
A Appendix461

A.1 More details462

In this section, we will present more details about some designs of each stage in HuggingGPT.463

A.1.1 Template for Task Planning464

To format the parsed task, we define the template [{"task": task, "id", task_id, "dep": depen-465

dency_task_ids, "args": {"text": text, "image": URL, "audio": URL, "video": URL}}] with466

four slots: "task", "id", "dep", and "args". Table 7 presents the definitions of each slot.467

Name Definitions

"task" It represents the type of the parsed task. It covers different tasks in language, visual, video,
audio, etc. The currently supported task list of HuggingGPT is shown in Table 11.

"id" The unique identifier for task planning, which is used for references to dependent tasks and
their generated resources.

"dep" It defines the pre-requisite tasks required for execution. The task will be launched only when all
the pre-requisite dependent tasks are finished.

"args" It contains the list of required arguments for task execution. It contains three subfields populated
with text, image, and audio resources according to the task type. They are resolved from
either the user’s request or the generated resources of the dependent tasks. The corresponding
argument types for different task types are shown in Table 11.

Table 7: Definitions for each slot for parsed tasks in the task planning.

A.1.2 Model Descriptions468

In general, the Hugging Face Hub hosts expert models that come with detailed model descriptions,469

typically provided by the developers. These descriptions encompass various aspects of the model, such470

as its function, architecture, supported languages and domains, licensing, and other relevant details.471

These comprehensive model descriptions play a crucial role in aiding the decision of HuggingGPT.472

By assessing the user’s requests and comparing them with the model descriptions, HuggingGPT can473

effectively determine the most suitable model for the given task.474

A.1.3 Hybrid Endpoint in System Deployment475

An ideal scenario is that we only use inference endpoints on cloud service (e.g., Hugging Face).476

However, in some cases, we have to deploy local inference endpoints, such as when inference477

endpoints for certain models do not exist, the inference is time-consuming, or network access is478

limited. To keep the stability and efficiency of the system, HuggingGPT allows us to pull and run479

some common or time-consuming models locally. The local inference endpoints are fast but cover480

fewer models, while the inference endpoints in the cloud service (e.g., Hugging Face) are the opposite.481

Therefore, local endpoints have higher priority than cloud inference endpoints. Only if the matched482

model is not deployed locally, HuggingGPT will run the model on the cloud endpoint like Hugging483

Face. Overall, we think that how to design and deploy systems with better stability for HuggingGPT484

or other autonomous agents will be very important in the future.485

A.1.4 Task List486

Up to now, HuggingGPT has supported 24 AI tasks, which cover language, vision, speech and etc.487

Table 11 presents the detailed information of the supported task list in HuggingGPT.488

A.1.5 GPT-4 Score489

Following the evaluation method used by Vicuna [36], we employed GPT-4 as an evaluator to assess490

the planning capabilities of LLMs. In more detail, we include the user request and the task list491

planned by LLM in the prompt, and then let GPT-4 judge whether the list of tasks is accurate and492

13



also provide a rationale. To guide GPT-4 to make the correct judgments, we designed some task493

guidelines: 1) the tasks are in the supported task list (see Table 11); 2) the planned task list can reach494

the solution to the user request; 3) the logical relationship and order among the tasks are reasonable.495

In the prompt, we also supplement several positive and negative demonstrations of task planning to496

provide reference for GPT-4. The prompt for GPT-4 score is shown in Table 8. We further want to497

emphasize that GPT-4 score is not always correct although it has shown a high correlation. Therefore,498

we also expect to explore more confident metrics to evaluate the ability of LLMs in planning.499

As a critic, your task is to assess whether the AI assistant has properly planned the task based on the user’s
request. To do so, carefully examine both the user’s request and the assistant’s output, and then provide
a decision using either "Yes" or "No" ("Yes" indicates accurate planning and "No" indicates inaccurate
planning). Additionally, provide a rationale for your choice using the following structure: {"choice":
"yes"/"no", "reason": "Your reason for your choice"}. Please adhere to the following guidelines: 1. The
task must be selected from the following options: {{ Available Task List }}. 2. Please note that there
exists a logical relationship and order between the tasks. 3. Simply focus on the correctness of the task
planning without considering the task arguments. Positive examples: {{Positive Demos}} Negative examples:
{{Negative Demos}} Current user request: {{Input}} AI assistant’s output: {{Output}} Your judgement:

Table 8: The prompt design for GPT-4 Score.

