
Deep Patch Visual Odometry Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Stable Runtime1

The runtime of our approach is relatively constant compared to prior VO/SLAM systems. Our2

default configuration averages 60FPS, and rarely drops below 50FPS. In Fig. A, we show the3

runtime distribution on EuRoC. The runtime stability of DPVO results from the comparatively simple4

keyframing mechanism.5

Discussion on Keyframing: Most VO/SLAM systems (1; 6; 11), including DROID-SLAM, contain a6

protocol for deciding when to produce new keyframes from a video stream. Keyframing mechanisms7

serve to discard repetitious frames early-on, saving on computation and potentially improving8

performance by limiting redundancy. Many VO/SLAM systems require a low keyframing frequency9

in order to run at real-time framerates. If there is significant motion between subsequent frames,10

keyframes are created at a high frequency which can cause such methods to slow down drastically.11

DROID-SLAM, for instance, slows from 40FPS to 11FPS due to an increase in the number of12

keyframes being created.13

Unlike previous works, DPVO treats all incoming frames as keyframes and only removes redundant14

frames later using motion computed from the already-estimated pose. Although this design decision15

is sub-optimal (in terms of speed) during very slow or still camera movement (e.g. EuRoC), our16

approach is both simpler and ensures our frame-rate is approximately constant no matter the degree17

of camera motion.18

Figure A: Runtime distribution on EuRoC. Our system averages 60FPS with each new frame taking
∼17ms to process. The distribution is very centralized and rarely drops below 50FPS.

B ATE Error Metric19

We compare results using the ATE (average trajectory error) metric, which is standard for VO and20

SLAM (2; 11; 6; 13; 1). The ATE metric between the predicted trajectory T̃ and the ground-truth21

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

(a) Reconstruction on the ETH-3D (9) dataset. (b) Reconstruction from our video demo.

Figure B: Sparse reconstructions produced by our model.

trajectory T̂ is computed using22

E(T̃, T̂) :=

N∑
t=1

||T̃xyz − T̂xyz||2 (1)

after aligning the two trajectories using a similarity transformation, to account for the scale and SE(3)23

gauge freedoms. This metric is computed using the EVO library (3).24

C Additional Training Details25

DPVO is trained entirely on TartanAir (14)1, a synthetic dataset. This is the same synthetic training26

data used by previous VO systems (13; 11). TartanAir provides a large number of training scenes27

of both indoor and outdoor environments with varied lighting and weather conditions. The dataset28

provides depth and camera pose annotations, enabling one to generate optical flow by re-projecting29

the depth using the camera poses. All dataset parameters are identical to those used in DROID-30

SLAM (11). This includes random cropping, color-jitter, random greyscale, random color inversion,31

as well as re-scaling the training scenes in order to improve training stability.32

D Visualization33

Reconstructions are visualized interactively using a separate visualization thread. Our visualizer34

is implemented using the Pangolin library2. It directly reads from PyTorch tensors avoiding all35

unnecessary memory copies from CPU to GPU. This means that the visualizer has very little overhead–36

only slowing the full system down by approximately 10%. In Fig. Ba, we show a reconstruction on37

the ETH-3D (9) dataset, and in Fig. Bb we show the reconstruction produced during our video demo.38

E Bundle Adjustment Layer39

Our bundle adjustment layer is functionally identical to the BA layer in DROID-SLAM (11), except40

that DROID-SLAM predicts the damping factor using its update operator, while we found this41

not to be necessary and hard-code it to 10−4 instead. We refer the reader to Appendix C in the42

1https://theairlab.org/tartanair-dataset/
2https://github.com/stevenlovegrove/Pangolin

2

https://theairlab.org/tartanair-dataset/
https://github.com/stevenlovegrove/Pangolin

Matching Feature
Pyramid for frame ! Features for

patch !
(from frame ")

Features for edge (!, %)

W/4 ×"/$

⟨ , ⟩+
'(%&()& , *')

W/8 ×"/$

(a) Correlation Step

!, Σ

Features for edge (", $)

⟨ , ⟩+
ℎ!,#$

(hidden state) ℎ!,#$%&

Δ"

