDE for Xy = xq is

= 4 t

X Zxpe P+ (a- /3)1/“/ e PU=s)qre, (128)

0

In the following section, we will investigate how to derive the solution of equation (127).

Lemma D.1. Given o with1 < o < 2 and f is a measurable function such that f : [0,T] — R with
—
fOT |f(s)|*ds < oo. Let R%-valued X = fg f(s)dLS then

_) t
X, ~SaS </ |f(s)“ds)1/o‘> . (129)
0
Proof. If f(t) = Eivzl @i X (t;_r,t) Withtg = 0, =1,

N
[e% [e3 d [e3
X = /Zall(tz L (8)dLe Zai[LtlthFl]:Zai Qtys Aty =t; — ;1. (130)
=1

Using the above equation,

E[eiteX0] = gl T eti)] - HE[ et (131)

N
= [ e Mlttest At — o= S sl Ardiul® — =GN (132)
=1

—
Thus, we conclude that X; ~ SaS (fg |f(s)\°‘ds)l/a).
The proof for the lemma is demonstrated for a case where the function f is not a simple function.
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For simplicity, it is assumed that f(t) is non-negative, but if it is not, it can be decomposed into two
non-negative functions f7(¢) and f~ (¢). Then, a sequence of simple functions f,, that approaches
f(¢t) can be constructed. The vector-valued process X" is defined as the integral of f,(s)dL$ from 0
to t. As the integral of |f(s)|* is finite, the dominated convergence theorem [12] can be applied to
show that the limit of X* as n approaches infinity is equal to X, for all values of ¢ in the interval
[0, T].

E[ei®X0] = lim E[e®X0)] = lim e~ Ua @I allll® — =5 170 ds)llull® (133

n—oo n—oo

-
us, we obtain X; ~ S« S S when jf 1S a measurable function.
Th btain X; ~ SaS ([ [£(s)|*ds)"/*) when f i ble functi O

Theorem D.1. Ifa(t) is equal to e=5, 4(t) is equal to (1 — e~ P/ > = (1 — (a(t))*)"/*, and
Xt is equal to a(t)xo + y(t)e for some random variable € with the o- stable dzstrzbutlon Sas,
then X ¢ is a weak solution to the stochastic differential equation (SDE), dX t = fﬂX dt + («

B)l/ *dLy. Furthermore, any weak solution of this SDE can be represented as X t £ xpe Pt 4 (o
1/a [t 7ﬁ(t78)dLa
BV [y e

Proof. Use Lemma D.1. ]

— — —
Lemma D.2. If X is a weak solution to the SDE dX; = f%Xtdt + 5(75)1/“de‘, then it can be
represented by

= d 't B(s)

t - t -t B(s
X, Lo % dng—i-/ e~ i B ds gryyl/egre, (134)
0

The function a(t) = e~ Jo 2&ds g defined and it is stated that the scale parameter Y(t) of

fg e Ju ﬁs)ds(ﬂ(u)l/“dlz? satisfies y*(t) = (1 — a®(t)).
Proof.
el 2ty = ofy 2hds @dwe-fé (- @idw (B()/*drLy)
= eld 5 (3(1) Y dLg
Xt = Jo F&lds x, + ft e Ju ydsﬁ(u)l/“de‘. If weset a(t) = e~ =3 2545 then 4 loga(t) =
ﬁ(

*) . And the scale parameter ~(t) satisfies

70 = [ A G = [ SO o) S ogatuiu=a() [ W,

o alu) () () au)
0 [ (o tu=a0) [ s = a0 0) - a0
— (1 a(r).

E Numerical methods and Convergences

The practical way to solve SDEs is to use a numerical method, and the Euler-Maruyama method is a
popular choice for this. The approximation of the solution obtained from the Euler-Maruyama method
denoted as (X t)te[o,T], and the actual solution of the SDE, (X t)te[o,T], both have their own measures,
referred to as ji,, and p respectively. For the Euler-Maruyama method to converge, it’s important
that these two measures are similarly distributed. To assess the accuracy of the approximation, it’s
necessary to measure the difference between the measures, which can be done using either the
Wasserstein-1 distance W or the bounded Lipschitz distance Wj,.
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Theorem E.1. A function b(t,x) : R x R — R is considered twice continuously differentiable for
x and o (t) : R? — R is a bounded function. Given a SDE d;(t = b(t, ;(t)dt + oL (t)dL§, there
exists constants 61,05 > 0 and 03, K > 0 such that (b(t,x) — b(t,y),x —y) < —b1||[x - y||> + K
forvx,y € R% and ||Vb(t,x) - v|| < 2||v||, ||v1 - V2uel|| < Os]|1a||||va|| for Vir,ve € RY. Then,
there exists a constant C' such that for every step size 1 < min{1,01/(03),1/61}, the Wasserstein-1
distance between two measures | and [i, satisfies Wi (u, o) < Cr]g_l.

Proof. See more detail in Theorem 1.2 in [6]. O

Theorem E.2. Let a function b(t,x) : R x R? — R be twice continuously differentiable for x € R?

and satisfies Assumption A [6] for uniformly in t, and o (t) : RY — R are bounded. Given a SDE
— —

dX: =b(t, X¢)dt + or(t)dLY, there exists a constant C such that for small step size n << 1, the

Wasserstein-1 distance between two measures 1w and [, satisfies Wi (1, pt9) < Cn%_l.

Proof. We can deduce Theorem [6] by following exactly the proof of Theorem 1.2 in [6]. If we use the
quadratic schedule to the stochastic sampling of LIM, the bound of the Wasserstein-1 distance between

the invariant measure of the solution and of an approximation satisfies W (1, u%) < Cn%’l where
N
v, is the invariant measure of the approximation following the Euler-Maruyama scheme.
N

Let Z 1, ZQ, --- be an iid sequence of d-dimensional random vectors, which are Pareto distributed, i.e.

= o)
Zy ~ p(z) = WX(LOO)(HZH)

We denote by 41 = ot /T (g) the surface area of the unit sphere S¥~! C R?. We will approxi-
mate the SDE (1.1) by the following Euler-Maruyama scheme:
771/(1
Yo=z, Yit1=Ye+ne1bOm+- 40, Vi) + IZHUL(Wl +oot M) Zgr1, k=0,1,2,...
(135)

where 0® = a/ (04-1C4.o). We denote the initial point X, = x for a given x € R%. we use this

also for ka foragiveny € R4, By P;, Qi and Qi we denote the Markov semigroups of X, Y}, and
Y}, respectively, i.e.

