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A MIMONets Details

A.1 VSA representations and operations in MIMONets

There are numerous available options for binding and unbinding depending on the VSA models being
used [1f]. Table summarizes the VSA representations and operations used in MIMOConv and
MIMOFormer. MIMOConv relies on holographic reduced representation (HRR) [2] for binding, and
matrix binding of additive terms (MBAT) [3[] for unbinding. The binding and unbinding keys are
real-valued and trainable. At initialization, each element in the D-dimensional key vector is drawn
from an i.i.d. Gaussian distribution with zero mean and 1/D variance. Optionally, the binding keys
can be frozen during training while maintaining a high accuracy (see Appendix [E.5). MIMOConv’s
binding relies on our proposed position-wise HRR (PWHRR) binding, which maintains the image’s
local structure. The unbinding is implemented with MBAT, which computes the vector-matrix
multiplication between the CNN’s D,-dimensional output feature vector and an unbinding matrix
A() ¢ RP>*Do_ The output dimension is D,=640 in WideResNet-28-10. The MBAT unbinding
provides a higher degree of freedom by having D? trainable parameters, whereas HRR’s unbinding
would generate a circulant matrix with D, trainable parameters. However, it requires only 409,600
parameters per superposition channel, which is negligible compared to the remaining layers in
MIMOConv, which have 36.54 M trainable parameters. Due to deep neural networks being highly
nonlinear, we thus opt for this more flexible variant of unbinding by arbitrary linear transformations.

MIMOFormer uses the multiply-add-permute (MAP) [4] model, which uses bipolar keys and the
element wise multiplication (Hadamard product) for binding and unbinding. The bipolar keys are
drawn from a Rademacher distribution and are frozen during training and inference.

Table Al: Summary of VSA representations and operations used in MIMOConv and MIMOFormer.

Binding Unbinding
VSA framework Key representation Operation Keys Operation Keys
MIMOConv HRR/MBAT real-valued PWHRR trainable/frozen MBAT trainable
MIMOFormer MAP bipolar Hadamard product frozen Hadamard product  frozen

A.2 Illustration of the Blessing of Dimensionality

VSA builds upon the mathematical concept of the Blessing of Dimensionality. According to it,
random vectors are (quasi-)orthogonal with high probability. Let us illustrate one version of it.
Suppose independent random bipolar vectors x,y € {—1, +1} with i.i.d. Rademacher distributed
components as used in MIMOFormer. It holds by Hoeffding’s inequality (Appendix [G])

P (|cos £(z,y)| > @) =P (|(z,y)| > aD) < 272 /2 o >0 )

Similar bounds exist for Gaussian random vectors, which are used to generate keys for MIMOConv.
Let us set some cutoff for interference events (IE), namely, we consider two vectors to interfere with
each other if the angle between them is less than 70° (corresponding to o = cos(70°)), already 20°
off from exact orthogonality. The bound demonstrates that the probability for two vectors (with i.i.d.
Rademacher distributed components) to interfere (IE) is less than 0.785 for vectors in 16 dimensions.
As such, high levels of interference could still occur frequently. In contrast, for 64 dimensions, the
probability that two vectors interfere (IE) is already known to be less than 0.0474. Consequently, we
are much more certain that interference occurs with low probability.

A.3 Noisy retrieval of values from a key-value superposition
Consider a superposition of N bound values z(*)
s:a(l)@x(l)+a(2)®m(2)+...+a(N)®m(N) (2)

where the binding keys a(*) are (for instance) independent bipolar vectors of i.i.d. Rademacher entries.
Unbinding with a(*) produces the signal of interest 2:(*) together with a noise vector orthogonal to it:

™ @s=a®®a® 020 +d® @a®02®+.. +a® @™ o™ 3



= 2" 4 noise. 4)

The noise vector stems from the approximate unbinding (a®) ® a® © z*) ~ z(*)) as well as
randomized value vectors (a®) ® a?) ® (). Importantly, noise becomes orthogonal to (), hence
distinguishable, with a growing embedding dimension according to the Blessing of Dimensionality.
The effect of noise is mitigated after comparing against a dictionary of known outputs, based on a
notion of inner product. Such a comparison naturally, but not exclusively, arises in classification
tasks. Concretely, comparing against a(¥) ® Q for an Q aligned with z(*) returns

(@™ ®s,Q) = (s,a®) © Q) 5)
N

_ Z @ x(i),a(k) ®0) (6)

~ (@™ ©z® o o Q) 7

= (™, Q) (8)

where we still assume bipolar binding and where the approximation relies on the Blessing of
Dimensionality producing orthogonal vectors. For the VSA framework MAP, which uses bipolar
keys of i.i.d. Rademacher entries, we provide a more precise formulation:

Theorem 1 (Dictionary Cleanup Noise). Let Q € RP be an element of a dictionary and consider the
superposition of bound values =" € RP
s:a(l) @Ji(l) +a(2) @x(Q) —I—...—l—a(N)@x(N) (9)

where the binding keys oV € {—1,1}? are independent bipolar vectors of i.i.d. Rademacher entries.
It then holds

(k) k 0‘2|<$(k)79>’2
P <5,a ®Q>¢[1—a,1—|—a]~<x( ),Q> <2exp | — ‘ 5 (10)
2> sk J2® @ Ql|,

with the exponent, given =\ are all of roughly equal norm, according to Theorem@ in Appendix
typically scaling as

—Dao? COSQ(A(x(k),Q))/%N -1) (11)

Thus, for D > N comparison against elements from a dictionary allows faithful retrieval.

Proof. By the following equivalence relation

<s,a(k) © Q> Zl-—a,1+q]- <x(k),Q> = Z <a(i) oz a® o Q> > a’<x(k),0>‘
ik
(12)
it suffices to derive tail bounds on

P Z <a(i) oz®,a® o Q> > a‘ <x(k), Q>’

i£k
=P ZZad ad ch Q >a’<x(k),9>’ (13)
ik d

Since {a&i) . aﬁf) }a,ik for k fixed is a set of i.i.d. Rademacher random variables, we are in a position
to apply Hoeffding’s inequality (see Appendix, Theorem[5) which gives

2(/..(k) 2
P ZZag)aff xd)Q >a’< (k) Q>’ <2exp | — @ |<x 7Q>|
ik d QZi;ékZd

(14)
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Figure A1l: Depiction of a single trained MIMOConv performing dynamic inference. Instead of
the fast N=2 mode (above) the same input can be inserted twice for the slow N=1 mode (below)
effectively implementing an ensemble method. We can instantaneously switch between the modes.

A.4 Tllustration of dynamic inference

To explore the idea of dynamic inference, suppose only two superposition channels are used with
binding keys ("), a(?) and unbinding keys a(!), a(?). We already know how the model performs
standard computation in superposition (see Eq. (1) — (4) in the main text). Let us thus examine how a
network with the same parameters can instead be used as an ensemble-method with higher accuracy,
but lower throughput. A superposition is established of twice the same input x:

s=aVor+ad? oz (15)

After applying the deep neural network fy to the superposition, we may unbind as

iV ® fols) M @ fo (aV 0 ) +aV @ fo (a? 0 x) (16)
~ fo (@) + 30 @ fo (o © ) )
and
i@ @ fols) 2 @ fo (aV 0 ) +3? @ fo (a? ) (18)
~i® @ fo (o O ) + fo (). (19

After averaging the two expressions, we get
L0 1e) :
5 (80 ® fo(s) + 3 @ fols)) ~ fo (2) + noise 0)

where noise is a random noise vector and fy (z) is approximated as an average of two predictions.
Owing to the introduction of stochasticity by the binding and unbinding process these predictions are
decorrelated, i.e., each superposition channel is processed to some degree differently. See Figure [AT]
for an illustration.

