
A Details of Dataset438

Figure 6: Structure of an IgG antibody. The
heavy chain is colored orange, while the light
chain is blue.

Background of Antibodies Antibodies are vital439

components of the immune system and are classified440

into various classes, including IgG, IgM, IgA, IgD,441

and IgE. Among them, IgG antibodies are the most442

abundant in the bloodstream and play a primary role443

in immune responses against pathogens.444

As depicted in Figure 6, IgG antibodies exhibit a445

Y-shaped structure composed of two identical light446

chains and two identical heavy chains, where heavy447

chains provide structural stability. Each antibody448

chain is further divided into distinct regions. (1) The449

variable regions, referred to as the variable heavy450

(VH) and variable light (VL) regions, are located at451

the tips of the Y arms. These regions contribute to the specificity of antibodies in recognizing and452

binding to antigens. The VH and VL regions collaborate to form the fragment antigen-binding453

(Fab) region. (2) At the base of the Y structure, the constant regions, also known as the fragment454

crystallizable (Fc) region, are important in the effector functions of antibodies. The Fc region interacts455

with immune cells and triggers immune responses, such as the activation of complement proteins for456

pathogen destruction and the promotion of phagocytosis.457

Given this background knowledge of antibodies, it becomes clear that antibody-antigen docking is458

fundamental in immune responses, therapeutic applications, vaccine development, and drug discovery.459

Therefore, our study places a particular emphasis on antibody-antigen docking, contributing to460

this field by curating a high-quality benchmark. This dataset will serve as a valuable resource for461

evaluating computational models in predicting antibody-antigen interactions, ultimately facilitating462

the development of novel therapeutics and immunological interventions.463

Antibody-antigen Benchmark The training set comprises 4,890 complexes of antibody-antigen464

pairs, each consisting of proteins with a minimum of 30 residues. These complexes encompass465

three chains, including the light and heavy chains of the antibody, along with one antigen chain. All466

complexes were released before January 2022. Similarly, the test set consists of 68 antibody-antigen467

complexes with three chains, released after October 2022. Thus, we ensure that neither baselines nor468

our proposed model was trained using the test set and avoid data leakage.469

In practical applications, obtaining the ground truth structures of antibody-antigen complexes poses470

significant challenges. Researchers often turn to existing folding models to predict them. To simulate471

real-world scenarios, we employ a specialized antibody model called xTrimoABFold [52] to predict472

the conformations of antibodies and AlphaFold2 [28] for antigens. Given these predicted structures as473

rigid structures, we construct training and test datasets essential for further analysis and investigation.474

The PDB identifiers of the test set are listed here.475

{8dls, 8dlr, 8dfi, 8dfh, 8dcc, 8dad, 7zr8, 7zf8, 7xxl, 7xh8, 7x26, 7wsl, 7wsi, 7ws6, 7ws2, 7wrz, 7wrv,476

7wro, 7wrl, 7wrj, 7wog, 7wlc, 7wef, 7wee, 7wed, 7wcr, 7wbz, 7urq, 7uaq, 7tty, 7ttx, 7ttm, 7tpj, 7tp4,477

7tp3, 7tlz, 7the, 7tc9, 7t8w, 7t7b, 7t01, 7swp, 7su1, 7str, 7sem, 7sd5, 7sbu, 7sbg, 7sbd, 7sa6, 7s5p,478

7rxp, 7rxi, 7rbu, 7qtk, 7n0a, 7lo8, 7lo7, 7kql, 7fjc, 7f7e, 7f6z, 7f6y, 7eng, 7ek0, 7ejz, 7ejy, 7e9p}479

B Details of Implementation480

Baselines ZDOCK1, ClusPro2, and HDOCK3 are user-friendly local packages suitable for auto-481

mated experiments or web servers for manual submissions. We select the top-1 predicted structure482

from each of these methods for subsequent evaluation. For Equidock4 and Multimer5, we utilize their483

pretrained models available on GitHub for the inference. It is worth emphasizing that all methods484