Ptf(x) = E[f (X;c)]: Qn1+~--+77kf(x) = E[f (ka)] (136)

for a bounded measurable function f : R — R,x € R ¢ > Oand k = 0,1,2,... Fori €

{1,..., N}, i-th step size 7, follows n; = M for the quadratic schedule. The key idea for
deriving the bounds of the Wasserstein-1 distance is to use the Duhamel principle:

N
P771+~-~+77Nh(x) - Qﬂ1+"'+771\1h(x) = Z Qn1+~"+m71 (PnNﬂwrl - Qm) Pn1+~-~+77(N71)h(X)'
i=1

(137)

Through the Duhamel principle,

Wi (law (Xopy 4eoogny ) 5 law (Y 4y ) = , SLup(l) [Pyt (T) — Qg B2
€Lip

(138)
N

< Z qu }Qn1+~--+m,1 (PUN—H»I - Qm) Pn1+"'+77(N—i)h<X){ (139)
i—1 he€Lip(1)

We can find the upper bound of the Wasserstein-1 distance. The difference from [6] is that the paper
assumes a constant step size, but in the case of a quadratic schedule, it depends on ¢. When these
differences are taken into account, the following holds.
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|Pon_in F (%) = Qu f(X)] < C(1+ |2]) (HVfHoo + HV2fHHs,oo) max®/“(ny_i11,m;). (140)
Using the Lemma 3.1 [6],

’(PWN—iJrl - Qm) P"71+"'+77N—ih(x)‘ (141)
<C+|x|) (IIVPm+...+nN_Z-h [ o A v R |HS,OO) max?/* (y—it1,m;) (142)
<O+ |xINm + -+ 4+ nv—i = max® (g i1, m:) (143)
(N_Z) i (N+7’) -1/« 2/«
< OO +1xll) 5575 | 217/ max’® (nx—i1,m:) (144)
~ 1 N1 N1 2
<C(1+ HXH)W(N —4)" @ (N +14)” amaxe (N—i+1,7:)- (145)
Combining this with the equation (2.4) in [6], then
sup |Qm+~~~+m—1 (PUN—H-I - Qm) P”I1+"'+77(N—i)h(1:)‘ (146)
heLip(1)
x 1 N — L N —L 2/
< C(L+E[YEy)) W(N —4)7 > (N + i) omax™ (NN —it1, 1) (147)
1 N N1 o
< OO+ ) mg7a (N = )73 (N +8)” = max®* (i1, 7) (148)
When i < %,maxZ/a(nN_iH,m) = nf/a,i > %,maxwa(m\r_iﬂ,ni) = nf\,/f‘iﬂ. Thus,
N
1
3 e (N =) % (N +4) A max®® (g —i 1, ;) (149)
2 N-2/a
N+1
z 1 N1 N1 (. 2/a
=Y N =) TEW ) a(22—1)
= (150)
3 Ny Ew et oy — iy 1)
+ Y W) TEW )T (2 - i) + 1)
i:Ng-s
1 N1
B B e ~L(9y — 1)/
< | W -n)TE Ry - )y (151)
P (N —y) "= (N +y) "= (2N —y) + 1)**dy (152)
N2/e [ni1 '
Since
N+1
2 1 1 o
(N —y) = (N +y)"=(2y—1)""dy (153)
0
N+1 1 N+1 1
2 2 2 2 4 2
<([ T weyta) ([ er-nta) (154)
0 0
1. _
< Cl(ﬁ) ! (155)
for some constant C'; and
N
[ =0 AV e - )+ DRy (156)
s s NEo[Y LN\ d
< (/L (N2 = y?)~2dy) (/L+ (AN = y)+1)7 dy) (157)
1. _
<o) (158)
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for some constants Cs.

This gives the upper bound

N-—1 2
" 1ya-1
Sup | Qo etnis (Paosir = Qn) Pyene_ohl@)| - < O+ ) ()
i—1 h€Lip(1)
(159)
From the same technique in [6], we can get the conclusion, W, (u,,u%) < C*(%)E_ It
N

is possible to obtain the bound of the Wasserstein-1 distance W, (p, 11 2) when applying the
N

quadratic schedule to the fast stochastic sampling, replacing the inequality max®/®(nx_i 1,7
with max!*+& (nv—i+1,m:) and following the same proof above. O

-
Given the specific form of the drift term b (¢, x) in the reverse-time SDE (107), It can be confirmed
that the fractional score function meets the requirements outlined in Theorem E.2 if pg,, is distributed
according to a Gaussian distribution. Applying the Euler-Maruyama method to the diffusion process,
it’s been shown that the bounded Lipschitz distance between the invariant measures of the solution
and its approximation using the Euler-Maruyama scheme with step size 7 is bounded by O(n%) [36].
Additionally, since Wy, < W, it follows that Wi (1, pty) = O(n%’l).

Corollary E.1 (Euler-Maruyama). Suppose the fractional score function in the SDE satisfies the
conditions stated in Theorem E.2, and a(t),y(t) are bounded. Then, there exists a Markov chain (x1)
that follows the Euler-Maruyama scheme:

(“ﬁi) At)x +a- (B(s) - ADSIV(x,) + (B(s)AD e (160)

Here, € ~ SaS%(1) for s > t, and At = s — t < 1 such that the time step At is small. As a result
of the conditions being satisfied, the Wasserstein-1 distance between the invariant measures of the

solution and (x;) is bounded by (At)a~1 [6].