A.5 Alternative throughput-increasing methods

Although not a focus of this work, we believe that computation in superposition can be combined
with other throughput-increasing methods such as model-downsizing, quantization aware training,
and pruning.



The Blessing of Dimensionality gives, in terms of dimensionality, an exponentially decreasing
probability of interference for superpositions, even for (2-bit quantized) Rademachers. The extent to
which these superpositions can be kept intact as linear layers act on them depends on the conditioning
of the matrix (ideally nearly-isometric) not on the fidelity of its entries. As such we suspect that
MIMOConv can be mixed with quantization, weight pruning, etc.

Regarding MIMOFormer, we can give quantitative insights. As is evident from Theorem [3] the
error bounds have no dependence on the precision of projection weights, but depend only on the
embedding dimensionality, the size of keys and queries, and the angles between them. Consequently,
quantization, pruning, etc. are not in competition with our approach and can be easily combined.

Naturally, when combining different methods not only the gains but also the errors add up. However,
with diminishing returns of each method we believe the combination of several to be most effective,
especially given that our method is not competing with alternatives for the same resources of a model
and allows it to conduct dynamic inference.



B MIMOConv Details

B.1 Inner-product preserving activation functions

Any inner-product preserving map is linear (see Appendix [G Theorem ). With activation functions
being introduced to break the linearity of neural networks, they are innately at odds with inner-product
preservation. According to [5]], a trade-off can be reached between preserving inner products and
introducing nonlinearities by replacing the ReLLU activation function with shifted ReLU (sReL.U)

sReLUy(x) = ReLU(x — b) + b = max(z, b), (21)

where the trainable bias b determines the trade-off and is initialized to —1. However, in our experi-
ments (see Appendix [E.3)), replacing sReLU with parametric ReLU (pReLU) [6]], another activation
function capable of choosing the extent of nonlinearity, defined as

pReLUy(z) = ReLU(x) —b- ReLU(—x) = max(z,0) + b - min(z,0) (22)

gives higher performance. The trainable parameter b € [—1, 1] controls the degree of linearity, where
b=1 indicates fully linear behavior. It is initialized to b=0.5 at the beginning of training.

B.2 Details on isometric convolutional layers

As elaborated in the main text, we strive for inner-product preserving maps. With inner-product
preserving maps being norm-preserving and by extension distance-preserving if linear, and with
linear distance-preserving maps being norm preserving and according to the polarization identity
also inner-product preserving, it holds that inner-product preserving maps are equivalent to linear
isometries. Hence the name of the regularization term being isometry regularization term. The
adopted regularization takes the form

L(W) = 3| Conu(W, W) = bc, ||z dc,lndll=lo,xe, 1k (23)
]

LW™) = 3||Cono(W", W) — dcilsndill=Ioxe 1,k 24
rTR2

where W € RC*Cixkxk contains the weights of a convolutional layer. C,, denotes the number of
output feature maps, C; the number of input feature maps, and & the (square) kernel size. W7 refers
to a kernel with the first two dimensions of W transposed. In the notation of Einstein summations,
the 2D convolution Conv(U, V') evaluates to

Oa,b,c,d = Ua7r,c+s,d+t ' ‘/E),r,s,t (25)

This is implemented in Pytorch by the usual zero-padded spatial 2D convolution taking an input in
the first argument (with ranks: batch size, fmaps, height, width) and a convolutional kernel in the
second argument (with ranks: output fmaps, input fmaps, kernel height, kernel width).

Unless the number of input fmaps and output fmaps coincide, only one of W and its adjoint W7
may be isometries. Thus we use L(W) when C; > C, and L(W7T) otherwise.

For more information on why such a regularization term may help to preserve inner products, see [ 7]
where it was first proposed.

B.3 Binding key regularization

We use a regularization term to keep the binding vectors (a(*)) orthonormal:

L, ..,a® =%ZZ ED o NZH

with hyperparameter p. A grid search on the validation set found a value of p=0.1 to give the
best results. Alternatively, the binding keys may be frozen after random (Gaussian) initialization,
guaranteeing orthogonality in the limit of high key dimension (see Appendix [A.7).

% (26)




C MIMOFormer Details

C.1 FAVOR-+ in the Performer

Here, we revisit the Performer’s FAVOR+ attention block [[8]] and in the next subsection we validate
the use of the ReLLU activation in the projection. FAVOR+ takes advantage of the fact that a, b —
exp (aTb / VD) is a kernel and can be represented as an explicit inner product (inverse kernel trick)

in an infinite-dimensional space of transformed inputs. The mapping to this infinite-dimensional
space is approximated with a randomized feature map ¢ : R” — Rf of finitely many entries. More
explicitly, since

E [ex (wiTq _ \Iq\l%) . ex (wiTk _ WCH%>1| (27)
w~N(0,Ip) p E%5) 2v/D p D o/D
_ 2 k 2

ZGXP( Hq!f/ﬁu ”2) ']Ew~N(0,ID)[exp(wf%>] (28)

2 2 2
=exp (7%(1!?5”]6”2 ) - exp (7“33%“2 ) = exp (qu/\/5> ) (29)
drawing wy, ..., wr ~ N(0, Ip) i.i.d. induces a function ¢ : RP — RR with components given by
oi(x) = exp(lf;g (G ) /v/R that, by the law of large number, approximates exp( Tk/vD )

ie.

(@(k), 6(a)) = exp(q"k/VD). (30)
Alternatively, by partitioning wy, . .., wg into subsets of cardinality D and drawing each such subset

from the orthogonal group before rescaling each w; according to the x p-distribution it still holds
w; ~ N(0,Ip), but the entries are no longer independent. Using such orthogonal features, one

obtains an unbiased estimate of exp (g7 k/ \/5) with lower variance than independently drawing
wi,...,wr ~N(0,Ip), see [8].
The inverse kernel trick then allows FAVOR+ to take advantage of the associativity of matrix

multiplication to give the following factored expression of dot-product attention:

A

L
> v; (6(k) T 8(g1)) va T X 6(q;)
Z“ (k) d(a)) I B

=1
= Z<¢<k>¢<ql)> EL: k)T 6(:)) iqs T xo(qi)

j=1 j=1

; 3D

B; C

where A and C must only be computed once. With the computational complexity of evaluating
¢ being O(DR), this takes in both cases O(LDR). Computing ¢(g;) for all ¢ requires another
O(LDR). Finally, the matrix-vector product X for a given query position 4 takes O(DR) for the
numerator and O(R) for the denominator. Thus, computing outputs o; for all i takes only O(LDR),
which can be a considerable improvement over the usual O(L? D) for long sequence lengths (L).

C.2 ReLU activation in FAVOR+S

To increase training stability, we use a ReL.U-based projection ¢;(z) = ReLU(wl'z)/V/ R
instead of the above-mentioned unbiased approximation of softmax through oi(x )
wa HIHQ

eXp( YD 2VD
we derive (new to our knowledge) a theoretical justification. As the following theorem expresses, the
ReLU approximation leads to a (bi-)linear dependency on the norm of keys and queries while retain-

) /VR VR. Such an approach was already mentioned in the Performer [8]. Here,
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Figure A2: Approximation of E[Re LU (w”'z)- ReLU (wTy)]/(||=||||y||) (red line) with a polynomial
(blue line). Softmax function is shown with green dashed line.

ing a roughly polynomial dependency (with exponent log, (7) & 1.65) on the query-key alignment

p =z, y)/lllllyll).
Theorem 2 (Rel.U approximation). Let w ~ N(0, Ip). Then

(@, y) + [|z|l|ly | g(F2) oa ()
[yl %||9C||Hy||(p+1)l 2

E[ReLU(w" ) - ReLU (w"y)] = 1 o

(32)
for

p) =2 |\/1—p>+|p| arctan(

Figure |A2] illustrates the validity of interpreting E[ReLU (wTx) - ReLU (wTy)]/(||z|/||ly]]) as a
polynomial. The general behaviour is also similar to the usual softmax function (green dashed line),
although the norm of x, y no longer affecting the exponent gives greater stability.