1https://zdock.umassmed.edu
2https://cluspro.org
3http://hdock.phys.hust.edu.cn
4(MIT license) https://github.com/octavian-ganea/equidock_public
5(Apache-2.0 license) https://github.com/aqlaboratory/openfold
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except Multimer are designed for docking two chains. Therefore, during the evaluation, we employ a485

sequential docking strategy. This entails initially docking the light chain and heavy chain together,486

followed by treating them as a unified entity for docking with the antigen. And we calculate evaluation487

metrics using the tools USalign6 and DockQ7.488

MSA Extraction We utilize the heuristic approach described in [23] to pair sequences from per-489

chain multiple sequence alignments (MSAs). Initially, the per-chain MSA sequences are grouped490

based on species, with the species labels obtained from UniProt’s idmapping 8. Within each specific491

species group, the sequences are paired together. We match the chain MSAs by minimizing the492

base-pair distance between the chains for prokaryotic species. While in terms of eukaryotic species,493

we order them based on sequence identity to the target sequence [58]. To reduce computational and494

memory costs, we employ the MSA clustering approach from AlphaFold2 [28]. We randomly select495

Ncluster = 252 sequences as the MSA cluster centers, with the primary protein sequence always set496

as the first cluster center. The remaining sequences are assigned to their closest cluster based on the497

Hamming distance.498

Sequence-modal Input The sequence modality incorporates information derived from the primary499

sequence itself and co-evolutionary information obtained from MSAs. Following prior research [28,500

23], we extract two types of features: type features F typ ∈ RNres×21 and primary pair features501

F pp ∈ RNres×Nres×73 from the primary sequence, where Nres represents the number of residues.502

Regarding MSAs, we utilize cluster MSA features Fmsa ∈ RNcls×Nres×49, where Ncls denotes the503

number of cluster centers. Specifically,504

• The type feature F typ ∈ RNres×21 comprises one-hot representations of the amino acid types,505

encompassing the 20 known amino acids and one additional category for unknown types.506

• The primary pair feature F pp ∈ RNres×Nres×73 contains positional information within or across507

chains, including three components. (1) The relative positional feature of size [Nres, Nres, 66]508

represents the relative residue indices, which are clipped between [−32, 32]. The 66-th index is509

used to indicate cross-chain pairs. (2) The entity indicator of size [Nres, Nres, 1] identifies whether510

residues i and j originate from the same chain. (3) The relative index feature of size [Nres, Nres, 6]511

introduces the relative sym_id9 indices clipped between [−2, 2]. The 6-th index is assigned to pairs512

where the two residues have different sym_ids.513

• The cluster MSA feature Fmsa ∈ RNcls×Nres×49 consists of five components. (1) The one-hot514

representation of the amino acid types with size [Ncluster, Nres, 23], including 20 amino acids, one515

unknown type, one gap or missing residue, and one mask token as introduced in Section 3.1. (2) The516

amino acid distribution of size [Ncluster, Nres, 23] represents the distribution of amino acid types517

within each MSA cluster. (3) The deletion indicator of size [Ncluster, Nres, 1] indicates whether518

there is a deletion to the left of each residue. (4) The deletion value of size [Ncluster, Nres, 1] is519

calculated using the formula 2
π arctan c

3 , where c refers to the number of deletions to the left of520

each position. (5) The mean deletion value of size [Ncluster, Nres, 1] is computed as 2
π arctan c̄

3 ,521

where c̄ represents the average number of deletions to all residues on the left of each position.522

Structure-modal Input For the structure modality, we extract angle features F ang ∈ RNres×57523

and pair features F p ∈ RNres×Nres×88 from the rigid protein structures. These features capture524

important structure-modal information and are used as input for our docking model. Specifically,525

• The angle feature F ang ∈ RNres×57 comprises three components. (1) The one-hot representation526

of the amino acid types with a size of [Nres, 22], including 20 amino acids, one unknown type, and527

one gap or missing residue. (2) The angle representations of size [Nres, 28] use sine and cosine to528

encode three backbone torsion angles, four side-chain torsion angles, and alternative torsion angles529

6(MIT license) https://github.com/pylelab/USalign
7(GPL-3.0 license) https://github.com/bjornwallner/DockQ
8https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

idmapping
9The sym_id is used to distinguish chains with the same sequence. For example, we consider a complex

comprising five chains {A,B,B,C,C}, where A, B, and C represent three unique chains. The corresponding
sym_ids for each chain would be {1, 1, 2, 1, 2}, respectively.
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Table 6: Impacts of noisy structures on the docking performance of classical software and BiDock.
(bold: best; underline: runner-up)