For t < s, the solution of equation (5) can be represented as an integral, utilizing the semi-linear
structure of the reverse SDE,

X; = a(t) a-a t@ (@) x U ! u %a(t) T«
= S —asa) [ a(u)su eaiu+ [ () S0 dE (161)
:@X —a?-a ‘4 () (x,,)du t U ia(t) a
O o[ 4 ; ))S (x)du+ [ (8w aizae

From (161), We can get more faster sampling method by using an approximation for the second term
=S 55 (x,,)du. This term can be approximated as (ft B9 qu) . §$*) (x,) and it is possible to

s a(u) a(u)
calculate fs Bu Z((i))’ the scale parameter + of which follows v f; £ (e M 5“‘”) ’
Theorem E.3 (Variant of Euler-Maruyama with dynamic time increment). Suppose the fractional
score function in the SDE satisfies the conditions stated in Theorem E.2, and a(t),~y(t) are bounded.
Then, there exists a Markov chain (x) that follows:

alt) a(t) a(t) o
- Ny, —1)8(x, -1 163

x a(s) ta (a(s) ) (xs) + ((a(s)) ) € (163)
Here, € ~ SaS%(1) for s > t, and At = s — t < 1. As a result of the conditions being satisfied, the

Wasserstein-1 distance between the invariant measures of the solution and (x;) is bounded by (At) a
[6]. A modified version of the variant-Euler-Maruyama(v-Euler-Maruyama) exists to improve sample

quality.

The paper [6] outlines a way to find bounds on the Wasserstein-1 distance by determining bounds
for the approximation of the drift term, .J;, and the approximation of the stochastic term, J». In the
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equation, only the bound for the approximation of the drift term, J3, is utilized. Furthermore, since
the law of a weak solution is same to the law of the strong solution, the the Wasserstein-1 distance
between the invariant measures for the strong solution and the approximation can be used for the that
of the weak solution and the approximation as well.

Theorem E.4 (Probability fractional ODE). Let b(t,x) : R? — R and o1.(t) : R — R be functions
— —

that satisfy the Lipschitz condition as stated in [31]. For the SDE dX; = b(t, X;_)dt + o(t)dLg,
the solution (X¢):c[o,1) of the SDE satisfies the following ODE:

X, £ (40, X o) - o387 (X0 ) . (164)

Due to its semilinear structure, the solution to (164) can be represented as an integral. This is shown
in Lemma D.2. The Euler method can then be used to find the solution.

Corollary E.2 (Deterministic ODE sampling). If the drift term in (164) is Lipschitz continuous and
the solution x; has a bounded second derivative, then a sequence (x;) can be obtained using the
Euler-scheme:
t t
X, = @xs +a- (@ — 1) -8l (x,) (165)
a(s) a(s)

where s > t. When the step size is At, the global truncation error is bounded by O(At) [5].

F Fractional score function for Lévy-Ito Models

Lemma F.1. The density function of SaS%(1) for x € R? is represented by q,(x). Given an initial
value xq that follows the distribution py., and a random variable € that follows the distribution
SaS4(1), the value of X, can be represented as x; = a(t)xo +(t)e. The transition density function

pi(X¢|X0) given xo, can be expressed as p;(xi|xo) = ‘i‘ﬁ,g))

—
Proof. For x,y € R®, we denote x < y if [x]; < [y]; foralli € {1,...,d}. Let X; and Y be
—

defined on a probability space (€2, A, P) where the transition density function of X is p;(x¢|xo) =

— — —
AP(X =3 |Xs=%0) and the density function of Y is ga () = %fy). Let X; = a(t)xo+~(t)e. Then

dxy
— — —
P(X: < x¢|Xo =x0) =P(a(t)xo + 7(#)Y < x¢) since X¢ = a(t)xo +y(¢)Y (166)
x: — a(t)xo
=Py < 28R (167)
( (1) )
=P(Y <e). (168)
. o . . . . _ 9--0P(Y<e) .
Since the probability density function g, (€) satisfies the relation g, (€) = =5~ 5=, we obtain
1 0eg

pe(x¢[x0) = ?ﬁz((g O

Theorem F.1 (Fractional Denoishing Score Matching (fDSM)). For parameter 0, we define two
losses L1(0,t) and Ly (0,t) for t € [0, 1] such that

2

A(Xngpt(Xt)
Li(0,8) =By ) (x ) — —— 1
1( I ) Xt Pr,( t,) ’Sg(xt ) pt<Xt) ( 69)
and
A7 Vpu o) |
_ _ A Vpi(xilxo)
L2(97t) - Ex()'\’pdam(xo)1xtht(xt‘x()) ‘ SQ(Xt,t) pt(xt‘xo) , (170)

Then two losses are equivalent, meaning that there exists a constant C satisfying L1 (0,t) = L2(0,t)+
C.
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Proof. Fort € [0, 1], due to the monotone convergence theorem, it holds that

a—2 2
Ly(0,8) = Bay ) | = [|S0(x0,8) — %ﬁ)(xt) (171)
a2 2
= lim pt(x)1 Sp(x,t) — A Vpix) dx (172)
T Jlx|<r bt (X) 9
where the last integral can be decomposed into two terms L1 (6,¢;7) and C4 (r) as follows:
- 2
/|x|<rpt(x); So(x,t) — A;TVX?(X) dx (173)

_/||< pi(x) [;Ilsa(x,t)H% <Sa(x,t),A2th(x)>} dx (= Li(0,t;1)  (174)

pe(x)
1
' /|x|<r 270 pe(x) ) b =Gk (175)

=L1(0,t;7) + Ci(r). (176)
Note that Cy(r) is independent of ¢ and well-defined for any r > 0 provided that pg,, has the
compact Support or Py (X) ~ e~ %’ Similarly, due to the monotone convergence theorem,

o 2
Lo(6,1) A7 Vpi(xe[x0) 177)
pe(x¢[x0)

= Exompia (x0),xt~pe(xt|x0)

5 SQ(Xt7t) -

2

a—2 2
A7z Vpe(x]x0)

So(x,t) — Do (X[0) 2 dxgdx (178)

. 1
- T‘ll>nolo /x|<T Ad pdata(XO)pt (X‘XO) 5

where the last integral term can be decomposed into two terms Lo (6, ¢; ) and Co(r) as follows:
1
pdata(XO)pt (X‘XO) )
|x|<r JRY 9
1 2 AQT&th(x|xO)
= Pdata(X0)Pt(X|X0) | = [[Se(x,)||5 — ( Se(x,t), ————=
Aqéaawxuﬂg< 2 <(> e

AT Vpy(x|x
/ /1 2pddtd(xo pt(x]%0) ’ pe(x[x0)
X<7’ d
(181)

Pe(x[x0)
Also, note that C(r) is independent of § and well-defined for any r > 0 with the same condition
as we already mentioned. However, C1(r) and Co(r) may diverge as r — oo. Thus, we control
Cs(r) := C1(r) — Cy(r) instead of controlling C and C individually. Observe that for any r > 0,