)] it p = o lellal) @

Proof.
E[ReLU(w"z) - ReLU (w"y)] = 1E[(w"z + |w”z|)(w"y + |w"y|)] (34)
_]E[wa cwTy] + Elwle—w®y[] + Ellwlet-wo?y] + E[|w’z - wly|] 35)
B 4
_IE[:ETw cwTy] + Ef|w?z - wTy|] B 2 ElwwT]y + Ef|wTz - wTy|] 36
= 1 = 1 (36)
_ @y +EljuTz - wly] (37
4
Let us now proceed to evaluate E[‘wa : wTyH First notice that X = w”z,Y = w”'y are jointly
Gaussian with
2 2
|:‘;£:| NN(O7 |: ox pU)gUY]) :N<0’ [$|| <x’y2>:|> . (38)
poxoy Oy (@,9) vl
where p = % = (x,y)/(||lz|l|ly||) measures the alignment between x and y. Hence, by the
innovations form for centered jointly Gaussians it holds
(X|Y =y) ~ N(pta)y (v), 021, () = N(poxoyty, (1 = p*)ox). (39)
Thus, the expectation of the folded normal distribution is given by
E[|X||Y = y] = 2 Ve 1) 1 — 20— Letn®) 40
XY = ) =001y ()2 exp( —4222 ) + gy () (1 — 20 (=222 (40)

=VT=PPoxy/2exp(~ 5T ) + poxoy y(1 - 20(- F2IL)) @



2. 2 _ 2
== ox /2 -exp(= gty ) +lolox - o7'y2e(Adt—) —1)

1—p20y
(42)

where ®(s) = % [ exp(—t*/2)dt denotes the cumulative distribution function of the standard
. . . 27T 0 . . .
normal distribution. Thus, we split the target expression in two:

Ellw"z - w"y|] =E[| X||Y]] = E[E[X]|-|Y|| Y]] = E[|Y]- E[| X]| | Y]] (43)
—\/1—,020;(\/% -E {|Y|exp(—$)} (44)
+lplox - E {|Y|a;1y(2¢>(\/%) — 1)] . (45)

For the first term, we get
2Y2 . 2,2 1 2
E [|Y|exp(—2(1€ng)} —/|y|exp<—2(1fpyz)a2)mgy eXP{—Q?j,fzy}dy (46)
Z
=v/1—p /|y|r e eXp( 5= 2)U%,)dy 47)
=v/1—p2 E[|Z|] where Z ~ N (0, (1 — p*)oy)

—VI=AVI=Poy 2= (1- oy /2, (49)

using again the formula for the expectation of a folded normal distribution. The second term is a bit

more involved to evaluate. We substitute S = =, i.e. S ~ N (0, 1):
Y llY 1) — ol Sy _
B[y |Z(e(A2—) - 1) B SI5C0 ) (50)
—UyE[SQ(Q(I’( ) 1)] (51)
oy [pulo)s? (\/—p) ~ 1)ds (52)
=20y /ps(s)52(1>( |p1| |s|2 Yds — oy (53)
—p
=40y /OO 52 (s)®(bs)ds — oy (54)
0
=doy (5 + %(H% + arctan(b))) — oy (55)
=doy (3 + 5= (Hlﬁ + arctan(b))) —oy (56)

—20y (|p|ﬂ+ arctan(ﬁ)) . (57)

el and Owen’s extensive list of integrals of Gaussian functions was employed.

\/1—p2

Therefore, we get

Bl wTyl <ol Il - (0= 292+ AT 7 + plarctan ()] o)
||x||~y||~i[¢1 +|p|arctan< \ﬁ')] (59)

g(p)

where b =

which yields for the full expression

(@, 9) + el - Iyl - g(rity)

E[ReLU(w"z) - ReLU (w"y)] = i

(60)



C.3 Attention normalization in FAVOR+S
We present the computation of the normalization term in FAVOR+S. Recall the usual FAVOR+
formulation from Appendix

A c
/—/\“

Zvj T x¢(q; /Z¢ T x¢(gi). 1)

B;

As was remarked in Appendix construction of A, C, and ¢(¢;) Vi each requires O(LDR)
computational complexity. Therefore, it is central to also compute the normalization factor B; in
superposition. We start with the construction of:

L N
Cgm) _ Z¢(Z k;'HL,w))T Ql(‘n) _ Z q(t ,n) (62)
j=1  w=1
construct Vi in O(LM (DR+N D)) construct Vi,n in O(LN (DR+M D))

Since C‘E”” € R R, the evaluation of X for all query positions i and channels (12, n) is relatively
inexpensive, demanding only O(LM N R) operations. According to the two approximations (P)
from FAVOR+ and (H), which is explored thoroughly in Appendix D] it holds:

B"™™ =™ x Q" (63)
L N

=> ¢ <Z kj-m’“’)) (Z g ) (64)

exp <<Z kS Zq“ ™)/vD ) (65)

w=1

&y
M- 1

1

J

g

Il
-

exp (K", ™) /D) (66)

J

In total, while still setting M= to balance the load, computing B(m ™) for all channels (m,n) and
query positions i demands a runtime of O(LNDR + LN?D + LN? R),a s1gn1ﬁcant improvement
over O(LN?DR) for computing B; separately for each channel (m,n) € {1,..., N}2.

How the normalization is incorporated depends on the MIMOFormer instantiation. In the first case
using superposition exclusively for the attention block (att.), the normalization scalar is directly
applied on the output tokens after unbinding, i.e.,

02(‘ " = ZB(W’ (67)

where ("™ is the unbinding key. In the second instantiation, where additionally the MLP computes
in superposition (att.+MLP), we jointly normalize the output by the sum of all normalization scalars
over m (where we enjoy additional computational savings by in fact already summing over m in the

construction of Cs =, cmy.

5™

gm_ ST
M ;
SRV

(2

(68)

10



D Theoretical Basis for Noise Mitigation in FAVOR+S

As mentioned in the main text, our derivations in Section 4.1 rely on two estimates:

6(k)" ¢(q) ~ exp (k. 0)/v/D) Zk“““) qu K ") ©9)
\—/—’

intended signal
The approximation P, which improves with increasing R = dim(¢(g;)), is due to FAVOR+ and is
quantified in [8]] whereas the approximation H follows from:

Inter-channel distortion. The probability that inter-channel attention distorts the intended signal of
the dot product by a factor outside [1 — o, 1 4+ o] has various upper bounds, most notably decaying

exponentially w.r.t. Da? COSQ(K(kgu n))agu n)))/(NM —1)%

We proceed to make this statement exact:

Theorem 3 (FAVOR+S Inter-Channel Noise). The probability that inter-channel attention distorts
the true signal by a factor outside [1 — «, 1 + « shows the following tail bounds. Denote by

N M
—p { < Sk 3 qE’*”)> / VD¢ [l —a,1+a] &7, g™ /\@} (70)
w=1 t=1

where
—(m,n)

k](m n) _ ]C o a(m,n) qj(mfﬂ) = qgm’”) ® a(ma") (71)

with ™™ being i.i.d. bipolar vectors of Rademachers and (m, n) denoting a channel. It holds

