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Generalizable Lightweight Proxy for Robust NAS

against Diverse Perturbations

A Experimental Setting

Search space Based on the cell-based neural architecture search space [46], we regard the whole
network as the composition of repeated cells. Thus, we search for the optimal cell architectures and
stack them repeatedly to construct the entire network. In the cell-based search phase, each cell can be
represented as a directed acyclic graph (DAG), which has N nodes that represent the feature maps
zj(j = 1, · · · , N) and each edge between arbitrary node i and node j represents an operation oi,j
chosen from the operation pool, where oi,j ∈ O = {ok, k = 1, 2, · · · , n}. Each feature map zj is
obtained from all of its predecessors as follows:

xj =
∑
i<j

oi,j(xi) (11)

In this work, we utilize NAS-Bench-201 [12], and DARTS [26] search space, where different
operation pools are used, which are O = {1× 1 conv., 3× 3 conv., 3× 3 avg. pooling, skip, zero},
and O = {3× 3 conv., 3× 3 dil.conv., 5× 5 conv., 5× 5 dil. conv., 7× 7 conv., 3× 3 max pooling,
3 × 3 avg. pooling, skip, zero}, respectively. Especially, for the NAS-Bench-201 search space,
we additionally use the Jung et al. [22] dataset that includes robust accuracies of candidate neural
architectures in NAS-Bench-201 search space to demonstrate the efficacy of our proposed proxy
regarding searching generalized architectures against diverse perturbations and clean inputs.

Adversarial Evaluation To evaluate standard-trained models, we utilize the robust NAS-Bench-
201 [22] datasets, allowing us to achieve robust accuracy. On the other hand, to evaluate adversarially-
trained models, we construct our own dataset, as described in Section 4.2, enabling us to obtain
robust accuracy against adversarial attacks. In all our experiments, we obtain robust accuracy on
CIFAR-10 against FGSM attack with an attack size (ϵ) of 8.0/255.0 and attack step size (α) of
8.0/2550.0 while we utilize robust accuracies against FGSM attack with attack size (ϵ) of 4.0/255.0
on ImageNet16-120.

End-to-end sampling We sample 5,000 number of neural architectures on the DARTS search
space to obtain end-to-end performance on CIFAR-10 and CIFAR-100. For both CIFAR-10 and
CIFAR-100, we utilize the AE+warmup+move sampling strategy described in Section 4.3, where our
proxy guides the sampling towards the pool of architectures with high proxy values. Specifically, for
CIFAR-10, we use an init pool (e.g., warmup) of 3,000 and a sample pool for AE (e.g., move) of 50.
On the other hand, we employ an init pool of 3,000 and a sample pool of 100 for CIFAR-100.

B Experimental Results

B.1 Ablation on Each Component of CRoZe

In Section 3.3, we introduce our proxy, which consists of three components: feature, parameter, and
gradient consistency. We discuss the importance of considering all three components to accurately
evaluate the robustness of neural architectures in a random state (Section 4.4). To further analyze the
contributions of each factor, we conduct an ablation study in both the NAS-Bench-201 search space
and the DARTS search space.

We find that relying solely on feature consistency in a random state is insufficient to evaluate the
robustness of architectures. The proxy with only feature consistency shows a lower correlation in
both standard training and adversarial training scenarios compared to CRoZe in the NAS-Bench-201
search space (Table 7a and Table 7b). This indicates that high scores obtained based on feature
consistency on a single batch may not accurately reflect the performance across the entire dataset.
On the other hand, when parameter or gradient similarity is added to the proxy, the correlation
consistently improves, suggesting that these factors complement feature consistency by imposing
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Table 7: Comparison of Spearman’s ρ between the actual accuracies and the proxy values on CIFAR-10 in
the NAS-Bench-201 search space. Clean stands for clean accuracy and robust accuracies are evaluated against
adversarial perturbations (FGSM [16]) and common corruptions (CC. [20]). Avg. stands for average Spearman’s
ρ values with all accuracies.