A.2 Datasets for Task Planning Evaluation500

As aforementioned, we create two datasets for evaluating task planning. Here we provide more details501

about these datasets. In total, we gathered a diverse set of 3,497 user requests. Since labeling this502

dataset to obtain the task planning for each request is heavy, we employed the capabilities of GPT-4503

to annotate them. Finally, these auto-labeled requests can be categorized into three types: single504

task (1,450 requests), sequence task (1,917 requests), and graph task (130 requests). For a more505

reliable evaluation, we also construct a human-annotated dataset. We invite some expert annotators to506

label some complex requests, which include 46 examples. Currently, the human-annotated dataset507

includes 24 sequential tasks and 22 graph tasks. Detailed statistics about the GPT-4-annotated and508

human-annotated datasets are shown in Table 9.509

Datasets Number of Requests by Type Request Length Number of Tasks

Single Sequential Graph Max Average Max Average

GPT-4-annotated 1,450 1,917 130 52 13.26 13 1.82
Human-annotated - 24 22 95 10.20 12 2.00

Table 9: Statistics on datasets for task planning evaluation.

A.3 Case Study510

A.3.1 Case Study on Various Tasks511

Through task planning and model selection, HuggingGPT, a multi-model collaborative system,512

empowers LLMs with an extended range of capabilities. Here, we extensively evaluate HuggingGPT513

across diverse multimodal tasks, and some selected cases are shown in Figures 3 and 4. With the514

cooperation of a powerful LLM and numerous expert models, HuggingGPT effectively tackles515

tasks spanning various modalities, including language, image, audio, and video. Its proficiency516

encompasses diverse task forms, such as detection, generation, classification, and question answering.517

A.3.2 Case Study on Complex Tasks518

Sometimes, user requests may contain multiple implicit tasks or require multi-faceted information,519

in which case we cannot rely on a single expert model to solve them. To overcome this challenge,520

HuggingGPT organizes the collaboration of multiple models through task planning. As shown in521

Figures 5, 6 and 7, we conducted experiments to evaluate the effectiveness of HuggingGPT in the522

case of complex tasks:523
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• Figure 5 demonstrates the ability of HuggingGPT to cope with complex tasks in a multi-round524

conversation scenario. The user splits a complex request into several steps and reaches the final goal525

through multiple rounds of interaction. We find that HuggingGPT can track the contextual state526

of user requests through the dialogue context management in the task planning stage. Moreover,527

HuggingGPT demonstrates the ability to access user-referenced resources and proficiently resolve528

dependencies between tasks in the dialogue scenario.529

• Figure 6 shows that for a simple request like "describe the image in as much detail as possi-530

ble", HuggingGPT can decompose it into five related tasks, namely image captioning, image531

classification, object detection, segmentation, and visual question answering tasks. HuggingGPT532

assigns expert models to handle each task to gather information about the image from various533

perspectives. Finally, the LLM integrates this diverse information to deliver a comprehensive and534

detailed description to the user.535

• Figure 7 shows two cases where a user request can contain several tasks. In these cases, Hugging-536

GPT first performs all the tasks requested by the user by orchestrating the work of multiple expert537

models, and then let the LLM aggregate the model inference results to respond to the user.538

In summary, HuggingGPT establishes the collaboration of LLM with external expert models and539

shows promising performance on various forms of complex tasks.540

A.3.3 Case Study on More Scenarios541

We show more cases here to illustrate HuggingGPT’s ability to handle realistic scenarios with task542

resource dependencies, multimodality, multiple resources, etc. To make clear the workflow of543

HuggingGPT, we also provide the results of the task planning and task execution stages.544

• Figure 8 illustrates the operational process of HuggingGPT in the presence of resource dependencies545

among tasks. In this case, HuggingGPT can parse out concrete tasks based on abstract requests546

from the user, including pose detection, image captioning, and pose conditional image generation547

tasks. Furthermore, HuggingGPT effectively recognizes the dependencies between task #3 and548

tasks #1, #2, and injected the inferred results of tasks #1 and #2 into the input arguments of task #3549

after the dependency tasks were completed.550

• Figure 9 demonstrates the conversational ability of HuggingGPT on audio and video modalities. In551

the two cases, it shows HuggingGPT completes the user-requested text-to-audio and text-to-video552

tasks via the expert models, respectively. In the top one, the two models are executed in parallel553

(generating audio and generating video concurrently), and in the bottom one, the two models are554

executed serially (generating text from the image first, and then generating audio based on the555

text). This further validates that HuggingGPT can organize the cooperation between models and556

the resource dependencies between tasks.557

• Figure 10 shows HuggingGPT integrating multiple user-input resources to perform simple reason-558

ing. We can find that HuggingGPT can break up the main task into multiple basic tasks even with559

multiple resources, and finally integrate the results of multiple inferences from multiple models to560

get the correct answer.561

B More Discussion about Related Works562

The emergence of ChatGPT and its subsequent variant GPT-4, has created a revolutionary technology563

wave in LLM and AI area. Especially in the past several weeks, we also have witnessed some experi-564

mental but also very interesting LLM applications, such as AutoGPT 4, AgentGPT 5, BabyAGI 6,565

and etc. Therefore, we also give some discussions about these works and provide some comparisons566

from multiple dimensions, including scenarios, planning, tools, as shown in Table 10.567

Scenarios Currently, these experimental agents (e.g., AutoGPT, AgentGPT and BabyAGI) are568

mainly used to solve daily requests. While for HuggingGPT, it focuses on solving tasks in the569

AI area (e.g., vision, language, speech, etc), by utilizing the powers of Hugging Face. Therefore,570

4https://github.com/Significant-Gravitas/Auto-GPT
5https://github.com/reworkd/AgentGPT
6https://github.com/yoheinakajima/babyagi
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HuggingGPT can be considered as a more professional agent. Generally speaking, users can choose571

the most suitable agent based on their requirements (e.g., daily requests or professional areas) or572

customize their own agent by defining knowledge, planning strategy and toolkits.573

Name Scenarios Planning Tools

BabyAGI
Daily Iterative Planning

-
AgentGPT -
AutoGPT Web Search, Code Executor, ...