N | (w,w)#(t,n) M | (uww)#£(tn) )
_(f n) —(t,n
Py Y P< Y s o
w=1 \ t=1,.,M t=1 \ w=1,.,N
(u,w)#(t,n) ) (u,w)#(t,n) —(t.m)
—(t,n = (u,w
P > VR, P2 ) ew <—2<N<M>1>> 73)
w=1,...,N w=1 N
t=1,..,M t=1,....M
for
(t n) o | k(u n) 7(u n)>|2 a2 COS2(K(E;u,n)’agu,n)))”E;u,n) z — (74)
=(u, w) (k(u w)) (,(t n)) ’|E§u,1u)®q§t,n) Hz
which for keys/queries of similar size according to Theorem[|in Appendix|Gltypically scales as
=1 —(u,n) —(u,n
:EZ,J) ~ D a?cos?(£(k;"" g ™)) (75)
Proof. First notice that since
S (B gy ¢ - a1+ a] - B g (76)
w=1,....,N
t=1,...,M
= (17
(u,w)#(t,n) (wm)
u,w t,n T\un) _(u,n
w=1,....N
t=1,...,.M

P 3 <k§“’w)7q£t’”)> >a‘<E§”’”)7q§“’">>‘ . (79)

11



We shall derive the tail bounds for a threshold « and only replace it by « <k(u’n), qﬁ“ n)> in a final
step. Applying Markov, the triangle inequality, and linearity of expectation gives
(w,w)#(t,n)
P (K", g™ > a (80)
w=1,..., N
t=1,....,M
(w,w)#(t,n)
<E B, gt /a (81)
w=1,..., N
L| t=1,...M
N []@w)#En )
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where a(") denotes one of the (independent) binding vectors with entries given by independent

Rademacher random variables and l%gfi'), QE:B')
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the unbound keys and queries respectively of a given

channel and token position. For €, ) denoting independent Rademacher random variables we may

simplify to
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The famous Khintchine inequality determines up to a constant the behavior of the expectation as
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where the latter follows by symmetry. Alternatively, we could also apply Chebyshev to the problem,
ie.
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Now, since for (u,w) # (t,n), (u,w’) # (¢,n) and (¢t,w) # (¢,w’) the cardinality of
{(u,w), (t,n), (u,w’), (t',n)} is at least three, at least one entry has no duplicate. Let w.l.o.g.

s

be that entry aéu ) Then by independence, one has
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Consequently, all terms with (¢, w) # (¢, w’) vanish. Also, for (u,w) # (t,n) and p # p’ all four
entries are independent, i.e.

u,w t,n (u,w) t,n _ u, W t,n u,w t,n _
E [af“ ol ™| = E [af)| E [l | E [of*)| E o] =0 (99)
Hence, we have that all cross-terms vanish, which gives

() £(t,n)
g 3 <k](.“’w), qgt’")> >a (100)

(agr)? (a,gw)j / (101)

S R N AT
O e )

w=1,...,.N p=1 p
t=1,.. M
(u,w)#(t,n)

13



For higher orders than two, we can no longer rely on the absence of duplicates in the set of multiplied
binding vectors. For example, a cross-term such as

E [ai“)alm) aiff’w/)a;(f?/’") alt) gl agf"”,)a;t/’") =1 (103)

1 2 3 4

is non-vanishing even for (¢, w, p) # (t',w’, p’). Hence, for higher orders, we will have to work with
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for {e, } 1?:1 independent Rademacher random variables. Finally, we may apply Hoeffding’s inequality
(Theorem 3)), which gives
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E Experimental Setup and Ablation Study on MIMOConv

E.1 Experimental setup

Datasets

CIFAR10 and CIFAR100. The CIFARIO0 [9] dataset contains 60,000 images, each of resolution
32 x 32, divided into 50,000 training and 10,000 test images. The images are grouped into ten classes,
each with 6000 examples. CIFAR100 has the same number of images and resolutions, but contains
100 classes each with 600 examples.

MNIST. The MNIST dataset [10] provides grey-scale images, each of resolution 28 x 28, containing
hand-written digits. The 60,000 training samples are divided into a training and validation set
containing 55,000 and 5000 samples, respectively. Finally, the test accuracy is reported on the test set
containing 10,000 samples.

SVHN. The street view house number (SVHN) dataset [[11]] provides cropped images of house
number plates, each of resolution 32x32. As in MNIST, the task is to classify the printed digits (from
0to 9). It contains 73,257 RGB images for training and 26,032 for testing.

Training setups

The experiments are run on an NVIDIA A100 Tensor Core GPU with 80 GB memory and 8 CPU
cores. All experiments are repeated five times with different random seeds. We report the mean
and standard deviations of accuracy to account for variability in training. Overall, all MIMOConv
experiments together required 3290 GPU hours when accumulating all the training runs required for
generating the main results and the ablations study.

CIFAR10 and CIFAR100. In all experiments on CIFAR10 and CIFAR100, stochastic gradient
descent (SGD) with momentum is used. Unless otherwise noted, we train for 1200 epochs using
the OneCycleLR policy [12] with cosine annealing for two phases (30% increase, 70% decrease of
learning rate). The initial learning rate is set to 0.008, the maximal learning rate to 0.2, and the final
learning rate to 2e-5. Momentum is cycled inversely with base momentum set to 0.85 and maximal
momentum set to 0.95. Due to overfitting, WideResNet28-10 shows higher test accuracy when
trained with 200 epochs than 1200 epochs; hence, Table 1 in the main text shows WideResNet28-10’s
performance with 200 training epochs. For all parameters, except for the bias in shifted ReLU, the
slope in parametric ReLU, and binding/unbinding keys, weight decay with value le-5 is applied.

The images are standardized on each color channel by subtracting the mean and dividing by the
standard deviation. To augment data, the images are randomly flipped horizontally, and a random
32 x 32 crop is taken after zero padding the images on each side by four pixels. Furthermore, the
data agnostic augmentation strategy mixup [/13]] is employed with parameter a=1, which is decisive
for obtaining high accuracy.

The batch size is set to 128 elements per superposition channel (i.e., 128 N). Thus, after binding, a
batch of 128 superpositions traverses the CNN. Increasing superposition channels would decrease
the number of update steps per epoch. To correct for that, in each epoch, the dataset is traversed as
often as the number of superposition channels used. While the results presented in this paper come
from a train/test split of the datasets, the training dataset is split into a 90/10 train/validation split for
all model design and hyperparameter choices. Furthermore, to decrease the degrees of freedom in
the experiments, the remaining hyperparameters (learning rate, weight decay, mixup parameters) are
tuned to yield good performance on the base model WideResNet28-10. Finally, to stabilize training,
the average gradient norm of each epoch is recorded, and the batches of the subsequent epoch are
discarded (without repetition) if their update gradient norm exceeds the recorded average of the last
epoch by a factor of 10.

Training MIMOConv for 1200 epochs takes 11 hours independent of the number of superposition
channels owing to the batch loading corrections that account for the same number of training steps.

MNIST. The experiments on MNIST use a similar setup to the ones on CIFAR: the same learning
rate scheduler, batch size, weight decay, and mixup coefficients are used. In contrast to CIFAR, the
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Table A2: Millions of multiply-accumulate (MMAC) operations per sample on CIFAR-100. Number
in parenthesis shows the relative share of the overall complexity.