Proxy components Standard-Trained

Feature Parameter Gradient Clean FGSM CC. Avg.

✓ – – 0.718 0.701 0.341 0.587
✓ ✓ – 0.750 0.762 0.384 0.632
✓ – ✓ 0.822 0.824 0.434 0.693
– ✓ ✓ 0.824 0.827 0.437 0.696
✓ ✓ ✓ 0.823 0.826 0.436 0.695

(a) Standard-Trained

Proxy components Adversarially-Trained

Feature Parameter Gradient Clean FGSM PGD HRS(FGSM) HRS(PGD)

✓ – – 0.602 0.295 0.329 0.442 0.404
✓ ✓ – 0.677 0.343 0.431 0.542 0.527
✓ – ✓ 0.707 0.405 0.489 0.587 0.573
– ✓ ✓ 0.731 0.422 0.507 0.610 0.595
✓ ✓ ✓ 0.723 0.417 0.501 0.602 0.588

(b) Adversarially-Trained

Table 8: Comparisons of the final performance of the searched network in NAS-Bench-201 and DARTS search
space on CIFAR-10. Bold and underline stands for the best and second.

Proxy components Standard-Trained (Top-1) Standard-Trained (Top-3)

Feature Parameter Gradient Clean FGSM CC. Avg. Clean FGSM CC. Avg.

✓ – – 93.30 44.30 55.62 64.41 92.93 37.60 54.03 61.52
✓ ✓ – 93.70 45.80 56.93 65.48 93.63 48.20 55.39 65.74
✓ – ✓ 93.70 45.80 56.93 65.48 93.63 48.20 55.39 65.74
– ✓ ✓ 93.70 45.80 56.93 65.48 93.43 41.37 55.30 63.37
✓ ✓ ✓ 93.70 45.80 56.93 65.48 93.93 43.87 56.11 64.64

(a) NAS-Bench-201 search space

Proxy Components Standard-Trained

Feature Parameter Gradient Clean CC. FGSM HRS Avg.

✓ – – 94.37 72.26 16.87 28.62 53.03
✓ ✓ – 94.99 74.06 16.82 28.58 53.86
✓ – ✓ 94.30 74.91 16.67 28.33 53.55
– ✓ ✓ 94.34 74.46 15.71 26.93 52.86
✓ ✓ ✓ 94.45 74.63 22.38 36.19 56.91

(b) DARTS search space

stricter constraints on the parameter space and convergence directions, respectively. While the proxy
considering only parameter and gradient similarity achieves better Spearman’s ρ compared to our
proxy, the top-3 architectures chosen by our proxy exhibit higher average performance than those
discovered by the proxy without feature consistency (Table 8a).

We further conduct ablation experiments on CIFAR-10 in the DARTS search space, which contains
about 1019 number of candidate architectures that is significantly larger than the NAS-Bench-201
search space containing 15625 architectures. The proxy without feature consistency yielded ar-
chitectures with poor robust accuracies, while the architectures selected by our proxy consistently
outperformed the former on both clean and perturbed images (Table 8b). Furthermore, architec-
ture identified solely by feature consistency exhibits better average performance compared to those
discerned by proxies without feature consistency. This clearly demonstrates the influential role
of feature consistency in evaluating robustness. Overall, our proposed proxy effectively searches
high-performing architectures by employing consistency across features, parameters, and gradients to
estimate the robustness of the given architectures within a single gradient step. The overall algorithm
of CRoZe is described in Algorithm 1.

B.2 Ablation on Perturbation Type of Input

Table 10: Comparisons of perturbation type applied
to the input. All models are adversarially-trained on
CIFAR-10.

Adversarially-Trained

PGD FGSM HRS

Clean ϵ = 1 ϵ = 8 PGD FGSM Avg.