HuggingGPT AI area Global Planning Models in Hugging Face

Table 10: Comparision between HuggingGPT and other autonomous agents.

Planning BabyAGI, AgentGPT and AutoGPT can all be considered as autonomous agents, which574

provide some solutions for task automation. For these agents, all of them adopt step-by-step thinking,575

which iteratively generates the next task by using LLMs. Besides, AutoGPT employs an addition576

reflexion module for each task generation, which is used to check whether the current predicted task is577

appropriate or not. Compared with these applications, HuggingGPT adopts a global planning strategy578

to obtain the entire task queue within one query. It is difficult to judge which one is better, since each579

one has its deficiencies and both of them heavily rely on the ability of LLMs, even though existing580

LLMs are not specifically designed for task planning. For example, iterative planning combined581

with reflexion requires a huge amount of LLM queries, and if one step generates an error prediction,582

the entire workflow would possibly enter an endless loop. While for global planning, although it583

can always produce a solution for each user request within one query, it still cannot guarantee the584

correctness of each step or the optimality of the entire plan. Therefore, both iterative and global585

planning have their own merits and can borrow from each other to alleviate their shortcoming.586

Additionally, one notable point is that the difficulty of task planning is also linearly correlated to the587

task range. As the scope of tasks increases, it becomes more challenging for the controller to predict588

precise plans. Consequently, optimizing the controller (i.e., LLM) for task planning will be crucial in589

building autonomous agents.590

Tools Among these agents, AutoGPT is the main one to involve other tools for usage. More591

specifically, AutoGPT primarily uses some common tools (e.g., web search, code executor), while592

HuggingGPT utilizes the expert models of ML communities (e.g., Hugging Face). Therefore,593

AutoGPT has a broader task range but is not suitable for more professional problems, whereas594

HuggingGPT is more specialized and focuses on solving more complex AI tasks. Therefore, the595

range of tools used in LLMs will be a trade-off between task depth and task range. In addition, we596

also note some industry products for LLM applications (e.g., ChatGPT plugins 7) and developer tools597

(e.g., LangChain 8, HuggingFace Transformer Agent 9, Semantic Kernels 10) for LLM applications.598

We believe these rapid developments will also facilitate the community to explore how to better599

integrate LLMs with external tools.600

Overall, HuggingGPT can also be considered as an autonomous agent. Compared with these experi-601

mental agents, which mainly use GPT models to generate solutions for user requests, HuggingGPT602

systematically presents a clear pipeline with four stages: task planning, model selection, task exe-603

cution and response generation. Such a pipeline can effectively improve the success rate of solving604

user requests. Besides, HuggingGPT also introduces a global planning strategy to decompose user605

requests and thus accomplish task automation. Furthermore, HuggingGPT is a collaborative system,606

which fully utilizes the power of expert models from ML communities to solve AI tasks and present607

the huge potential of using external tools. Compared with these agents, HuggingGPT allows us to608

better solve tasks more effectively in professional areas and can be easily extended to any vertical609

domain. In the future, we will continue to enhance HuggingGPT with even more powerful abilities to610

develop a versatile autonomous agent with unlimited possibilities.611

7https://openai.com/blog/chatgpt-plugins
8https://python.langchain.com/
9https://huggingface.co/docs/transformers/transformers_agents

10https://github.com/microsoft/semantic-kernel
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Query: please recognize named entities in the sentence [ " 
that is to end the state of hostility , " Thursday's overseas 
edition of the People's Daily quoted Tang as saying. ]

Response: I have recognized named entities in the sentence 
'that is to end the state of hostility , ' Thursday's overseas 
edition of the People's Daily quoted Tang as saying.'. The 
entities recognized are 'People's Daily' and 'Tang'. Both of 
them are organizations and people respectively. The model I 
used is '        dslim/bert-base-NER', which is a fine-tuned BERT 
model that is ready to recognize named entities in the 
sentence. The inference results are very accurate, with a score 
of 0.9992 for 'People's Daily' and 0.998 for 'Tang'.