First conv. Rest of

1 Binding Unbinding FCL Total
ayer conv. layers

WideResNet-28-10  0.49 (0.009%) n.a. 5245(99.99%) n.a. 0.064 (0.001%) 5251
WidelsoNet-28-10  0.49 (0.009%) n.a. 5245 (99.99%) n.a. 0.064 (0.001%) 5251

MIMOConv (N=1)  1.97 (0.04%)  4.19 (0.08%) 5329 (99.88%) 0.41 (0.008%) 0.064 (0.001%) 5335
MIMOConv (N=2)  1.97 (0.07%)  4.19 (0.15%) 2664 (99.75%) 0.41 (0.015%) 0.064 (0.002%) 2671
MIMOConv (N=4) 1.97 (0.15%)  4.19 (0.31%) 1332(99.50%) 0.41 (0.031%) 0.064 (0.005%) 1339

number of training epochs is reduced to 50. Moreover, the images are center-cropped to 20x 20 pixels
both in training and testing. A random horizontal flip serves as data augmentation during training.

We reduce the depth of MIMOConv from 28 to 10 layers, and the width factor from 10x to 1x,
hence we call it MIMOConv-10-1. Moreover, the initial width factor of the first convolutional layer
is also set to 1 x.

SVHN. Inthe SVHN experiments, we train the standard MIMOConv-28-10 architecture for 200
epochs. The remaining hyperparameters are kept the same as in CIFAR. During training, random
crop with padding is used.

E.2 Computational complexity

Table [A2] breaks down MIMOConv’s computational benefits (in MMAC) on CIFAR100, as N is
increased from 1 to 4. As shown, the integration of variable binding mechanisms via binding and
unbinding operations is inconsequential, amounting to only between 0.008% (N=1) and 0.031%
(N=4) of the total MACs for MIMOConv.

On MNIST, MIMOConv-10-1 has a computational cost of 5.10 MMAC per sample at N=1 super-
position channels and manages to reduce the cost to 0.47 MMAC per sample at N=16, an effective
reduction of 10.9x. The reduction is smaller than N due to the computationally dominating first
convolutional layer, which is not operating in superposition. Yet, MIMOConv shows a notably higher
reduction than the LeNet-like model (CNN+nonlinear (8x)) from DataMUX [14], a key competitor,
which requires 0.88 MMAC and 0.65 MMAC per sample at N=1 and N=16, respectively.

E.3 The effectiveness of position-wise binding (PWHRR) and isometry regularization

DataMux [|14]) also explored CNNs that compute in superposition and reported its findings on MNIST.
Even with a trivial downsizing for fair comparison from a 28-layer very-wide (10x) MIMOConv to a
10-layer narrow (1x) MIMOConv, our method scales much better to high superposition channels
(N) than DataMUX does. Indeed, our model shows an accuracy of 80.4% against their 52.9% in
case of N=16 superposition channels (highest number of channels reported by DataMUX for vision
tasks), despite being computationally cheaper (0.47 MMAC/s vs. 0.65 MMAC/s). DataMux’s binding
overhead results in a mere 1.35X reduction in MACs compared to our 10.9x as N goes from 1 to 16
demonstrating superior scaling of our method.

We attribute the improved performance to a set of innovations which we reiterate here: MIMOConv
applies position-wise binding (PWHRR), thus retaining the locality property present in natural images
and vital for CNNs, whilst as discussed by Murahari, Vishvak, et al. their primary binding does
not. As a workaround they proposed binding via two layers CNNs each outputting 8 feature maps.
The resulting (pixel-wise) superposition in a low-dimensional space (8-D) leads to high interference.
Additionally to using an expensive binding mechanism, it also makes the first layer of the model 8
times as expensive no matter the number of superpositions. We are able to circumvent this issue by
applying the first layer of the CNN before the pixel-wise binding, increasing the dimensionality of
each pixel in an easy-to-understand manner.

Another difference to their work is our use of isometric neural networks to further reduce interference
during the processing of superposed images.
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Figure A3: Dynamic inference with MIMOConv trained for 1200 epochs in slow and fast mode
depending on the fast mode training frequency. Each model is evaluated in slow (1 input/pass), normal
(2 inputs/pass), and fast mode (4 inputs/pass). We report the average accuracy and the standard
deviation (error bars) over five runs with different seeds. Outliers in normal mode (indicated with x)
are not used for standard deviation computation.

E.4 Dynamic inference

Dynamic inference enables the instantaneous on-demand partitioning of the superposition channels to
select an operating point with a suitable speed/accuracy trade-off. Even though every MIMOConv can
be configured to perform dynamic inference at any time, exposing MIMOConv to dynamic switching
between different modes during training is beneficial. We set up a model with four channels and
consider a fast (4 inputs/pass), normal (2 inputs/pass), and slow mode (1 input/pass). The fast mode
maps each input to one channel; the normal mode distributes two inputs over pairs of channels; and
the slow mode uses all channels for the same input. We then train the models for different frequencies
in fast and slow modes. The normal mode is not used during training of the model. The potential
switching between the modes happens between every batch.

Figure[A3|shows the classification accuracy on CIFAR10 (a) and CIFAR100 (b) when using dynamic
models trained with varying fast mode frequencies. The models, which are trained with a different
fraction of inputs in fast mode, are evaluated in slow, normal, and fast modes. As is expected,
increasing the fast mode training frequency is beneficial for both datasets when only looking at the
fast mode inference. Conversely, the normal inference mode benefits from a mixture of fast and slow
mode training, whereby a fast mode training frequency of 80% achieves the highest accuracy on both
datasets. There is a notable volatility in the performance of normal mode at a fast mode training
frequency of 0.5, which could be due to the optimization getting stuck in a local optimum exclusively
learning a slow mode instance.

E.5 Ablation study on CIFAR10/100

Isometry regularization of CNN weights. We evaluate the impact of isometry regularization to
the CNN weights by varying the orthogonal regularization coefficient (), described in Eq. and
Eq. (24). All models are trained for 200 epochs to reduce the training time. As can be observed
in Figure [A4] orthogonal regularization enables the network to perform notably better both for
configurations with a single superposition channel and two superposition channels. However, a strong
regularization hinders the ability of the network to adapt to the task. With two superposition channels,
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Figure AS: MIMOConv with different activation functions. We report the average accuracy and the
standard deviation (error bars) over five runs with different seeds.

the performance difference is more striking, i.e., orthogonal regularization is more important. In all
other experiments, an orthogonal regularization coefficient of y=1e-4 was used.

Isometry at activation functions. We investigate the ReLU, shifted ReLU, and parametric ReLU
activation functions to give the model more control over the extent of isometry. Each activation
function owns separate, trainable parameters which are not shared between the feature maps and
layers. Experimental results are shown in Figure[A5] When using N=2 superposition channels and
200 training epochs, ReLU outperforms both parametric ReLU and shifted ReLU. For longer training
times (1200 epochs) and more superposition channels (/N=5), the network prefers parametric ReLU.

Surprisingly, in the case of low superposition counts, the model develops highly non-isometric
parametric ReLU activation functions, as seen in Figure[A6] With the convolutional layers being
pushed toward isometry due to the isometry regularization term and residual skip connections
increasing isometry further, the network seeks balance through strongly non-isometric activation
functions. Nevertheless, increasing the number of images superposed incentivizes the network to learn
isometric activation functions. It is unclear if the performance degradation induced by superpositions
originates in interference or in the attempt of the network to reduce interference through isometry,
and it is likely that some balance between the two is reached. Further research will be needed to gain
more insight into the benefits and drawbacks of isometry. We employ parametric ReLU in all other
experiments as its performance is comparable to ReLU, but it allows more degrees of freedom and
hence could give additional performance benefits under different network configurations.
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Figure A7: Effect of skipInit and diracInit on accuracy in superposition mode N=2, 200 epochs. We
report the average accuracy and the standard deviation (error bars) over five runs with different seeds.