Gaussian Noise 0.718 0.503 0.415 0.590 0.603 0.566
Adversarial 0.723 0.501 0.417 0.588 0.602 0.566

CRoZe evaluates the consistency between clean
and perturbed inputs, regardless of the perturba-
tion type, assuming that perturbed inputs retain
the same semantic information as clean inputs.
To empirically demonstrate the independence
of our proxy from specific perturbation types
applied to the input, we introduce random Gaus-
sian noise in place of adversarial perturbations
in Eq. 4 for obtaining our proxy values. As evi-
denced in Table 9, CRoZe consistently exhibits similar Spearman’s ρ between the final performance
of the standard-trained models and our proxy value in the NAS-Bench-201 search space on multiple
benchmarks including CIFAR-10, CIFAR-100, and ImageNet16-120. Specifically, the gap of the
average Spearman’s correlation between the CRoZe using adversarial perturbations and the one with
random Gaussian noise is merely 0.001 on CIFAR-100. Furthermore, when we measure the Spear-
mans’ ρ between the final performance of adversarially-trained models and our proxy, the average
Spearman’s ρ values are the same between the CRoZe with random Gaussian noise and the one
with adversarial perturbations (Table 10). This emphasizes that CRoZe captures the characteristics
of robust architectures through the consistency of clean and perturbed inputs, irrespective of the
perturbation types employed.
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Algorithm 1: Cnsistency-based Robust Zero-cost Proxy (CRoZe).
Input: A single batch of given dataset B = {(x, y)}, network fθ(·) consists of M layer, which

is architecture A with parameterized by θ
Output: Proxy value, CRoZe
/* Estimate robust network fθr as done in Eq. 3. */

for m = 1, · · · ,M do

θrm ← θm + β ∗ ∇θmL
(
fθ(x),y

)
∥∇θmL

(
fθ(x),y

)
∥
∗ ∥θm∥

/* Generate perturbed input x′ using fθr. as done in Eq. 4 */

δ = ϵsign
(
∇xL

(
fθr (x), y

))
x′ = x+ δ

/* Calculate consistency in features, parameters, and gradients as done
in Section 3.3 */

/* Calculate gradients of both clean network fθ and robust network fθr */
g = ∇θL

(
fθ(x), y)

gr = ∇θrL
(
fθr (x

′), y)

/* Single gradient step for clean network fθ and robust network fθr */
θ1 ← θ − γg
θr1 ← θr − γgr

for m = 1, · · · ,M do
/* Feature consistency */
Zm(fθ(x), fθr (x

′)) = 1 +
zm·zrm

∥zm∥∥zrm∥

/* Parameter consistency */

Pm(θ1, θ
r
1) = 1 +

θ1,m·θr1,m
∥θ1,m∥∥θr1,m∥

/* Gradient consistency */
Gm(g, gr) =

∣∣ gm·grm
∥gm∥∥grm∥

∣∣
CRoZe =

∑M
m=1Zm × Pm × Gm

return CRoZe;

Table 9: Comparison of Spearman’s ρ between the actual accuracies and the proxy values on CIFAR-10,
CIFAR-100 and ImageNet16-120 in NAS-Bench-201 search space. Avg. stands for average Spearman’s ρ values
with all accuracies within each task and CC. stands for the average of 15 different types of common corruption.
All models are standard-trained.

CIFAR-10 CIFAR-100 ImageNet16-120

FGSM FGSM FGSM

Perturbation Type Clean ϵ = 8 ϵ = 4 ϵ = 2 CC. Avg. Clean ϵ = 4 CC. Avg. Clean ϵ = 4 Avg.

Gaussian Noise 0.810 0.821 0.797 0.778 0.436 0.728 0.774 0.693 0.542 0.670 0.741 0.671 0.706
Adversarial 0.823 0.823 0.826 0.801 0.436 0.682 0.787 0.693 0.533 0.671 0.769 0.696 0.733

B.3 Ablation of the Weight Initialization Type

As our proxy assesses the robustness of the neural architecture within a single gradient step, we
further investigate the sensitivity of our proxy to various weight initialization types. To validate
the compatibility of our proxy with the diverse weight initialization type, we perform experiments
employing Random initialization, Kaiming initialization [19], and Xavier initialization [15] on
the NAS-Bench-201 search space on CIFAR-10. We measure Spearman’s ρ between the final
accuracies and the proxy values, where the final performances are obtained by evaluating both
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Table 11: Comparison of Spearman’s ρ between the final accuracies and the proxy values on the NAS-Bench-
201 search space with various weight initialization methods. All models are trained with both standard and
adversarial training on CIFAR-10.