1) 1D Convolution
2) Message Passing
3) Transition Block

BA

Δ#

(b) Update Operator

Figure C: The update operator, including the correlation step. (a) For each edge (k, j) in the patch
graph, patch k is reprojected into a frame j using equation (2). Frame j’s matching features are then
cropped using the reprojected patch. The correlated matching features (blue, green) and context
features (grey) form the edge features. Each dot in the sampled matching features (green) represents
a 7× 7 neighborhood of points, however this is omitted for clarity. (b) Given the features for edge
(k, j), several learnable layers (yellow) are used to predict an update δ(k,j) ∈ R2 to the flow, a
confidence weight Σ(k,j) ∈ R2, and an update to the hidden state ht

k,j . The predicted factors are used
in the bundle adjustment layer to produce an update to the camera poses and patch depths. The factor
head is omitted here for clarity.

DROID-SLAM paper for the analytical gradients of the Gauss-Newton update iterations. Since43

DROID-SLAM uses dense flow, we implement our own sparse version as an optimized CUDA layer.44

F Additional Figures45

Correlation Operation: In Fig. Ca, we show a high-level visualization of the correlation operation46

which is performed at the start of the update operator. Patch k’s P 2 matching-features are each47

projected into the two-level feature pyramid of frame j. A 7× 7 grid of D = 128 dimension feature48

vectors are bilinearly sampled from the pyramid around each point reprojection and dot producted49

with the matching features. This operation results in 2 sets of p× p× 7× 7 dot products, one for each50

resolution (1/4 and 1/8th of the original image size). This operation is implemented as an optimized51

CUDA layer.52

Update Operator: Following Fig. Ca, in Fig. Cb we show a high-level view of the rest of the update53

operator. The correlation and context features are fed into additional learn-able layers, including 1D54

Convolution Layers, a Softmax-Aggregation block (i.e. Message Passing), and a Transition Block.55

This results in an updated hidden state for each edge. Finally, the updated hidden state is used to56

produce 2D flow revisions and confidence weights which guide the solution to the bundle adjustment.57

The bundle-adjustment layer ultimately produces an update to the depths and camera poses.58

VO System: In Fig. D we show an overview of the VO system. The visualization (Sec. D) and frame59

loading are performed in separate threads. The main components of the VO system are discussed in60

Sec. 3.3 in the main paper.61

Confidence Weights: Our approach learns to reject outliers by predicting a confidence weight62

associated to each predicted 2D flow update, which DROID-SLAM (11) does as well. We show a63

visualization of the weights for a small number of edges in Fig. E. These weights are not supervised64

directly, rather they are learned by supervising on the pose output of the differentiable bundle-65

adjustment layer.66

G Future Work67

Patch Selection: Prior methods for camera pose estimation may select keypoint locations using68

heuristics such as image regions with high photometric gradient (1), use deep networks to identify69

salient keypoints (8), or simply track all W ×H pixels (11; 5; 4).70

3

Patch Extraction Edge Addition KeyframeUpdate Op + BA

Frame Queue Visualization

Figure D: Overview of the VO System. The visualization (Sec. D) and frame loading are performed
in separate threads. The main components of the VO system are discussed in Sec. 3.3 in the main
paper.

Figure E: Factor confidence weights. For each edge in the patch graph, the factor-head of our update
operator predicts a confidence weight w ∈ R2 bounded to (0, 1) and a 2D flow update. Cold colors
(blue) represent high confidence edges while hot colors (red) represent low confidence edges.

As discussed in our paper ablations, we observe that selecting patch centroids randomly outperforms71

these alternative approaches. While somewhat surprising, we believe this makes sense given the72

nature of video input. Video frames have considerable overlap, implying that most pixels have a valid73

match in the adjacent frames. For this reason, the benefits of selecting salient keypoints is potentially74

outweighted by having a uniform coverage of the whole image. However, there exist a large space of75

other keypoint selection schemes to explore, which is outside the scope of this work.76

Global Optimization: Our paper focuses exclusively on the front-end of the visual SLAM problem.77