/x|<rpt(x) <Sa(X, 1), AQQZVPT‘(X)> dx = /|x|<T <Sg(x, 1), A%th(x)> dx  (182)

a2 2
A7z Vpe(x]x0)

SQ(X, t) — pt(X‘Xo)

dxodx (179)

dxodx (180)

dxodx = La(0,t;7) + Ca(r).
2

pt(X)
_/| <S@(x,t),/ pdam(xo)AVth(x|x0)dx0>dx (183)
x|<r R4
ATV
_ /xm <sg<x, 0, / 0 pdam<x()>pt<x|x@>pt(f;(o’;"“)> dxodx (184)
AT Y
/x|<r / Pasa(X0)pt xle)< 5(), pt(xﬁjfsx°)>d><odx. (185)
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Thus, we can conclude that L, (6, ¢;7) = La(6, ¢;7) for any r > 0 so that
Li(0,t;7) + C1(r) = L2(0,t;r) + C1(r) = L2(0,t;r) + Ca(r) + Cs(r). (186)

Recall that L1 (6, ¢;7) + C1(r) T L1(0,t) and Lo(6,t;7) + Ca(r) T Lo(6,t) as r — oc. Thus, the
limit of C3(r) exists as 7 — oo and we write it as C5. Therefore,

L1(97t) :11)111 (L1(9,t;r)—|—C’1(r)) (187)
= rlig)lo (LQ(@, t; 7’) + 02(7‘) + 03(7“)) = Lg(e, t) + Cj. (188)
Consequently, we show that L (6,t) and Ly (6, t) are equivalent. O

According to Theorem 4.3, the label of the fractional SDM is

) g —i(ESaDx0 Ly g
A Tp(xxe) 1 dweme (il e T el Yy )
pe(xIxo) a7 (1) Jocns (g“i"?ﬁ?ﬁi‘ e i) du
1 A%V,
- > Vda(x). (190)

op M) da(x)
x—a(t)xo
or (t)

Even though it may seem complex, the integral representation of the label of fDSM can be simplified
to a straightforward linear function.

where x =

Lemma F.2. Azqfvxq)“(x) has a 2-dimensional integral representation such as

—q fﬂ foo —ir|lx|lcos 0 —r® pdta=2 ¢4g § gjnd—2 Hdegi
jo f e—irl|x|| cos 0 g—r pd—1 gind=2 9 drdp x|

(191)

Proof. With a fixed x in R?, we select an axis that is aligned with the direc~tion of x. Then,~we
define Z as ﬁ and include it as the last component of an orthogonal basis B of R, where B =

€1,...,€4—1,%(= &4). The choice of points does not affect the independence of the two bases. Bis
formed by rotating the basis B so that the absolute value of the determinant of the jacobian H

is LLIFf = fiéy + - faéq, we denote [f]5 as [f]p = (f1,.. ., fa) for basis B, [f]5 = (fi,..., fa)
for basis B. Given u € R%, u can represented as U = w161 + ... + Um€m + ... + Ugéq =
1€y 4 -+ + Umlm + -+ + Ugd and x = 2181 + - - x4éq = ||x||Z with [u]p = u = (u1,...,uq4
and [u]z =@ = (U1, ...7a4), [X]p = (¥1,...,24) € RL, T =(0,...,0,]|x]]).

~

Then u,, = ijl Uj(Em, €5) = ijl Uj(u){(ém, €;) foreach m € {1,...,d} by orthogonality of
the basis B.

Lemma F.3 (Change of variable). T is a I-1 C'-mapping of an open set E C R® into R such that

Jr(x) # 0 for all x € E. Iff is a continuous function on R whose support is compact and lies in
T(E), then

/ f(y)dy = / FT()) |7 (x)] dx. (192)
R4 R4

We recall that Jr is the Jacobian of T.

For a given x € R, let us define a rotation operator T : R — R? such that Ty (u) = @ where

d
= (85, Em) = ZPrOJ] (W) (ém, &), me{l,....d} (193)
=1
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where Proj,(x) = x; is the projection map onto the corresponding basis of B. Also, note that
| Tx(u)|| = ||u|| and (x,u) = ||x]| - Proj,(Tx(u)) holds for any u € R%. Then for each m,

/ Rl(fium||u||o‘_26_i<x’u>e_““”a)du (194)
u€ER

d
(2 fi/ > Proj; (T () (m, &) Ju] |62 e ll1" gy (195)
Rd “

d
= _Z‘Z<é,"“éj> /Rd projj(Tx(u))||Tx(u)||a—26—i\|x\l-Projd(Tx(u))e—HTx(u)\ladu (196)

d
(192) Zzem,e] / PI’O_]]( )”ﬁ”a72€7i|\x||~Prujd(ﬁ)efHﬁHo‘dﬁ (197)
Jj=1
d
ZZe,meJ/ |||~ 2ol o= 0" gy, (198)
Jj=1

Therefore, we get

(

S Vo (x) = /d —ijulu|e2e W e~ lul® gy (199)
R

d
=3
=

1

d d
S i) [ e 9 201)

</ QUm||u||o‘_2e_i<x’u>e_”“|adu> ém (200)
R4

m=1 j=1
d . ~ ~
=> <—z/ aj||ﬁ|°‘2e”"'“de“|"dﬁ> ¢ (202)
=1 Re

where the last equality holds since ; = mezl (ém, €j)ém foreach j € {1,...,d}.