NLP > Named Entity Recognition

CV > Object Detection

Query: please detect all objects in examples.jpg

Response: I have detected all objects in the image located at  
a      examples.jpg. I used the         facebook/detr-resnet-101 
model for object detection. It is a DETR (End-to-End Object 
Detection) model with ResNet-101 backbone, which is known 
for its high accuracy in object detection tasks. I generated an 
image with predicted boxes and labels for each object. The 
complete path of the generated image is examples/d7da.jpg. 
The objects detected in the image are chair, cat, dining table, 
clock, tv, book, and vase. The predicted boxes and labels for 
each object are also provided in the inference results.

Response: Sure, the red topping on the pizza in the image is 
tomato.  I used a visual question answering model       
dandelin/vilt-b32-finetuned-vqa to answer the question "What 
is the red topping?" based on the image. The answer with the 
highest score is "tomato" with a score of 0.9698325395584106.

CV > Visual Question Answering
Query: Look at js4f.jpg, what is the red topping?

Response: I have estimated the depth of the image located at 
examples/ks4j.jpg using the        Intel/dpt-large model. This 
model is specifically trained on 1.4 million images and is a 
Dense Prediction Transformer (DPT) model. The generated 
depth image can be found at '         j45s.jpg'.

Query: please estimate the depth of ks4j.jpg

Query: please complete a sentence [ COVID-19 is transmitted 
via droplets, air-borne, ]

Response: I have completed the sentence, the result is 
'COVID-19 is transmitted via droplets, air-borne, and contact 
routes'. I used a        microsoft/biogpt model,  a domain-
specific generative Transformer language model pre-trained on 
large-scale biomedical literature. 

NLP > Text Generation

CV > Depth Estimate

CV  >  Text-to-Image
Query: please give me a photo of "wide angle view of castle, 
blue sky background"

Response: Sure, I can do that. For your request, I used the 
model         runwayml/stable-diffusion-v1-5 for text-to-image 
task, because this model is the most suitable for the task as it is 

a latent text-to-image diffusion model capable of generating high-quality images from text descriptions. For the text-to-
image task, I used the          runwayml/stable-diffusion-v1-5 model to generate an image from the text description you 
provided. The generated image is located at         images/asd4.jpg. 

Figure 3: Case study on various tasks (a).
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Video > Generation

Audio > Generation

Query: please generate a video based on "Spiderman is surfing"

Response: Sure, I can do that. I have generated a video based on your prompt "Spiderman is surfing". The 
video is saved at the following path:        "/videos/4076.mp4". 1. Task Planning: The task planning stage involved analyzing your 
request and identifying the appropriate task to execute. In this case, the task was "text-to-video". 2. Model Selection: The model 
scheduling stage involved selecting the appropriate model to use for the task. In this case, the only available model was        damo-
vilab/text-to-video-ms-1.7b. 3. Task Execution: The task execution stage involved feeding the model with the input text 
"Spiderman is surfing" and generating the video. The inference result was a generated video saved at the path        "/videos/
4076.mp4". I hope this response meets your requirements. 

Query: please read the sentence "Hi there, I am ChatGPT empowered by Huggingface family! Yes, I can provide more than one 
thousand models for dozens of tasks. For more fun and creativity, I have invited Diffusers family to join our team. Feel free to 
experience it!" for me.

Response: Sure, I can do that. For your request, I used the        Facebook/FastSpeech2-en-LJSpeech model to generate an audio 
file from the text you provided. The generated audio file is located at '       /audios/d5f3.wav                                          '. The model 
was chosen because it is the best choice for the task of text-to-speech as it is a FastSpeech 2 model which is specifically designed 
for text-to-speech tasks. It is also the most recent model in the list and has the most potential to provide the best results. I hope 
this answers your question. Is there anything else I can help you with?

Video > GenerationQuery: look at the document doc.jpg, what is the purchase amount?

Response: Sure. I have used        mpira/layoutlm-document-qa model to analyze the 
document         doc.jpg you provided. After the analysis, I have found that the purchase 
amount is $1,000,000,000. As for the workflow, I have used a deep learning model to 
analyze the document and extract the purchase amount. The model I used is a 
convolutional neural network, which is trained on a large dataset of documents. The 
inference results are the purchase amount of $1,000,000,000. If you need more 
information, please let me know.

CV  > Document Question Answering

CV  > Image to Image

Query: give me a similar image with example.jpg

Sure. For your request, I used the model         lambdalabs/sd-image-variations-diffusers 
to generate an image from the image you provided. The generated image is located at      
a     /images/5373.jpg. If there is nothing in the results, I will tell you that I can't make it. 
Is there anything else I can help you with?

Figure 4: Case study on various tasks (b).
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Task Args Candidate Models Descriptions

NLP Tasks

Text-CLS text [cardiffnlp/twitter-roberta-
base-sentiment, ...]

[“This is a RoBERTa-base model
trained on 58M tweets ...”, ...]

Token-CLS text [dslim/bert-base-NER, ...] [“bert-base-NER is a fine-tuned BERT
model that is ready to...”, ...]

Text2text-Generation text [google/flan-t5-xl, ...] [“If you already know T5, FLAN-T5 is
just better at everything...”, ...]