Therefore, an obvious extension of our work would include a back-end with components such as78

loop closure and global bundle adjustment, composing a full SLAM system. While useful, we79

consider implementing a back-end orthogonal to our contribution, and we leave this to future work /80

implementations.81

H Limitations82

On some sequences, classical methods such as ORB-SLAM (6) and DSO (1) still occasionally83

out-perform approaches based on deep-networks (13; 11). This may result from a distribution gap84

between the TartanAir training set and the test data, however, we exclusively train using TartanAir for85

fair comparison to other deep-learning approaches.86

Additionally, an inherit limitation of sparse VO systems is that they triangulate fewer points, and87

therefore can only produce sparse 3D reconstructions. Dense reconstructions from DPVO could88

be obtained by running dense multiview-stereo in a separate process, which is orthogonal to our89

contribution.90

I Network Architecture91

Update Operator: In Fig. F, we show the architecture of the update operator, excluding non-learnable92

layers such as the correlation layer and the bundle adjustment layer. Since the 1D-Convolutions and93

the Softmax-Aggregation layers operate on neighoring edges, they are partially implemented using94

PyTorch (7) scattering operations.95

Feature Extractor: In Fig. G, we show a visualization of the architecture of the feature extractor. The96

4

same network architecture is used for extracting context features and for extracting matching features,97

except the former uses no normalization and output dimension D = 384 while the latter uses instance98

normalization and D = 128. We use instance normalization for the matching features since they99

should be calculated independently for each input image in a batch, which other flow-based networks100

(10; 12; 11) do as well. Our feature extractor is similar to the architecture used in DROID-SLAM (11),101

but half the size. Consequently, the output resolution is 1/4 of the image resolution, as opposed to102

1/8th. Since DPVO only tracks a sparse collection of patches instead of predicting dense flow, we can103

afford to use higher spatial-resolution features without significant memory overhead.104

Linear
+ ReLU

Correlation
Features

Linear +
LayerNorm
+ ReLU

Linear

Context Features

Hidden State LayerNorm

Temporal
1D-Conv

Softmax-Agg:
All edges w/
same source

patch

Softmax-Agg:
All edges w/
same source &
dest. frame

Linear +
Softmax

Linear +
ReLU +
Linear

LayerNormLayerNorm

Linear +
Softmax

Linear +
ReLU +
Linear

ReLU +
Linear +
Sigmoid

ReLU +
Linear

2D Flow
Revision

2D Confidence
Weight

New Hidden State

Legend

Temporal Convolutions

Softmax Aggregation
(Message Passing)

Miscellaneous

Transition Block

Factor Head

Addition

Multiplication

Figure F: Architecture of the Update Operator, excluding non-learnable layers such as the correlation
layer and the bundle-adjustment layer.

2D-Conv 7x7 (32) Stride 2

Residual-Block (32)
Stride 1

Residual-Block (64)
Stride 2

2D-Conv 1x1
(D)

Figure G: Architecture of the feature extractors. D = 128 for the matching-feature extractor and
D = 384 for the context-feature extractor.

5

J Predicted Trajectories on EuRoC105

2 0 2 4 6 8
y (m)

3

2

1

0

1

2

3

4

5

x
(m

)

Euroc MH_01_easy
Ground Truth
Predicted

2 0 2 4 6 8 10
y (m)

2

1

0

1

2

3

4

5

x
(m

)

Euroc MH_02_easy
Ground Truth
Predicted

0 2 4 6 8 10 12
x (m)

2

0

2

4

6

y
(m

)

Euroc MH_03_medium
Ground Truth
Predicted

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x (m)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
(m

)

Euroc MH_04_difficult
Ground Truth
Predicted

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
y (m)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

x
(m

)

Euroc MH_05_difficult
Ground Truth
Predicted

2 1 0 1 2 3
y (m)

2

1

0

1

2

x
(m

)

Euroc V1_01_easy
Ground Truth
Predicted

2 1 0 1 2 3
y (m)

2

1

0

1

2

x
(m

)

Euroc V1_02_medium
Ground Truth
Predicted

2 1 0 1 2 3
y (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x
(m

)

Euroc V1_03_difficult
Ground Truth
Predicted

3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y
(m

)

Euroc V2_01_easy
Ground Truth
Predicted

4 3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y
(m

)

Euroc V2_02_medium
Ground Truth
Predicted

4 3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y
(m

)

Euroc V2_03_difficult
Ground Truth
Predicted

Figure H: Trajectory predictions on the EuRoC test dataset.