The Cartesian coordinates are converted to spherical coordinates to perform the above integration.
Forj =1,

I := / i [[a)| e X IR g (203)
d—1
/ / Lsin gy e~ lIxll cos a1 =1 H sinOpdrdog_1, (204)
Sd—1 ke2
The same calculation is performed for j € {2,...,d — 1}, and the results are represented as
I := / |||~ 2e Xl aa o= lEl" g (205)
Rd
oo d—1
= / / r*Lcos 9]-,16*“"”"” c0s fa—1 o =" H sin O, drdog_1 (206)
§4-1.J0 k=3
and for j = d,
Iy = / || 2e Xl g lEI g (207)
/ / 7L cos Og_qe rIxllcos Our o= grgy | (208)
§d—1

27
:/ / [/ / “LeosBhy_1e —irflx|lcos a1 o —r® Jadrdfg_1| ---db;. (209)
o Jo
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Here J; denotes the Jacobian

d—1
Jo = (=) T sin* oy, (210)
k=2
where 6, € [0,27) and 0; € [0,7) forj € {2,...,d}. Itisshownthat[; = [, =--- =1;_; =0
holds. while g, (x) can be calculated as an integral over R%.
G () = / i) =1l gy @11
Rd
= / e~ irlixllcosOas o =1 g, (212)
si-1Jo

27 T T oo
:/ / [/ / e~ rlixlieosOa—r =1 1 qrdg, 1| ---doy =: I,. (213)
0 0 0 0

Then we get the desired result

W?—szﬁéjzﬁédzﬁi, 214)

2 1. g
I and Iy have the same term, [; T foﬂ e f07r Z:é sin®* 1 0,dOy_s - - - db, % can be represented

as the 2-dimensional integral,

(A)QT%VQQ(X) (i fOTr fooo e~ irllxllcos a1 o= pdta=2 o509, sin=2 0y 1 drdfy_,) x

qa(x) (foﬂ f()oo e—iTlHXH cos 91171677’"“ Td71 Sind_2 gd—ldrded—l) H|XH :
(215)
O

Lemma F.4 —ify S5 emirllixllcos 0o —r dta=2 (o9 in 94=2drdg x
o Jo I5e e irllixllcos g1 o —ro pd—1gin gd—2drde =[] —

Q%

Proof. The integral is split into two parts and then combined to form a final result. We first estimate
the numerator of the integral.

I;:= / / e irlixllcos 0o —r® pdta=2 (o0 9 5in?=2 9drde (216)
o Jo
T/2 poo ) N
= / / e irlxllcos =1 pdta=2 (o0 g sin=2 Odrde (217)
0 0
+ / e rlixllcos O o—r® pdta=2 g g sin?=2 Gdrde (218)
w/2J0
/2 poo ) N
= / / e irlxllcos =1 pdta=2 (o0 g sin=2 Odrde (219)
0 0
/2 poo N
— / / eirllxllcos 0 g=r®pdta=2 (s 0 6in=2 gdrdg (220)
0 0
w/2 oo o
=—2i- / / sin(r|||x|| cos 0)e™"" r¢T2 cos 0 sin? 2 Odrde. (221)
0 0

The expression is then changed to a new form by using y = r cos 6 and the relationship between y, r,
and 6. The integral is simplified by using the derivative of (2 — 32)(?=1)/2 with respect to y and
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then integrated to arrive at the final result.

Iy =—2i- / / sin(r||x|| cos §)e ™" r4T=2 cos § sin? 2 OdAdr (222)
o 1
— _ 9. d+a 2 d—2p +
=2 /0 e dr{/o sm(||x||y) sin ersinﬁdy} (223)

oo T
= 9. / e’TarCHa*Qr*der{/ sin(||x||y) -y - (r* — yz)%dy} (224)
0 0

=—2. / e’”?"o‘*ldr[/ sin(||x||y) -y - (r* — yZ)%dy}. (225)
0 0
The integral | sin( ||y) y - (r2 — y2)“=" dy is simplified as follows. Using the property y(r2 —
y?)(d=3)/2 = —%%( — y?)(@=1)/2 we can rewrite the integral as
[ sintilnut? = )09 2y = -2 [Cindl 02 = o)y 26)
0

. r X
1<r2—y2><d-1>/2sm<||x||y>\0+ il L[ e sy 2

= % (r? — ) @=D/2 cos(|x||y) dy. (228)
We then focus on estimating Ll L[ (r? =y 4072 cos(||x| |y ) dy.
|67 =22 con(lxllyyay = [ (1= (427 cosixll)dy (229)
0 0
it plixdie o
= (1= (+=2—)2) " 2cos(y)dy. (230)
I Jo [I[|r
Setting y = ||x||rcosk, yields dy = |[x||r(—sink)dk and results iny = 0 = k = 7, and

y = r||x|| = k = 0. Hence,

|7 =22 cos(xlly)dy =40 [ (1= (B cosixllpdy @31)
0 0

_ / ¥ sin®= (k) cos(|[x||r cos(k))dk.  (232)
0

Finally, using the integral representation of the Bessel function of the first kind (as given in [1] .360,
9.1.20),

1\ n
Ju(z) = 1(22)/ cos(z cos 0) sin®” 0d (233)
AT D) b
a [F o an d/264—1 L(§+3)
=7 sin®"* (k) cos(||x||r cos(k))dk = r*/?22 71\ /m—2 2~ I|[72 Jd(r||x||). (234)
0
x T _ d_ r(g+s
Thus L 72 — 42) 4972 cos(([xly)dy = r¥/228 1 /A2 (]
The denominator of the integral is estimated as follows:
Iy ::/ / e~ rllixllcos a1 g=r.d sm@d 2drd9d 1 (235)
0
/2 oo ] N
:/ / e irllixllcost o —r®d=1 gip) o Odrdd (236)
+/ / e~ irlixllcosOo=r®pd=1 gin o Odrdd (237)
w/2J0
0o N /2
:2-/ e " rdr/ cos(r|||x|| cos 8) sin?~2 Ad#. (238)
0 0
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To estimate the denominator, a change of variables is made: y = r cosf. Then cosf = % sinf =
2 2y1/2 .
2= and dy = —r sin 0d6 with df = —

The integral becomes:

kg
Iy=2- /00 e_Tard_er{/ cos(||x||y) sin? =3 Gdy} (239)
0 0
=2 / rd= 2dr{/ cos(|[x||y)r~ 3 (r% — yQ)%dy] (240)
0
—9. /OOO e rdr[/(: cos(||x||y) (r? 7y2)%dy}. (241)
In a similar manner, the integral [ (r? — ?)(@=%/2 cos(||x||y)dy can be estimated.
/r(r2 — ) =372 cos(||x||y)dy = ri125-2/x ||( E 11) Ja_(r]]x]]). (242)
0

The formula for I is rearranged as follows:
. a d d

00677« 1“525711’&71 B Q+l J _—

I3 VAT(§ + 3) 74 ol wan

S e r AL d =2 A (4 — D)y (el —

. _fooo po—1+d/2,—r" Jaso(r]|x||)dr (244)
I e Jyya_q (r|jx|)dr

I=—

(243)

(245)

The integral of I is represented as a series of r using the series representation of the Bessel function
of the first kind: ([1], p.360, 9.1.10),