Summarization text [bart-large-cnn, ...] [ “BART model pre-trained on English
language, and fine-tuned...”, ...]

Translation text [t5-base, ...] [“With T5, we propose reframing all
NLP tasks into a unified...”, ...]

Question-Answering text [deepset/roberta-base-
squad2, ...]

[“This is the roberta-base model,
fine-tuned using the SQuAD2.0...”, ...]

Conversation text [PygmalionAI/pygmalion-
6b, ...]

[“Pymalion 6B is a proof-of-concept
dialogue model based on...”, ...]

Text-Generation text [gpt2, ...] [“Pretrained model on English ...”, ...]

Tabular-CLS text [matth/flowformer, ...] [“Automatic detection of blast cells in
ALL data using transformers....”, ...]

CV Tasks

Image-to-Text image [nlpconnect/vit-gpt2-image-
captioning, ...]

[“This is an image captioning model
trained by @ydshieh in flax...”, ...]

Text-to-Image image [runwayml/stable-diffusion-
v1-5, ...]

[“Stable Diffusion is a latent
text-to-image diffusion model...”, ...]

VQA text + image [dandelin/vilt-b32-
finetuned-vqa, ...]

[“Vision-and-Language Transformer
(ViLT) model fine-tuned on...”, ...]

Segmentation image [facebook/detr-resnet-50-
panoptic, ...]

[“DEtection TRansformer (DETR)
model trained end-to-end on ...”, ...]

DQA text + image [impira/layoutlm-
document-qa, ...]

[“This is a fine-tuned version of the
multi-modal LayoutLM model ...”, ...]

Image-CLS image [microsoft/resnet-50, ...] [“ResNet model pre-trained on...”, ...]

Image-to-image image [radames/stable-diffusion-
v1-5-img2img, ...]

[“Stable Diffusion is a latent
text-to-image diffusion model...”, ...]

Object-Detection image [facebook/detr-resnet-50,
...]

[“DEtection TRansformer (DETR)
model trained end-to-end on ...”, ...]

ControlNet-SD image [lllyasviel/sd-controlnet-
canny, ...]

[“ControlNet is a neural network
structure to control diffusion...”, ...]

Audio Tasks

Text-to-Speech text [espnet/kan-
bayashi_ljspeech_vits, ...]

[“his model was trained by kan-bayashi
using ljspeech/tts1 recipe in...”, ...]

Audio-CLS audio [TalTechNLP/voxlingua107-
epaca-tdnn, ...]

[“This is a spoken language recognition
model trained on the...”, ...]

ASR audio [jonatasgrosman/wav2vec2-
large-xlsr-53-english, ...]

[“Fine-tuned XLSR-53 large model for
speech recognition in English ...”, ...]

Audio-to-Audio audio [speechbrain/metricgan-
plus-voicebank, ...]

[“MetricGAN-trained model for
Enhancement...”, ...]

Video Tasks

Text-to-Video text [damo-vilab/text-to-video-
ms-1.7b, ...]

[“his model is based on a multi-stage
text-to-video generation...”, ...]

Video-CLS video [MCG-NJU/videomae-
base, ...]

[“VideoMAE model pre-trained on
Kinetics-400 for 1600 epochs...”, ...]

Table 11: The task list used in HuggingGPT. The first and second columns are the name and arguments
of the corresponding task. The third and fourth columns provide some examples of the candidate
models and their model descriptions.
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Query #1: 

Task Planning #1:
1: {"task": "image-to-text", "id": 0, dep: [-1], "args": {"image": 
"example.jpg"}}
2: {"task": "control-canny", "id": 0, dep: [-1], "args": {"image": 
"example.jpg"}}

Response #1: I have generated a canny image for you based 
on the image located at example.jpg. The task process involved 
selecting the       canny-control model for image processing, as it 
covers common image processing functions. The inference 
results include a generated image, which can be found at            
a    images/df8t.jpg.

Execution Results #1:
1.  {"generated text": "a herd of giraffes and zebras grazing in a 
field"}
2. {"generated image": "images/df8t.jpg"}

Query #2: then based on the above canny image and a prompt 
"a photo of a zoo", generate a new image.

Response #2: I have received your request to generate a 
canny image of a photo of a zoo. I have selected the model         
a    lllyasviel/sd-controlnet-canny as it is the best model for this 
task. I have processed the image and generated a new image 
located at       images/ja2f.jpg. The generated image highlights 
the edges of the objects in the photo, making it easier to see the 
details of the animals and their surroundings. Overall, the task 
was to convert a text prompt 'a photo of a zoo' into a canny 
image using the selected model.