Standard-trained Adversarially-trained

Weight Initialization Type Clean FGSM PGD CC. Avg. FGSM PGD CW DeepFool SPSA LGV AutoAttack Avg.

Random 0.823 0.826 0.188 0.436 0.568 0.441 0.532 0.220 0.454 0.240 0.449 0.458 0.399
Kaiming [19] 0.812 0.818 0.189 0.430 0.562 0.428 0.512 0.217 0.443 0.227 0.426 0.436 0.384
Xavier [15] 0.816 0.822 0.190 0.433 0.565 0.428 0.513 0.217 0.442 0.227 0.425 0.436 0.384

standard-trained models and adversarially-trained models. We used 15,625 standard-trained models
and 300 adversarially-trained models to ensure precise robustness assessment. Standard trained
models are validated on clean images, adversarially-perturbed images (i.e., FGSM with an attack size
of 8.0/255.0 and PGD with an attack size of 1.0/255.0), and 15 different types of common corrupted
images. In contrast, advesrsarially-trained models are subjected to evaluation against 7 different types
of strong adversarial attacks, including FGS, PGD, CW, DeepFool, SPSA, LGV, and AutoAttack.
The results reported in the main paper are based on Random initialization.

As demonstrated in Table 11, our proxy maintains a consistently higher correlation compared to the
baselines, irrespective of the weight initialization methods employed. Specifically, our proxy achieves
an average correlation of 0.568 and 0.399 for standard training and adversarial training scenarios,
respectively, whereas the best-performing baseline method only achieves 0.529 and 0.352 against
various perturbations with the same random weight initialization. Since our approach considers the
consistency of the parameters and gradients between the clean and perturbed images, our superior
performance can be achieved regardless of the weight initialization method.

B.4 Assessment of CRoZe Predictiveness on Adversarially-Trained Models

Figure 7: Spearman’s ρ in our proxy and each consistency component between the neural architectures with
single-step trained states and fully-trained states against clean and perturbed images. All models are trained only
on adversarially-perturbed images.
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As we verify the predictiveness of CRoZe with 300 standard-trained models in the NAS-Bench-201
search space in Section 4.4, we further validate the predictiveness of our proxy against adversarially-
trained models. To achieve adversarial robustness, we adversarially train 300 randomly sampled
architectures from the NAS-Bench-201 search space on the entire CIFAR-10 dataset, following [40].
We then compute Spearman’s ρ between the values obtained from the fully-adversarially-trained
states and single-step trained states associated with our proxy and each consistency component.

Surprisingly, our proxy demonstrates a strong correlation of 0.983 between the proxy value obtained
from a fully-trained state and a single-step trained state (Figure 7). This indicates that our proxy accu-
rately predicts the robustness of architectures even when they are adversarially-trained. Furthermore,
each individual component of the proxy also exhibits a high correlation, suggesting that a strong
predictiveness of our proxy against diverse perturbations does not rely on a dominant component, but
rather on the overall precise evaluation provided by the combination of components.

B.5 Versatility of CRoZe

To demonstrate the versatility of our robust zero-shot proxy, CRoZe, and its compatibility with
existing clean zero-shot NAS approaches [1], we conduct additional experiments where we ensemble
our proxy with other methods. Following Abdelfattah et al. [1], we re-implemented ensemble-based
NAS, which involves aggregating predictions from multiple zero-shot NAS methods to calculate the
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Table 12: Validation of orthogonality of CRoZe. Comparison of Spearman’s ρ between the actual accuracies
and the proxy values on CIFAR-10, CIFAR-100, and ImageNet16-120 in the NAS-Bench-201 search space. CC.
stands for the average of 15 different types of common corruption. All models are standard-trained.