[ee]

B (_1)m T\ 2m+ta
Jal@) = 7nz::0 m!D(m + a + 1) (5) ' (246)
The result is:

e * amractra e o D™l g
r 1+d/2€ 7 rllx|Ndr = / ,r2m+a 1+de T ( 2m+ 4§ dr.
/ spalrlilyar = | DI
(247)

The Dominanted Convergence Theorem [13], Theorem 2.25 on p. 55) can be used to exchange the

series and the integral, but first, we must check the convergence of the series. For this, we need

(-nm™ 2m+a+d7167TQ(M)2m+d/2

mIT(m+4+1) 2 :
: _ 1

The absolute value of this can be expressed as | f,,| = e on a5

and the integral of this from O to infinity is [~ | fyn|dr = %( lIxlly2m+d/2 Ag a result,

to perform the test on the absolute series. Let f,,, = r

2m+a+d—1€—r0‘ ( H’;H )2m+d/2’

the right-hand side of (247) becomes Y o° [ | fm|dr = >2¢° %(@)2’””/2. We can
N 2

use the Dominanted Convergence Theorem if we can show that the series converges. Let a,, =
D(g+2) (lIxll\2m+d/2 _
m( )2m+d/2 — |g,,|. Using the asymptotic approximation of the Gamma function I'(z),

I'(z 4+ «) ~ z°T'(x) when = — oo ([1], p.259, 6.1.39),

|am 1] rEg+2+2) [l 2

lim = @ @ = — 248

m= [y (m+1)(m+d/2)D(£ + 22) 5 (248)
_ D(g+2)-(E+2% il
= (m+1)(m +d/2)0 (2 + 2m) (5 (249)

(g2 xlly o2

= nlgnoo CESCETIE) (7) since — < 2 (250)
=0<1. (251)
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By applying the Ratio test, it has been determined that the series converges. As a result, the Domi-
nanted Convergence Theorem can be used on the numerator of I.

* — —r® G 1™ > m+ta+d—1_—r®
/ PR o (|l = 3 mlI‘(ETH—)d + 1)/0 e dr
: 2

0 m=0 (252)

Xl 2meay2

)

i Epm L d 2m 11x[[\2m-+a/2

‘a§3mnm+$u>”a+a‘“ﬂ2> 253)
Lo~ ()™ (442274 4 2

T a 2 : m3 ' ((jn+§)) F((E;m- d))(||)2(|)2m+d/2 234)

m=0

_ l i (—1)771 F( + Qﬂ) ( HXH)Q’HH—d/Z g (255)

a m! I(m+ %) a

m=0

By changing the variable from 7 to k = r®, the integral of r2"+o+d=1¢="" gver the interval (0, o)
m d+2m+a . .
1k = "5 The calculation of the denominator of T

can be estimated as + f e kK
follows the same method

> d/2 —r® _ - (_1)m o 2m+d—1 _—r®
r2e™" Jyo_1(r|x||)dr = _ r e " dr
/ a 2 i+ 8 o

(256)
Xl omaz2
(td
1 1)’" I+ 221) I \2m-ta/2-1
EE:: T gy U2 D

We have determined the expressions for both the numerator and denominator of the integral /. Now,
we will find the linear formula for /.

2m ‘ ‘ ‘

1 g0 (D™ T2 x|\ 2mtd/2 | 2
Ezmzo ml r(m+%)( 2 ) o

I=- , (258)
o0 _1mF(g+%) X m —
éZm:O(m)! I'(m+4%) (@)2 +d/2-1
o0 =nm . F(%+%) %[ \2m.
D e 3 D S 259)
S (=nm F(%+2%)(M)2m 2 o
m=0 m! F(m+%) 2
|||
= = 260
- (260)
Therefore,
i Jy Jy el e 2 cos fsin ) 2drdd) x_Jlxll | x __x e
(Jo Jo eirlixlleosbe=rpd=1(sin §)4=2drdf) Il o fx[] o
]

Let’s proceed to examine the fractional score function of the marginal density function of the solution

6o (E0)

(1)
transformation of the transition density function is F{p}(u) = e~ l"®ull*gialtxo Therefore,

(127). According to Lemma F.1 ps(x¢|xq) = is established. In that case, the Foruier

pe(x) = / dp(X\Xo)pdam(xO)de (262)
x:€R
1 — u||® jia(t)(xo,u) ,—i(x,u
= o | (/uewe I8 10 o) 1052 ) g o) e (263)
1 .
- o / O F g a0 (264)
€
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and
a—2 —1 — ul|* a— —i{x,u
A2 Vp(x) = W/ d]—'{pdm}(a(t)u)e @Ol |y || 2ue % du, (265)
u€eR

Since — Fa.€ “I@ull® = ;| [u||*—2e~IV®W® for each i € {1,...,d},

a(’Y(t))a Ou

0 — |y (&) ul|*7,—i{x,u
AT, = Grprra G ., F P e gl PO e

(266)
—t =y (@®)ul|* 0 —i{x,u
= T oy Pl a0l o6)
__mp) ‘ o~ @l 9 A= W du
ave=1(t)  @n)da(y(t)" /ue]Rd D, [F{Pdata } (a(t)0)] Jdu.  (268)
Thus,
A"Vp(x) _ x
pi(x) a(y(t)~
3 i fue]Rd e—lh(t)u\l"v[]:{pdata}( (t)u)]e —i{xu) gy (269)
(2m)dor(y(t))* pe(x)
S S oIl aan e
a(y(t)*  (2m)da(y(t)e /u R VIF paa}(a(tw)] = remmdu. - (270)

This representation (269) also can be applied to any integrable function p;(x) since the normalization
term cancels out in both the numerator and denoimiator. If p;(x) = q‘(x) where N = [ _pq q:(x)dx,

—2
A 7 fo(x) Aa2 Vi (x)

then =5 @00

Let’s consider the function ¢(x, t) defined as follows:

—i(x,u)
X, t e~ IO 71 F o piua H(a(t)u ¢ 271
oet) =~ | F a0y @)
Then the fractional score function is represeted as:
AT Vpy(x) 1
= a(t)p(x,t) —x 272)
) aye(n OO0