Query #3: please detect objects in the above image

Response #3: 
Sure, here is the result of your command. I hava successfully 
detected objects in the image you provided. The detected 
objects are giraffes and zebras. I used the       facebook/detr-
resnet-101 model for object detection, which is specifically 
designed for object detection tasks and has a ResNet-101 
backbone, which is a powerful feature extractor. Additionally, 
the DETR architecture used in this model is an end-to-end object 
detection model that has shown promising results in various 
benchmarks. I have generated an image with predicted boxes 
around the detected objects. You can find the generated image 
at the following path:       images/dif2.jpg. The predicted objects 
and their corresponding scores are as follows: - Giraffe with a 
score of 0.999- Zebra with a score of 0.998- Zebra with a score 
of 0.998- Giraffe with a score of 0.969- Zebra with a score of 
0.997. I hope this information is helpful to you.

Execution Results #2:
1.  {"generated image": "images/ja2f.jpg"}

Task Planning #2:
1: {"task": "canny-text-to-image", "id": 0, dep: [-1], "args": 
{"text":"a photo of a zoo", "image": "example.jpg"}}

Execution Results #3:
1.  {'generated image with predicted box': 
'/images/dif2.jpg', 'predicted': [{'box': 
{'xmax': 760, 'xmin': 515, 'ymax': 437, 
'ymin': 136}, 'label': 'giraffe', 'score': 
0.9992127418518066}, {'box': {'xmax': 
561, 'xmin': 510, 'ymax': 447, 'ymin': 357}, 
'label': 'zebra', 'score': 
0.9983904361724854}, {'box': {'xmax': 
324, 'xmin': 178, 'ymax': 446, 'ymin': 336}, 
'label': 'zebra', 'score': 
0.9986028075218201}, {'box': {'xmax': 
297, 'xmin': 4, 'ymax': 372, 'ymin': 213}, 
'label': 'giraffe', 'score': 
0.9694724082946777}]}

Task Planning #3:
1: {'task': 'object-detection', 'id': 0, 'dep': 
[-1], 'args': {'image': 'images/ja2f.png'}}

Please generate a canny image based on example.jpg

Figure 5: Case study on complex tasks (a).
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Query: Describe this image example.jpg in as much 
detail as possible.

Task Planning:
1. {"id": "0", "dep": [-1], "task": "image-to-text", 
"args": {"image": "example.jpg" }}, 
2. {"id": "1", "dep": [-1], "task": "image-classification", 
"args": {"image": "example.jpg" }}, 
3. {"id": "2", "dep": [-1], "task": "object-detection", 
"args": {"image": "example.jpg" }}, 
4. {"id": "3", "dep": [-1], "task": "image-
segmentation", "args": {"image": "example.jpg" }}, 
5. {"id": "4", "dep": [-1], "task": "visual-question-
answering", "args": {"text": "describe this image in 
detail", "image": "example.jpg" }}, 

Response: The image you provided appears to 
show a family of four dogs playing in the grass. For 
this task, I ran multiple CV tasks, including image-to-
text, image-classification, object-detection, visual-
question-answering, and document-question-
answering. I chose specific models for each task that 
were best suited to addressing your query, based on 
their training and performance characteristics.

For image-to-text, I chose the        nlpconnect/vit-
gpt2-image-captioning model. This model generates 
an image caption with the given image. I applied this 
model to the input image and the developed output 
was: a family of four dogs are playing in the grass
For image-classification, I selected the        google/vit-
base-patch16-224 model. This model is trained on 
natural images dataset and it can predict the label of 
the image output. I applied this model to the image 
and get the results showing the risk of each label. It 
shows the highest risk at "Rhodesian ridgeback" with 
a score of 93.8%
For object-detection, I used        facebook/detr-
resnet-101 model. This model is trained on COCO 
panoptic segmentation for object detection. I used 
this model to generate an image file with the 
predicted box. The generated image with predicted 
box is at:        /images/sd48.jpg
Regarding your request for image segmentation, I 
have completed the task using a pre-trained model 
called        facebook/detr-resnet-50-panoptic. The 
segmentation mask shows the different regions of 
the image that belong to different classes. In this 
case, the model has identified two main classes in the 
image, which are "dog", "grass" and "tree". The 
generated image with the segmentation mask can be 
found at    a    /images/t4s1.jpg
For visual question answering, I used        dandelin/
vilt-b32-finetuned-vqa model. This model is a Vision-
and-Language Transformer (ViLT) model, which is 
fine-tuned on VQAv2. It is suitable for visual-
question-answering tasks, and is likely to provide 
accurate results for the given image. For the question  
"what are in the image?" It reply with a prediction 
"dogs" and the confidence is 84.9%.