Ground Truth Predicted Structure

RMSD ↓ TM-score ↑ DockQ ↑ RMSD ↓ TM-score ↑ DockQ ↑

ZDOCK 11.830±5.227 0.738±0.120 0.095±0.130 12.491±6.294 0.689±0.114 0.084±0.113

ClusPro 11.486±7.993 0.780±0.133 0.204±0.256 14.135±8.153 0.702±0.118 0.118±0.192

HDOCK 3.464±7.394 0.935±0.144 0.815±0.364 11.328±8.073 0.742±0.167 0.314±0.390

BiDock 6.173±8.825 0.892±0.156 0.648±0.432 7.280±8.117 0.847±0.158 0.564±0.369

with 180◦ rotation symmetry for each local frame of residue. (3) The angle indicator with size530

[Nres, 7] indicates the presence or absence of torsion angles.531

• The pair feature F p ∈ RNres×Nres×88 comprises five components. (1) The distogram feature of532

size [Nres, Nres, 39] represents the discretized distances between Cβ atoms. In the case of glycine,533

which lacks Cβ atoms, Cα is used instead. The distances are discretized into 38 bins of equal534

width ranging from 3.25 to 50.75Å, with an additional bin accounting for larger distances. (2) The535

residue type feature of size [Nres, Nres, 44] is derived from expanding one-hot representations536

of residue types with dimensions of [Nres, 1, 22] and [Nres, 22, 1]. (3) The backbone feature of537

size [Nres, Nres, 3] is obtained by constructing the unit vector of the local frame through the538

Gram-Schmidt process based on the original N-Cα-C coordinates. (4) The residue indicator with539

size [Nres, Nres, 1] is expanded from the indicator of residue existence. (5) The pair indicator of540

size [Nres, Nres, 1] indicates whether the pair is masked.541

MSA Mask Policy Reflecting on Section 3.1, we design a masked MSA loss to supervise the542

learning of evolution representations and the integration of cross-modal information. Specifically, we543

randomly mask each position in an MSA cluster center with a 15% probability. Each masked token is544

replaced according to the following policies:545

• 70% probability of substitution with a special token ⋆546

• 10% probability of substitution with a randomly selected amino acid from a uniform distribution547

• 10% probability of substitution with an amino acid sampled from the MSA profile that corresponds548

to the position549

• 10% probability of no substitution550

Hyperparameter Settings We initialize specific parameters of the cross-modal transformer with551

the checkpoint of Multimer and implement bi-level optimization using TorchOpt10 library. The crop552

size is set to 412, and the batch size is set to 1. The coefficients in Equation (12) are λ1 = 0.2,553

λ2 = 2.0, and λ3 = 10.0. For optimization, we employ the Adam optimizer with a learning rate554

of 10−4 and integrate learning rate warmup, gradually increasing the learning rate from 0 to 10−4555

within the first 100 steps. The exponential moving average (EMA) strategy applies a decay rate of556

β = 0.999 and undergoes updates every 200 steps. The environment where we run experiments is:557

• Operating system: Linux version 5.13.0-30-generic558

• CPU information: AMD EPYC 7742 64-Core Processor559

• GPU information: NVIDIA A100-SXM4-80GB560

C Additional Results561

Effects of Noisy Structures Classical software rely on score functions derived from statistics in562

the protein data bank. This dependency renders them susceptible to noise. When using folding563

algorithms to predict unbounded proteins, the performance of these software can degrade significantly.564

To validate this intuition, we conduct a docking performance analysis on the DB5.5 dataset using565

ground truth and predicted structures from folding models as unbounded structures, respectively. As566

10(Apache-2.0 license) https://github.com/metaopt/torchopt
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shown in Table 6, these results illustrate that although HDOCK performs exceptionally well with567

ground truth, minor noise in predicted structures leads to a substantial decline in its performance.568

On the contrary, BiDock consistently generates acceptable predictions regardless of the input type,569

showcasing its robustness to noise. In real-world applications, reliance on the availability of ground570

truth structures is impractical. The ability of BiDock to maintain high prediction quality when571

confronted with noisy structures makes it an invaluable tool.572
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