6

K Predicted Trajectories on TartanAir106

5 0 5 10 15 20 25 30
z (m)

30

25

20

15

10

5

0

5
x

(m
)

TartanAir ME000

Ground Truth
Predicted

30 20 10 0 10
x (m)

5

10

15

20

25

z (
m

)

TartanAir ME001
Ground Truth
Predicted

40 30 20 10 0 10 20 30
z (m)

50

40

30

20

10

x
(m

)

TartanAir ME002
Ground Truth
Predicted

80 60 40 20 0 20 40 60
x (m)

40

50

60

70

80

z (
m

)

TartanAir ME003
Ground Truth
Predicted

20 10 0 10 20
z (m)

30

20

10

0

10

20

x
(m

)

TartanAir ME004
Ground Truth
Predicted

10 5 0 5
z (m)

15

10

5

0

5

x
(m

)

TartanAir ME005
Ground Truth
Predicted

70 60 50 40 30 20 10 0
z (m)

20

15

10

5

x
(m

)

TartanAir ME006
Ground Truth
Predicted

20 15 10 5 0 5 10 15 20
x (m)

25

20

15

10

5

0

z (
m

)

TartanAir ME007
Ground Truth
Predicted

10 5 0 5 10 15 20 25
z (m)

30

25

20

15

10

5

0

5

10

x
(m

)

TartanAir MH000
Ground Truth
Predicted

10 5 0 5 10
z (m)

4

2

0

2

x
(m

)

TartanAir MH001

Ground Truth
Predicted

10 0 10 20 30
x (m)

5

10

15

z (
m

)

TartanAir MH002
Ground Truth
Predicted

10 5 0 5 10 15
z (m)

6

4

2

0

y
(m

)

TartanAir MH003

Ground Truth
Predicted

6 4 2 0 2 4
z (m)

1

0

1

2

3

x
(m

)

TartanAir MH004

Ground Truth
Predicted

30 20 10 0 10 20
z (m)

30

20

10

0

10

x
(m

)

TartanAir MH005
Ground Truth
Predicted

20 15 10 5 0 5 10 15 20
z (m)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x
(m

)

TartanAir MH006
Ground Truth
Predicted

30 20 10 0 10 20 30 40
z (m)

5

0

5

10

15

20

25

x
(m

)

TartanAir MH007
Ground Truth
Predicted

Figure I: Trajectory predictions on the TartanAir test dataset.

7

References107

[1] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE transactions on pattern108

analysis and machine intelligence, 40(3):611–625, 2017.109
[2] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide Scaramuzza. Svo:110

Semidirect visual odometry for monocular and multicamera systems. IEEE Transactions on Robotics,111

33(2):249–265, 2016.112
[3] Michael Grupp. evo: Python package for the evaluation of odometry and slam. https://github.com/113

MichaelGrupp/evo, 2017.114
[4] Zhixiang Min and Enrique Dunn. Voldor+ slam: For the times when feature-based or direct methods are115

not good enough. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages116

13813–13819. IEEE, 2021.117
[5] Zhixiang Min, Yiding Yang, and Enrique Dunn. Voldor: Visual odometry from log-logistic dense optical118

flow residuals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,119

pages 4898–4909, 2020.120
[6] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and121

rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.122
[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,123

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep124

learning library. Advances in neural information processing systems, 32, 2019.125
[8] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine: Robust126

hierarchical localization at large scale. In Proceedings of the IEEE/CVF Conference on Computer Vision127

and Pattern Recognition, pages 12716–12725, 2019.128
[9] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD SLAM: Bundle adjusted direct RGB-D SLAM.129

In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.130
[10] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European131

conference on computer vision, pages 402–419. Springer, 2020.132
[11] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.133

Advances in Neural Information Processing Systems, 34:16558–16569, 2021.134
[12] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-motion embeddings. In Proceedings of the135

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8375–8384, 2021.136
[13] Wenshan Wang, Yaoyu Hu, and Sebastian Scherer. Tartanvo: A generalizable learning-based vo. arXiv137

preprint arXiv:2011.00359, 2020.138
[14] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish139

Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In 2020 IEEE/RSJ140

International Conference on Intelligent Robots and Systems (IROS), pages 4909–4916. IEEE, 2020.141

8

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

	Stable Runtime
	ATE Error Metric
	Additional Training Details
	Visualization
	Bundle Adjustment Layer
	Additional Figures
	Future Work
	Limitations
	Network Architecture
	Predicted Trajectories on EuRoC
	Predicted Trajectories on TartanAir