Execution Results:
1.  {"generated_text": "a family of four dogs are 
playing in the grass "}
2. [{'score': 0.938717246055603, 'label': 'Rhodesian 
ridgeback'}, {'score': 0.01652258075773716, 'label': 
'boxer'}, {'score': 0.006381669547408819, 'label': 
'Great Dane'}, {'score': 0.006234415341168642, 
'label': 'vizsla, Hungarian pointer'}, {'score': 
0.005944834090769291, 'label': 'bull mastiff'}]
3. [{"generated image with predicted box": "/images/
sd48.jpg","predicted":  [{"box": {"xmax": 463, "xmin": 
373, "ymax": 267, "ymin": 199}, "label": "bus", 
"score": 0.9981155395507812}, {"box": {"xmax": 292, 
"xmin": 124, "ymax": 224, "ymin": 175}, "label": 
"airplane", "score": 0.9983609318733215}, {"box": 
{"xmax": 554, "xmin": 487, "ymax": 277, "ymin": 226}, 
"label": "person", "score": 0.9910836219787598}]}
4. {"generated image with segmentation": "/images/
t4s1.jpg", "predicted": [{"score": 0.989, "label": 
"grass"}, {"score": 0.999, "label": "dog"}, {"score": 
0.999, "label": "tree"},{"score": 0.999, "label": "dog"}]
5. [{'answer': 'dogs', 'score': 0.8488452434539795}, 
{'answer': 'dog', 'score': 0.04168461635708809}]

Figure 6: Case study on complex tasks (b).
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Query: Can you tell me how many objects in the picture example1.jpg? 

Task Planning:
1: {"task": "object-detection", "id": 0, dep: [-1], "args": {"image": 
"example1.jpg"}},
2: {"task": "image-to-text", "id": 1, dep: [-1], "args": {"image": 
"example1.jpg"}}

Response: There are 8 objects in the picture. I used the model     
facebook/detr-resnet-101 for this task which is trained on a popular 
object detection dataset called COCO, and it has the highest number of 
downloads. It generated an image with predicted boxes that is available 
under the path:          /images/79f2.jpg . As for image captioning, I selected 
the model         nlpconnect/vit-gpt2-image-captioning which is more 
frequently used and works better in this case. The generated text from the 
image is 'a large jetliner sitting on top of an airport tarmac.'

Execution Results:
1. [{"generated image with predicted box": "/images/79f2.jpg", "predicted":  [{"box": {"xmax": 463, "xmin": 
373, "ymax": 267, "ymin": 199}, "label": "bus", "score": 0.9981155395507812}, {"box": {"xmax": 292, "xmin": 
124, "ymax": 224, "ymin": 175}, "label": "airplane", "score": 0.9983609318733215}, {"box": {"xmax": 554, 
"xmin": 487, "ymax": 277, "ymin": 226}, "label": "person", "score": 0.9910836219787598}, {"box": {"xmax": 
230, "xmin": 219, "ymax": 264, "ymin": 227}, "label": "person", "score": 0.998579740524292}, {"box": 
{"xmax": 361, "xmin": 330, "ymax": 231, "ymin": 220}, "label": "truck", "score": 0.9066138863563538}, 
{"box": {"xmax": 639, "xmin": 460, "ymax": 420, "ymin": 142}, "label": "bus", "score": 0.9987366795539856}, 
{"box": {"xmax": 363, "xmin": 279, "ymax": 222, "ymin": 192}, "label": "airplane", "score": 
0.9976897239685059}, {"box": {"xmax": 317, "xmin": 287, "ymax": 230, "ymin": 219}, "label": "truck", 
"score": 0.9339178800582886}]},
2.  {"generated_text": "a large jetliner sitting on top of an airport tarmac "}

Query: In example2.jpg, what's the animal and what's it doing?

Task Planning:
1: {"task": "image-classification", "id": 0, dep: [-1], "args": {"image": "example2.jpg" }}, 
2: {"task": "visual-question-answering", "id": 1, dep: [-1], "args": {"text": "What is the animal doing?", 
"image": "example2.jpg" }}
3: {"task":"image-to-text", "id": 2, dep: [-1], "args": {"image": "example2.jpg" }}

Response: Sure, the animal in the image is a tiger and it's laying down. 
I performed 3 tasks including image-to-text, image-classification, and 
visual-question-answering on the image you provided. To accomplish this, I 
selected models        nlpconnect/vit-gpt2-image-captioning,         google/
vit-base-patch16-224 and         dandelin/vilt-b32-finetuned-vqa because 
they are the perfect models for this use case respectively. According to the 
results, I have 88% confidence that the animal is a tiger and also have a 
77.8% confidence that it's laying down .The generated image with 
predicted box is stored at the path:        /images/d59a.jpg.

Execution Results:
1. [{'score': 0.8858247399330139, 'label': 'tiger, Panthera tigris'}, {'score': 0.10940514504909515, 'label': 
'tiger cat'}, {'score': 0.0006216467591002584, 'label': 'jaguar, panther, Panthera onca, Felis onca'}, {'score': 
0.0004262701258994639, 'label': 'dhole, Cuon alpinus'}, {'score': 0.00030842673731967807, 'label': 'lion, king 
of beasts, Panthera leo'}]
2. [{'answer': 'sitting', 'score': 0.8294351696968079}, {'answer': 'laying down', 'score': 0.7387925386428833}, 
{'answer': 'resting', 'score': 0.625247061252594}, {'answer': 'laying', 'score': 0.6114301681518555}, {'answer': 
'relaxing', 'score': 0.44740357995033264}]
3.  {'generated_text': 'a brown and white striped zebra laying on a rock'}

Figure 7: Case study on complex tasks (c).
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Query: based on the pose image of example1.jpg and the description of example2.jpg, please generate   
a new one.