SkipInit and DiracInit. In [7]], the benefit of skip initialization [15] via inducing maximum
isometry at initialization was discussed. Furthermore, an initialization scheme for the convolutional
layers as an identity, called diraclnit, was promoted. In our experiments, both additions worsen the
performance on CIFAR10 and CIFAR100, as seen in Figure [A7]

Number of training epochs. Training a neural network model to simultaneously handle multiple
images while providing high accuracy is a more difficult task than without superposition present.
Figure shows that the performance gap between single-image mode and multiple-image mode
narrows when training for more epochs. For each epoch, the training set is passed through the network
as many times as superposition channels were used: this corrects for the larger batch size used in
superposition modes and to have roughly equal training time for each epoch.

Number of feature maps in the first layer. Compared to a standard ResNet, the WideResNet
architecture [16] increases the number of feature maps of every layer by a width factor. The only
exception is the first layer, which has 16 feature maps in WideResNet-28-10. However, binding
takes place after the first layer in MIMOConv. In order to enter the regime of high dimensionality
and to benefit from the Blessing of Dimensionality, we experiment with an additional parameter
termed initial width factor, which increases the number of feature maps of the output of the first
convolutional layer. For example, an initial width factor of 4 yields 4 - 16=64 feature maps after the
first convolutional layer. The initial width factor can be configured independently from the general
width factor.

Figure[A9 shows the performance against variable initial width factors, while the general width factor
is fixed to 10. Initial width factors 2 and 4 give satisfactory results, while factors 1 and 8 yield very
unstable training (as indicated by the large variance). We attribute this to the large step either from 3
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Figure A8: Accuracy of MIMOConv when trained with a variable number of epochs. We report the
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Figure A9: Initial width majorly affects stability in MIMOConv (N=2, 200 epochs). Configurations
are labeled with width factor/initial width factor. Standard initial width factor of vanilla WideResNet
would be 1. We report the average accuracy and the standard deviation (error bars) over five runs
with different seeds.

feature maps to 16 - 8 in the first layer (initial width factor 8), or from 1 - 16 feature maps to 16 - 10 in
the second layer (initial factor 1). An initial width factor of 4 strikes a good balance and provides
stability; hence we will use this value for all other experiments.

MIMOConv width factor. WideResNet architectures identify the number of feature maps as the
most crucial factor in determining the capacity of a model. At the same time, a higher number of
feature maps means less interference between bound vectors. In Figure[AT0] the benefits of large
width factors can be observed. Notice that width enters both the number of parameters and the
computational complexity quadratically unless grouped convolutions are used, where the number of
groups increases with the channel width. Not exploring grouped convolutions, a trade-off between

performance and accuracy has to be struck. We shall go with a width factor of 10 for all other
experiments.
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Figure A11: MIMOConv with trainable or frozen binding keys for different numbers of superposition
channels (V). Models are trained for 200 epochs. We report the average accuracy and the standard
deviation (error bars) over five runs with different seeds.

Freezing of binding keys.

We investigate, if the binding keys can be frozen during training. As can

be observed in Figure [ATI] keys do not need to be trainable while still maintaining a high accuracy
across a wide range of superposition channel counts. We note that unbinding keys are always left

trainable.
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F Experimental Setup and Evaluations on MIMOFormer

F.1 Experimental setup
Datasets

LRA. The long range arena (LRA) benchmark [[17] is a suite of tasks consisting of sequences
ranging from 1K to 16K tokens, covering a wide range of data types and modalities. Below, we list
the LRA tasks used in this work:

 ListOps: This dataset [18]] tests the capability of modeling hierarchically structured data
comprised of long sequences with operators (max, mean, median, modulo sum). The
sequence length is up to 2K, and the task is to perform a ten-way classification. ListOps is
released under an MIT license.

e Text: The IMDb reviews dataset [[19] is a document classification benchmark. The bench-
mark uses byte-level sequences of up to 4K, entailing a binary classification task.

» Retrieval: This task measures the model’s capability of storing text document information
into a compressed representation and matching or retrieving it against other documents. The
ACL Anthology Network [20] is a byte/character level dataset with sequence lengths of up
to 4K. It is a binary classification task. The ACL anthology corpus is released under the CC
BY-NC 4.0 license.

* Image: In this task, RGB images of resolution 32 x 32 from the CIFAR10 [9] dataset are
flattened and classified by the sequence classification model. As a result, this is a ten-way
classification task with sequences of length 1024.

 Pathfinder: This task [21] requires a model to decide if two points (circles) are connected
by a path of dashes on a black and white 2D image of dimension 32 x 32. The 2D images
are flattened to sequences of length 1024, and classified by the sequence model as a binary
classification. Pathfinder is released under MIT license.

LRA further contains a more fine-grained version of Pathfinder, called Pathfinder-X, with 128 x 128
image resolution leading to a sequence length of 16K. However, all Transformer variants considered
in [[17]] (including the Performer) failed to learn this task. Since this work demonstrates the MIMO-
capability of self-attention models rather than increasing their sequence length, we do not consider
Pathfinder-X.

Synthetic sequence benchmarks. We use two synthetic benchmarks [22] which measure the basic
reasoning capability of neural sequence models.

» Associative recall: The task is to remember associations between pairs of tokens. For
example, given a sequence of tokens a 2 ¢ 4 b 3 d 1, if the model is prompted with a, the
expected output is 2, the token following a in the input sequence. If it were prompted with
b, the correct output would be 3, etc. Each sequence contains 40 characters, whereby a
dictionary with 20 different characters is used.

 Induction head: The task is to recall content after a special token (e.g., |-). For example,
the stringad b F g f... h ¢ - would expect the response g. Each sequence contains 30
characters, whereby a dictionary with 20 different characters is used.

Both tasks provide a training set (5000 examples) and a test set (500 examples).

Training setup

As with MIMOConv, the experiments are performed on an NVIDIA A100 Tensor Core GPU with
80 GB memory and 8 CPU cores. All experiments are repeated five times with a different random
seed. We report the mean and standard deviations of accuracy to account for variability in training.
Overall, the training and evaluation of all MIMOFormer models, including the ablation of the number
of training steps, consumed 3112 GPU hours.
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Table A3: Architecture and training setup on LRA. L=number of layers; Npe,q=number of heads;
Dieaa=head dimension; F=embedding dimension; Dyjqqen=hidden dimension in MLP; Bs=batch size;
Lr=learning rate.

Model Training

Warmup  Train

L Nhead Dhead E Dhidden Bs Lr steps steps Dl‘OpOllt

MIMOFormer

Listops 6 8 64 512 2048 64 le4 1000 20,000 0.1
Text 6 8 64 512 2048 32 le4 8000 40,000 0.1
Retrieval 4 4 32 128 512 32 le4 800 60,000 0.1
Image 3 4 64 64 128 256 le-4 175 70,000 0.1
Pathfinder 4 8 128 128 128 256 le-4 312 124,800 0.1
DataMUX

Listops 12 12 120 120 3072 48 2e-5 0 20,000 0.1

Table A4: Training time (hours) on the long range arena (LRA) using an NVIDIA A100 GPU.