CIFAR-10 CIFAR-100 ImageNet16-120

Proxy Type Clean FGSM PGD CC. Clean FGSM PGD CC. Clean FGSM PGD

CRoZe 0.823 0.826 0.188 0.823 0.784 0.786 0.343 0.784 0.765 0.596 0.707
Ensemble 0.803 0.681 0.543 0.771 0.793 0.739 0.444 0.798 0.749 0.638 0.296
CRoZe+Ensemble 0.894 0.872 0.633 0.894 0.894 0.851 0.415 0.878 0.810 0.688 0.259

Table 13: Comparisons of the final performance and required computational resources of the searched neural
architectures in the DARTS search space on ImageNet16-120. CC. stands for the average of 15 different types of
common corruption.

NAS Method Training-free Params # GPU Batch Size Standard-Trained

NAS (M) Clean CC. FGSM HRS

PC-DARTS [42] 5.30 8 1024 50.58 14.36 0.15 0.30
DrNAS [6] 5.70 8 512 49.63 13.42 0.21 0.42
AdvRush [31] 4.20 1 64 38.72 10.39 0.11 0.22
GradNorm [1] ✓ 5.90 1 8 39.13 10.75 0.23 0.46
SynFlow [1] ✓ 6.13 1 8 43.73 12.10 0.15 0.30
CRoZe ✓ 5.87 1 8 47.90 13.35 0.32 0.64

proxy score for a given neural architecture. For our ensemble, we select {Snip, NASWOT} as the
baseline. We then compare 1) CRoZe, 2) Ensemble: {Snip, NASWOT}, and 3) CRoZe+Ensemble:
{CRoZe, Snip, NASWOT} in the NAS-Bench-201 search space on CIFAR-10, CIFAR-100, and
ImageNet16-120. Robust accuracies are obtained by evaluating the standard-trained models against
FGSM attack with an attack size of 8.0/255.0 and PGD with an attack size of 1.0/255.0.

The results presented in Table 12 indicate that CRoZe significantly enhances the predictiveness for
both clean and robust accuracies, encompassing adversarial attacks and common corruption across
all tasks. Notably, CRoZe+Ensemble showcases substantial improvements, achieving increases
of 11.33% in clean accuracy and 28.05%, 16.57%, and 15.95% in robustness concerning FGSM
attack, PGD attack, and common corruption, respectively on CIFAR-10. These results underscore the
effectiveness of our proxy when combined with other proxies, enabling a more precise robust neural
architecture search.

B.6 End-to-End Performance on ImageNet16-120

We further validate the final performance of the searched neural architectures by CRoZe and compare
the required computational resources with existing NAS frameworks including robust NAS (Ad-
vRush [31]), clean one-shot NAS (PC-DARTS [42], DrNAS [6]) and clean zero-shot NAS (SynFlow
and GradNorm [1]), on ImageNet16-120 in the DARTS search space. Similar to Section 4.3, we
sample the same number (e.g., 5,000) of candidate architectures using the warmup+move strategy
with an init pool of 3,000 and sample pool of 50 for both clean-zero shot NAS and CRoZe.

The NAS Training-free methods such as GradNorm, SynFlow, and CRoZe only require a single GPU
with a batch size of 8 to search for the architectures on the ImageNet16-120 dataset. In contrast,
the existing clean one-shot NAS methods require 8 GPUs with much larger batch sizes. Moreover,
NAS-Training-free methods consume less than 3000MB of memory, while both clean one-shot NAS
and robust NAS need at least 3090 RTX GPU, which is available at 24000MB of memory. With its
superior computational efficiency, CRoZe enables rapid neural architecture search and achieves the
best HRS accuracy while maintaining comparable clean and common corruption accuracies. all at a
much lower computational cost (Table 13). These demonstrate the effectiveness of CRoZe for rapid
and lightweight robust NAS across diverse tasks (i.e., CIFAR-10, CIFAR-100, and ImageNet16-120)
and perturbations (i.e., adversarial perturbations and common corruptions).
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