Since pyaa(x) is an integrable function, it can be expressed as a simple function of the form
Pdaa(X) = D1 ; aiXk,(x), then the Fourier transform of pgq, denoted by Fpaua, follows the
following relationship:

n

Floahw =30 [ dy, o73)

i=1 JYEE:

By taking the gradient of equation (273),

VI[F{Pdan}](u) = Zaz/ eHwy) . ydy. (274)
i=1
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) o —i(x,u)
P(x,t) = — (2;)d /ERd e~ Ilv(®)ull V[]—"{pdam}](a(t)U)eptTdu (275)
:Zai/ 5 [(2;)d/ e IOl au dy py(x) - @76)
=1 yekbk; ucRd
1 " —alt
R0 > ai /EE Y 4o (W) dy /pi(x) (277)
i=1 yeby

S .. (X—aly
= ~A(t) /yeRd ;azXE,: y QG(W)dY/pt(X) (278)
_ ! . ><—a<f>Y> J -
’Yd(t) /yE]Rdy pdata(Y)Qa ( ’Y(t) y/pt(x) ( 7 )

- fonRd X0 - Pdara(xo)éloz(x_j((tt))x0 )dxo (280)
Jroers pdata(xo)%(%)dxo

Now, let’s consider the general cases where pqa, 1S not a simple function but an integrable function.
In this case, since the integrable function is measurable, we can find a sequence of simple functions,
denoted by {p,, }22 ;, such that as n approaches infinity, p,, — Paaa almost everywhere and under the
Lq norm with p,, < pp4q foralln € N.

For each p,,, the corresponding ¢,,(x, t) satisfies

Frpers X0 - 2n(x0)0a =157 )dxo

On(x,1) = e (281)
fxoG]Rd pn(XO)QOz( ’y((tt)) O)dXO
By the Dominant Convergence Theorem,
) x=a(t)xo
i Ga(x,t) = lim | J20eB X0 Prlx0)da (5 o (282)
e e foERd Dn (Xo)%(x_;l((:))x” Ydxo

_ lim,, o fo crd X0 * Pn (XO)QQ(X_,(;((:))XO )dXO 283)

lim,, o0 fxﬂeRd DPn (XO)Qa ( x_,;l((:))xo )dxo
. fxﬂ erd X0 limy, 00 P (XO)QQ(X_;I((:))XO Ydxg (284

fxu cRd limnﬁoo Pn (XO)QQ ( x—;z((tt))x[) )dXo

. x—a(t)xo

_ fxOERd X0 - Pdata(X0)qa ~(0) )dXO' 085)

fx0 cRd Ddata (X0)a( xjj((tt))xo )dxo

We need to show that lim,,—,o ¢n(X,t) = ¢(x,t). Since p,, converges to Paa in the Ly norm,
it follows that F{p,,} converges t0 F{pdan} almost everywhere. By the Dominant Convergence
Theorem, we get

lim eI ®ull” 70p Y (a(t)u)e "W du = / eIl Fip e (a(t)u)e W du,

n—oo uE]Rd llE]Rd
(286)
Since |[y - pa(y)e’Y ™ ]i| < yi - paly) and limy oo [ epay - Pa(¥)Ay = [ocpay - Paaa(y)dy
with using the Monotone Convergence Theorem for each component 7 € {1,...,n}, we induce
lim V[F{p,}|(u) = lim z/ y - puly)eY W dy (287)
n—o00 n— 00 yERd
iy p()edy (288)
yeERd
= V[F{Paaa}](0). (289)
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By the generalized Dominant Convergence Theorem [12][Excercise 20 on p 59],

lim i / eI F{(p, ) (a(t)u)e W du (290)

n—oo . uGRd

:/ e_‘h(t)“”aV[]:{pdata}](a(t)u)e‘i<x’u>du. (291)
JueRd

From this result, we can get lim,, o0 ¢n(X,t) = ¢(x,¢). Thus,

ferRd Xo - pdata(XO)Qa(x_,;l((;))xo )dxo

¢(X7 t) = X—a X, (292)
foERd Pdata(X0)Ga ,Y((tt)) ¢)dxo
Combining (292) and (272) , we conclude
AT Vp(x) 1 (t) Sy X0+ Paa(X0) g (=52 o (293)
— a -
Pt (X) an“® (t) ferRd pdata(XO)Qa(xif:((Z))xo )dxqo

Therefore, we obtain the integral representation of the fractional score function from the perspective
of the data distribution. This representation allows us to precisely understand the direction indicated
by the fractional score function.

G Experiment Detail

G.1 Model architecture

Our model uses U-Net [31] following DDPM [15], which replaces weight normalization [30] with
group normalization [37] for simple implementation. We set the hidden layer dimension of our model
suitable for the dataset, such that CIFAR10 (32 x 32) is [128, 256, 256, 256], CelebA (64 x 64)
is [128, 256, 256, 256, 1024], and both CelebA-HQ and LSUN (256 x 256) are [128, 256, 256,
256, 1024, 1024], but fix the number of residual blocks with 2 in each resolution level, and add
self-attention block only in 16 x 16 resolution level. These setups are also following DDPM([15],
[39]). We also use extended model architecture, NCSN++ (deep) following [39] to improve sample
quality on CIFAR10. It has 8 residual blocks in each resolution level.

The exponential moving average(EMA) rate set to be 0.9999 for CIFAR10 and CelebA, 0.999 for
CelebA-HQ and LSUN, because it works better for models trained with VP perturbations.

Continuous diffusion time ¢ € [0,1) is injected into the model through Transformer sinusoidal
position embedding [34] after adding with 0.00001, and we use swish function for all datasets as the
activation function.

We train our CIFAR10 model for 200k steps with batch size 256, CelebA model for 600k steps with
batch size 256, and CelebA-HQ, LSUN model for 1.3M steps with batch size 16. All training and
experiments are conducted on NVIDIA A100 GPU, NVIDIA V100 GPU and NVIDIA GeForce RTX
3090, and we tune the batch size for sampling adjusted for computation resources.

G.2 Noise scheduling

We use cosine noise schedule as [25], and limit the maximum time 7" = 0.9946 for all datasets. We
consider the variance preserving type with modification which is suitable for Lévy noise, so it can
have different value according to a.