ListOps Text Retrieval Image Pathfinder Total

Deep models L=6, H=8 L=6, H=8 L=4, H=4 L=3, H=4 L=4, H=8

Performer (reproduced) 3.45%0-00  589+0.00 5 g3+0.01 3.55%0:02  96.66%0-02 45 47+0.04
MIMOFormer (N=2, att.) 3.96+0:03 7.69+0-01 5.99+0.02 3.51+0.01 25.42F017 46 57%0-20
MIMOFormer (N=2, att.+MLP)  3.42%+0:03 6.71%0-26 5.38+0-01 3.14+0.01 22.50F0-18 41 15+0-31
MIMOFormer (N=4, att.) 3.09+0-01 5.89+0-01 4.35+0:02 2.73%0-29 21.26+021 37 39+0.27
MIMOFormer (N=4, att.+MLP) 2.42%0-26 4.48%0-26 3.44+0.01 2.10+0-01 17.01%037 929 44+0-31
Wide models L=1, H=48 L=1, H=48 [L=1, H=16 L=1, H=12 L=1, H=32

Performer (reproduced) 2.46:*:0‘05 5.23:(:0,01 5.26:&0‘01 3.21:(:0,39 29.52:(:0,03 45.68:&0‘38
MIMOFormer (N=2, att.) 2.54F0:00 4 79F0.01 4.46+0-01 2.93+0.01 23.45+0:01 38 17+0.02
MIMOFormer (N=2, att.+MLP) 2.31%+0:02 4.30+0-00 4.16+0:00 2.65+0-00 20.69F0:06 34 19+0.07
MIMOFormer (N=4, att.) 1.95%0-08 4.04%0-15 3.17+0.14 2.25+0-10 19.43%0-37  3(),84+0.66

MIMOFormer (N=4, att.+MLP) 1.57+0:08 3.39+0.00 2.71%0-12 1.87+0.08 15.51%0:04 95 0g+0-16

LRA. Table[A3]lists the deep MIMOFormer architecture and the training setup for each task in
the LRA benchmark [[17]]. Both wide and deep models use the same training setup, but wide models
shrink to a single layer L = 1 with inverse scaling in the number of heads Nj,¢qq. MIMOFormer
uses the same base architecture (number of heads, layers, dimensions, etc.) as proposed in the initial
evaluation on LRA [17]. In addition, Table@] also summarizes the model configuration and the
settings used for the training of DataMux [|14], our main competitor, on the Listops dataset. We base
our DataMux model on the Roberta architecture as specified in [14]. We adjusted the number of
heads, the number of layers, the embedding dimension, and the hidden dimension to approximately
match the MIMOFormer’s number of parameters. Before training on ListOps, the scaled-down
DataMux model is first pre-trained on the "retrieval warm-up task" as outlined in [[14].

The training setup and the evaluation setup for MIMOFormer is based on code provided by [23]].
Training uses an Adam optimizer (51=0.9 and 32=0.99) with a OneCycleLR policy [12] and additional
warmup. All MIMOFormer configurations use the same number of training steps per task; we
note however that configurations with many superposition channels converge more slowly and
consequently might benefit from additional training steps. Dropout after the attention block is applied.
Finally, the output tokens are fed through average pooling and classified with a task-specific readout
mechanism.

MIMOFormer faces training issues when the number of superposition channels is high (e.g., N=4).
To this end, we propose a curriculum learning strategy where the number of superposition is reduced
to N’=N/2 at the beginning of the training. This warmup period is set to 1/6th of the total number of
training epochs. The overall training setup, including the learning rate scheduling, remains the same.

Table [A4] shows the training time for the reported models. Since all MIMOFormer configurations
use the same number of training steps, we observe a reduced training time using a large number
of superposition channels. Contrary to MIMOConv, we do not repeatedly send batches through to
ensure equal training time.
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Table AS: Training for more steps improves MIMOFormer accuracy. We report the average test
accuracy (%) on LRA over five runs with different seeds when training the model for 0.5x / 1 x the
training steps described in Table[A3] MIMOFormer uses an equal number of query superpositions
(V) and value-key tensor product superpositions (M), i.e., N=M. Computation in superposition is
performed either in attention only (att.) or in both attention and MLP (att.+MLP). L is the number of
layers, H the number of heads.

ListOps Text Retrieval Image Pathfinder Avg.
Deep models L=6, H=8 L=6, H=8 L=4, H=4 L=3, H=4 L=4, H=8
Transformer [24] 36.37 64.27 57.46 42.44 71.40 53.39
Performer [8] 18.01 65.40 53.82 42.77 77.05 51.41
Performer (reproduced) 37.93/38.94 65.45/65.70 81.37/81.58 40.04/40.14 73.01/73.82 59.56/60.04
MIMOFormer (N=2, att.) 38.07/38.08 64.47/65.00 77.16/79.37 37.33/38.21 68.19/72.36 57.04/58.61
MIMOFormer (N=2, att.+MLP) 37.28/37.65 64.30/64.39 73.33/76.02 31.62/33.85 56.31/67.98 52.57/55.98
MIMOFormer (N=4, att.) 31.39/37.22 64.73/64.59 57.67/60.99 27.48/28.16 49.86/55.50 46.23/49.29
MIMOFormer (N=4, att+MLP) 17.91/17.74 53.97/60.71 66.24/72.20 23.30/24.01 50.26/50.33 42.33/45.00
Wide models L=1, H=48 L=1, H=48 L=1, H=16 L=1, H=12 L=1, H=32
Performer (reproduced) 39.13/39.40 65.73/65.73 83.20/83.67 41.53/41.67 73.88/74.11 60.70/60.93
MIMOFormer (N=2, att.) 38.31/38.90 65.40/65.39 78.71/81.27 39.98/40.25 71.97/73.51 58.87/59.86
MIMOFormer (N=2, att+MLP) 37.76/37.59 64.73/64.64 75.26/78.30 35.14/36.69 67.60/68.22 56.10/57.09
MIMOFormer (N=4, att.) 36.97/37.71 64.61/64.22 71.50/74.99 31.13/35.43 67.56/69.52 54.35/56.37

MIMOFormer (N=4, att+MLP) 17.41/18.52 64.24/63.53 68.91/74.30 24.21/26.54 53.36/56.33 45.63/47.84

Table A6: Billions of multiply-accumulate (GMAC) operations per sample on Text (subtask of LRA).
Model configuration reads L[ayers] = 6, Nheag = 8, Dhead = 64, E[mbedding] = 512, Dyijagen =
2048, and R = 256 where R determines the fidelity of the FAVOR+ attention approximation.
Number in parenthesis shows the relative share of the overall complexity.

K/Q/V Binding & Readout

Projections Attention Unbinding MLPs Layer Total
Transformer 19.34 (14.9%) 58.80 (45.3%) n.a. 51.62 (39.8%) 0.001 (0.001%) 129.8
Performer 19.34 (21.4%) 19.58 (21.6%) n.a. 51.62 (57.0%) 0.001 (0.001%)  90.5
MIMOFormer (N=2, att.) 19.34 (23.0%) 13.05 (15.5%) 0.050 (0.06%) 51.62 (61.4%) 0.001 (0.001%)  84.1
MIMOFormer (N=2, att.+MLP) 19.34 (35.2%)  9.80 (17.8%) 0.050 (0.09%) 25.81 (46.9%) 0.001 (0.002%)  55.0
MIMOFormer (N=4, att.) 19.34 (23.9%)  9.78 (12.1%) 0.050 (0.06%) 51.62 (63.9%) 0.001 (0.001%)  80.8

MIMOFormer (N=4, att.+MLP) 19.34 (52.0%)  4.90 (13.2%) 0.050 (0.14%) 12.90 (34.7%) 0.001 (0.003%)  37.2

Synthetic sequence benchmarks. We use a light-weight MIMOFormer with two layers, one head,
an embedding dimension of 32, and a hidden dimension of 128. The model is trained with SGD for
400 epochs using a learning rate of 5e-4, batch size 32, and a weight decay of 0.1.