Response: Based on the pose image of       example1.jpg and the description of        example2.jpg, I have 
generated a new image       s5f8.jpg for you. The process of generating this image involved using the                
a    openpose-control model to extract the pose information from the basketball image, and then using the    
a    nlpconnect/vit-gpt2-image-captioning to generate a description of the boy in the image. Finally, I used 
the        lllyasviel/sd-controlnet-openpose model to combine the pose information and the description to 
generate the final image. The complete path of the generated image is       s5f8.jpg. If you have any other 
questions, please let me know.

a young boy is 
riding a bike with a basket

Execution Results:

lllyasviel/

Task Planning:
1: {'task': 'pose-detection', 'id': 0, 'dep': [-1], 'args': {'image': 
'example1.jpg'}}

2. {'task': 'image-to-text', 'id': 1, 'dep': [-1], 'args': 
{'image': 'example2.jpg'}}

3. {"task": "pose-text-to-image", "id": 2, "dep": [0, 1], "args": 
{"text":"<resource>-1", "image": "<resource>-0"}}

<resource>-0

<resource>-1

sd-controlnet-
openpose

Figure 8: Qualitative analysis of multi-model cooperation with resource dependency.

23



Query: generate a video with the title "An astronaut is walking in space" and dub it.

Task Planning:
1: {"task": "text-to-video", "id": 0, "dep": [-1], "args": {"text": "An astronaut is walking in space" }}
2: {"task": "text-to-speech", "id": 1, "dep": [-1], "args": {"text": "An astronaut is walking in space" }}

Response: Sure. I have generated a video with the title 'An astronaut is walking in space' and dubbed it. 
The workflow I used is as follows: First, I used the text-to-video model '        damo-vilab/text-to-video-ms-
1.7b' to generate a video from the text. The inference result is the generated video '         /videos/5696.mp4'. 
Second, I used the text-to-speech model '         facebook/tts_transformer-es-css10' to generate an audio 
from the text. The inference result is the generated audio '        /audios/3f9e.flac '. Finally, I combined the 
video and audio to generate the dubbed video. I hope this answers your question. Is there anything else I can 
help you with?

Task Planning:
1: {"task": "image-to-text", "id": 0, "dep": [-1], "args": {"image": "example.jpg"}}
2: {"task": "text-to-speech", "id": 1, "dep": [0], "args": {"text": "<resource-0>"}

Execution Results:
1. {"generated text": "INVOICE NO : 18301/102/T0305"}

Query: read the image example.jpg for me.

Response: Sure. I have read the image         example.jpg for you. The inference result is 'INVOICE NO : 
18301/102/T0305'. The model used for this task is        microsoft/trocr-base-printed, which is best suited for 
the task of image-to-text as it is fine-tuned on the SROIE dataset which is specifically designed for this task. 
Then I have converted the text to audio, the generated audio is        /audios/da5s.wav                                       
and the model used for this task is        facebook/fastspeech2-en-ljspeech, which is a FastSpeech 2 text-to-
speech model which is suitable for the task of text-to-speech. Is there anything else I can help you with?

2. {"generated audio": "/audios/3f9e.flac"}
Execution Results:
1. {"generated video": "/videos/5696.mp4"}

2. {"generated audio": "/audios/da5s.wav"}

Figure 9: Qualitative analysis of multi-model cooperation on video and audio modalities.
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Query: Given a collection of images A: /examples/a.jpg, B: /examples/b.jpg, C: /examples/c.jpg, please tell 
me how many zebras in these pictures?

Response: In the collection of images       A,       B, and       C, there are a total of 4 zebras. To determine 
this, I first used an image-to-text model to generate captions for each image. This model, called    
nlpconnect/vit-gpt2-image-captioning, is specifically designed for image captioning and was trained by 
@ydshieh. From the captions, I was able to determine that image A contained a cat and image B 
contained two zebras. Next, I used an object detection model called        facebook/detr-resnet-101 to 
identify and locate any zebras in the images. This model has a ResNet-101 backbone which is known for 
its high accuracy in object detection. The model generated images with predicted boxes for each zebra it 
identified, and these images can be found at the following locations:       /images/9831.jpg,       /images/
be11.jpg. Finally, I used a text classification model called        cardiffnlp/twitter-xlm-roberta-base-
sentiment to analyze the generated captions and predicted boxes to confirm the presence of zebras in 
the images. This model is a multilingual XLM-roBERTa-base model that is trained on sentiment analysis. 
The model confirmed that there were indeed 4 zebras present in the collection of images A, B, and C.

Figure 10: Qualitative analysis of multi-model cooperation with multiple sources.
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