We can get 3(t) and marginal log ov; from

Bt) =

« Wta (t+s7r)
Z tan il
1+s2 1+s2

T t+s ™ s
loga(t) = log <cos (2 g s>> — log <cos (2 g s)) (295)

where s = 0.008, following [25]. The scale parameter can be computed by the relation ~(t) =

(1 —ao (1),

(294)
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G.3 Smooth L1 Loss

L loss has been widely used for stable training because B FID Precision  Recall
it 1s'd1fferent1ab'le in entire range, but it is sensitive to 05 390 0752 0.688
outliers due to its square term. Therefore, we choose 10 337 0752 0.688
smooth L1 Loss for stable training instead of L2 Loss, 2'0 4'02 0'7 54 0. 636
since Lévy noise has much more outliers than Gaussian 3'0 4'02 0'756 0.687
noise. For smooth L, Loss, as 3 varies, the L; segment 4'0 3'90 0'753 0.688
of the loss has a constant slope of 1. As the 3 approaches . . . .
to zero, smooth L1 Loss converges to L; Loss, but as the Table 7: 3 selection table.

B approaches to oo, it converges to a constant 0 loss. We

evaluate sample quality according to $ in the CIFAR10 dataset with FID, and Precision-Recall at
NFE 500.
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G.4 Clamping / Threshold

Different from Gaussian distribution, a-stable distribution can have large-scale noise at lower «
values, which leads to sample quality degradation. To prevent this problem, we use 2 kinds of
heuristics in the training and sampling phase.

a-stable distributions can be simulated by generating samples of 1-dimensional a-stable distribution
and gaussian distribution. If 0 < a < 2, A ~ S (a/2, 1,2(cos mar/4)%/ e, 0) and G ~ N(0, @), then
a-stable distribution follows this relation [25]:

X = AY?2@ (296)

A will actually increase up to 10000 or more if no action is taken. However, excessive noise can
make sampling poor since the pixel values of image data range from O to 1. To address this issue,
we introduce the clamping method, A <— clamp(A, —20, 20). Thus, we generate samples of a-stable
distribution as follow:

X = clamp(4, —20,20)/%G (297)

Another heuristic is the clamp threshold, which is re-normalization in the sampling phase. The
clamp threshold is a heuristic that aids in the convergence of a sequence during sampling. At each
reverse sampling step, the normalization of the norm is done using that threshold if the norm of the
sample exceeds the threshold. It can be observed that the generated images vary slightly and there are
differences in quality depending on the clamp threshold.

CLAMP THRESHOLD: 400 CLAMP THRESHOLD: 500 CLAMP THRESHOLD: 600 CLAMP THRESHOLD: 700 CLAMP THRESHOLD: 800 CLAMP THRESHOLD:1000

Figure 9: The effect of the clamp threshold on CelebA-HQ.

G.5 Evaluation metrics
G.5.1 FID (Fréchet Inception Distance) score and Recall

To evaluate generated sample quality, we choose traditional metric, FID score [14] where a lower
score means better sample quality. Moreover, we use Recall [20] , where a higher score is better, as
metric to evaluate sample diversity, since Recall measures the fraction of the training data manifold
covered by the generator.

After computing both mean/variance of distributions in the training dataset and generating the same
number of samples as training dataset (CIFAR10: 50k, CelebA-HQ: 30k). In CelebA and LSUN,
which have large training dataset, we randomly choose 50k samples from training dataset 5 iteration.
Then we calculate the distance between two distributions as FID score and the probability that
generated samples falls within the support of distribution of training dataset by using the pre-trained
Inception-V3 model.

G.5.2 Likelihood computation

We can compute the exact likelihood on any input data in the same way as [39]. By replacing the
score V,, log p:(X¢) with score model Sy( X, t), we can rewrite (164) as

X~ (b6 X0 - So(Ke o (0) (298)

=:fg (}ht)
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Then we can compute the log-likelihood of po(Xo) such that
— — T o
log po(Xo) = log pr(X1) +/ V- fo(X¢, t)dt. (299)
0

— —
where X 7 is noise mapping to Xy which can be obtained by solving the probability ODE in (298)

~ —
with ODE solver. Because of the expensive computation of V - fo(X¢,t), we estimate it by using the
Skilling-Hutchinson trace estimator [38][16].

To solve the integral term, we choose the RK45 ODE solver [10] which can be used as solve-ivp
function in scipy.integrate library. We also set parameters atol=1e-5, rtol=1e-5. We use a
test dataset applied uniform dequantization, and take the average of the bits/dim values over 5 repeats

~
for exact likelihood computation. By changing initial time ¢, of integral |, tf V - fo(X¢, t)dt after
adding 0.001, we compute bits/dim with varied number of function evaluations(NFE).

G.6 Wall clock time

Previously, Lévy sampling supported by scipy.stats library was much slower than pytorch based
Gaussian noise sampling since it is a numpy based method. Therefore, we migrate it to pytorch
version to raise the speed of Lévy sampling upto Gaussian noise. As you can see in below table, our
wall clock time per NFE become as fast as Gaussian, and we show that the halved NFE leads to a
reduction in the actual sampling speed.

Model wall clock time/NFE (sec) NFE total wall clock time (sec) FIDJ
CIFAR10 (32 x 32)

DDPM cont. (VP) [35] 0.0261 1000 26.0675 324
LIM-DDPM cont. (Ours) 0.0285 500 14.2709 3.37
CelebA (64 x 64)

DDPM cont. (VP) [35] 0.0800 1000 79.9665 3.21
LIM-DDPM cont. (Ours) 0.0763 500 38.1757 1.57

Table 8: Wall clock time on CIFAR10 (32 x 32) and CelebA (64 x 64).

46



G.7 Imputation: Additional samples

origin image

L a=20
(Om)

. a=15
(LIM)

masked image

origin image

o

masked image

origin image

masked image imputation result

Figure 10: Additional imputation results using CelebA-HQ dataset. Diffusion model(DM) generates
only similar eyes and lips, while LIM generates much more diverse range of shape and color of eyes
and lips.

G.8 Additional samples on high dimensional datasets

We also evaluate our model on high dimensional datasets, such as CelebA-HQ, LSUN-Bedroom, and
LSUN-Church (256 x 256), which are reported in below figures.
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Figure 11: Additional samples for CelebA-HQ (256 x 256) at NFE 200.
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Figure 12: Additional samples for LSUN-Bedroom (256 x 256) at NFE 200.
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Figure 13: Additional samples for LSUN-Church (256 x 256) at NFE 200.
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