To configure DataMux for associative recall, we use the SimpleLM language model with 30.5K
trainable parameters specified in the Safari repository [1_-] and insert multiplexing and demultiplexing
layers at the input and the output of the model as specified in [[14]. Before experimenting with N=2
channels, we first tested the setup with a single channel where DataMux reached 99% accuracy.

F.2 Number of training steps

In our standard training setup, we train the Performer and MIMOFormer models for a large number
of training steps (= 2x of what was described in [23]]). Here, we show the benefit of a longer training
procedure. Table[A5]compares the performance of the models when trained with 0.5x or 1x as many
steps as the training setup reported in Table[A3] Note that the test accuracies reported in Table 2 of
the main text also used the standard training setup (1x). The longer training procedure improves the
Performer’s accuracy marginally (0.23-0.48% gain). Conversely, MIMOFormer notably benefits
from the longer training in both deep (1.57-3.06% gain) and wide models (0.99-2.21% gain).

F.3 Computational complexity

As can be deduced from Table [A6] the integration of variable binding mechanisms via binding
and unbinding operations is inconsequential. It amounts to only between 0.06% and 0.14% of the
computational complexity for MIMOFormer despite being performed at each attention layer. The

"https://github.com/HazyResearch/safari
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K/Q/V projections make up a considerable part of the overall computational complexity; hence,
computing them in superposition would further reduce the number of computes per input.

F.4 The importance of faithful attention scores

DataMux [|14]], claims to retain high performance for subsets of the GLUE [25[] and CoNLL-2003 [26]]
benchmarks, despite using up to 40 inputs in superposition. However, as discussed in [27]], none of
the tasks reported on require attention layers at all. Indeed, DataMUX does not redesign its attention
algorithm, but keeps a single scalar attention score A; ; for each pair of token positions, which
effectively multiplies the (unnormalized) attention score of each (protected) superposition channel:

N N N N
Ai; = exp <<Z kS, qu%/@) ~ exp <Z<k§“’), q§w>>/@> =14 a0
w=1 t=1 w=1 t=1

As our experiments confirm (see Section 5.2), on more nuanced tasks in NLP such as “associative
recall” and “induction head”, which require faithful attention, their method drops to 20.04% and
6.06% for N=2, while ours, at a score of 96.52% and 99.40% respectively, succeeds. Despite investing
significant efforts in the training of DataMUX,, it cannot perform on these synthetic tasks. This is in
line with the findings of [22] which identifies the lack of attention as the reason that the Structured
State Space Sequence (S4) model [28]] is able to completely outperform state of the art in LRA [17]],
but is not competetive for large language models. In contrast to DataMUX, our work approximates
true attention and our theoretical derivations show convergence to actual dot-product attention as
the hidden dimension increases, giving us an even stronger case for applicability to large language
models (for instance, GPT-3 uses embedding dimension 12,888, far exceeding the maximum of 512
we report on).
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G Supporting Theorems

The theorems presented in this section are of general nature and stated for completeness.

Theorem 4. Any inner-product preserving map T : X — Y between two inner-product spaces X,Y
is linear

Proof. Letu,v € X and A € C. Then

T\t + v) — ATu — Tw||* = (T(Au +v) — ATu — Tv, T(Au+ v) — XTu— Tv)  (111)
=(T(A\u+v), T(Au+v)) = 2XT A+ v), Tu) — 2(T(Au + v), Tv)

+ X{(Tu, Tu) + 2M(Tu, Tv) + (Tv, Tv) (112)

= (M + v, + ) — 20w + v, u) — 20 + v, 0) + A u, u) + 2\ (u, v) + (v, v) (113)

= 2{Au + v, \u + v) — 2A\Au + v,u) — 2{ u + v,v) (114)

=2(Au+ v, \u+v) — 2{ u + v, \u + v) (115)

=0 (116)
which implies

T(Au+v)=NTu+Tv (117)

O

Theorem 5 (Hoeffding’s Inequality). Let X1,...,X,, be independent bound random variables
satisfying | X;| < a; and E[X;] = 0. Then,

P{ >t} §2exp( nE ) (118)

Proof. Following [29], we shall prove that

P{En:Xi>t} §exp< e ) (119)
=1

from which by symmetry and union bound the statement follows. By Markov’s inequality and for
A>0

IP’{Z”:Xi >t} :IP’{/\ZH:Xi >)\t} :]P{exp<)\ZX> > exp )\t)} (120)
exp(AZX)} /exp (At) = exp(—At) HE exp(AX;)] (121)

i=1

n

>

i=1

where the last equality follows from independence of {X;}?_,. Because the function x — exp(Az)
is convex it holds
exp(A\x) < “”‘* exp(Aa;) + %=F exp(—Aa;) (122)

for all z € [—ay, a;]. Thus, since | X;| g a; we may use the above and that E[X;] = 0 to bound
E [exp(AX;)]

Elexp(AX;)] < E {“2“” exp(Aa;) + 4-* (—/\ai)} = 1(e? + ¢ *) = cosh(Aa;) (123)

> N\2n > )2n
=) G < 3 G = e (0a)?/2) 124
n=0 n=0

where the Taylor expansion of cosh(+) and exp((-)?/2) were used and the penultimate step is given
by (2n)! > 2"n!. Hence, we get for any A > 0

P {E”: X; > t} < exp(—At) ﬁexp(()\ai)zﬂ) = exp <—>\t + %2 ia?) (125)
i=1

i=1 i=1
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n

and in particular for A = ¢/(3_;"_, a?) > 0 one gets

P{iXi>t} Sexp(—ﬁ) (126)

i=1

O

Theorem 6 (On the Norm of Hadamard Products). Let X € SP~! follow an arbitrary distribution
and letY € SP~1 be uniformly distributed and independent from X. Then

E[HX@Y\@} =1 (127)

and

P{Ixov]}< 2} > s (128)

Proof. Since by definition ||YH§ = 1, it follows by rotational symmetry and linearity of expectation

that
D
ZYPQ /D =1 (129)
p=1

27 =3 B[] /D=

Also, by linearity of expectation and independence

D D D D
2
efixoviE] ~e[3-xy| - elgIEbil - 43 b - be |35 - b
p=1 p=1 p=1 p=1
(130)
Hence, we can apply Markov to get
2 2 DE[|XoY]3
plixovp<i2)=1-p{ixovip>12)>1 - ZANOEl ) oo
(131)
O
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H Limitations

MIMONets exploit the Blessing of Dimensionality, that with high probability exponentially many (in
dimension D) vectors are almost orthogonal. Although the components of MIMONet are made near
isometric through regularization, a certain number of (hidden) dimensions is still necessary. This
naturally limits MIMONets to large (oftentimes over-parametrized) models or models employing
low-rank decompositions.

The number of inputs that can be superposed without incurring heavy losses in accuracy is limited
given a fixed neural network due to increasingly strong interference between the superposition
channels.

The proposed superposition capable attention mechanism converges to faithful attention (without
interference between channels) as the embedding dimension increases, but at the price of only a
speedup of N when using N? superposition channels. Being built on linearized attention such as
FAVORH+, it further inherits all their benefits (linear scaling) and drawbacks (limited parallelization
and increased memory accesses for autoregressive training (see Section 3.1 in [30]]). On the other hand,
trivial superposition would yield a speedup of N2 instead, but at the cost of blurring the attention
scores with each token-token score summarizing attention in all superposition channels at once.
Such models employing blurry attention are limited to application where imprecise “summarizing”
information suffices.
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