Supplementary Material:
Segment Any Point Cloud Sequences by Distilling
Vision Foundation Models

Anonymous Author(s)
Affiliation
Address

email

In this file, we supplement the following materials to support the findings and observations in the
main body of this paper:

* Section [A]elaborates on additional implementation details to facilitate reproduction.

* Section [B]provides the complete quantitative results of our experiments.

* Section [C]includes more qualitative results to allow better visual comparisons.

* Section D] acknowledges the public resources used during the course of this work.

A Additional Implementation Detail

A.1 Datasets

In this work, we conduct extensive experiments from a wide range of point cloud datasets to verify
the effectiveness of the proposed Seal framework. A summary of the detailed configurations and
emphases of these datasets is shown in Table [A]

 'nuScenes [[7]: The nuScene dataset offers a substantial number of samples collected
by the LiDAR, RADAR, camera, and IMU sensors from Boston and Singapore, allowing
machine learning models to learn useful multi-modal features effectively. For the point
cloud segmentation task, it consists of 1000 scenes of a total number of 1.1B annotated
points, collected by a Velodyne HDL32E LiDAR sensor. It also includes image data from six
cameras, which are synchronized with the LiDAR sensor. In this work, we use the LIDAR
point clouds and image data from nuScenes for model pretraining. We also conduct detailed
fine-tuning experiments to validate the effectiveness of representation learning. More details
of this dataset can be found at https://www.nuscenes.org/nuscenes,

+ 2SemanticKITTI [2]: The SemanticKITTI dataset is a comprehensive dataset designed
for semantic scene understanding of LiDAR sequences. This dataset aims to advance the
development of algorithms and models for autonomous driving and scene understanding
using LiDAR data. It provides 22 densely labeled point cloud sequences that cover urban
street scenes, which are captured by a Velodyne HDL-64E LiDAR sensor. In this work,
we use the LiDAR point clouds from SemanticKITTI as a downstream task to validate
the generalizability of pertaining methods. More details of this dataset can be found at
http://semantic-kitti.org/.

» 3Waymo Open [19]: The Waymo Open dataset is a large-scale collection of real-world
autonomous driving data. The 3D semantic segmentation subset contains 1150 scenes,

"Here we refer to the lidarseg subset of the nuScenes dataset. Know more details about this dataset at the
official webpage: https://www.nuscenes.org/nuscenes,

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://www.nuscenes.org/nuscenes
http://semantic-kitti.org/
https://www.nuscenes.org/nuscenes

Table A: The sensor configuration and data statistics for the eleven datasets used in our experiments.

Dataset | Tustration | Sensor Setup | Statistics | Type
1x LiDAR (32-beam) | 16 semantic classes Real-world
nuScenes 6x RGB Camera 29130 training samples Low-resolution point cloud
5x RADAR 6019 validation samples Dense annotation
1x IMU & GPS 6008 testing samples Multi-modality
1x LiDAR (64-beam) 19 semantic classes Real-world
SemanticKITTI 1x Stereo Camera 19130 training samples High-resolution point cloud
2] 1x IMU & GPS 4071 validation samples Dense annotation
20351 testing samples Multi-modality
1x LiDAR (64-beam) | 23 semantic classes Real-world
Waymo Open 5x RGB Camera 23691 training samples High-resolution point cloud
1x IMU & GPS 5976 validation samples Dense annotation
2982 testing samples Multi-modality
1x LiDAR (64-beam) 19 semantic classes Real-world
ScribbleKITTI 1x Stereo Camera 19130 training samples High-resolution point cloud
[20] 1x IMU & GPS 4071 validation samples Sparse annotation
20351 testing samples Weakly-supervised learning
1x LiDAR (64-beam) 20 semantic classes Real-world
RELLIS-3D 1x LiDAR (32-beam) | 7800 training samples High-resolution point cloud
[9] 1x Stereo Camera 2413 validation samples Dense annotation
1x IMU & GPS 3343 testing samples Multi-modality
1x LiDAR (40-beam) 14 semantic classes Real-world
SemanticPOSS 1x RGB Camera 2488 training samples High-resolution point cloud
[16] 1x IMU & GPS 500 validation samples Dense annotation
Dynamic instance
1x LiDAR (64-beam) 21 semantic classes Real-world
SemanticSTF 1x LiDAR (32-beam) | 1326 training samples High-resolution point cloud
122] 1x Stereo Camera 250 validation samples Dense annotation
1x RADAR 500 testing samples Adverse weather
1x LiDAR (64-beam) | 32 semantic classes Synthetic
SynLiDAR 1x simulation suite 198396 total samples High-resolution point cloud
Dense annotation
Transfer learning
1x LiDAR (64-beam) 22 semantic classes Synthetic
Synth4D 1x LiDAR (32-beam) 10000 training samples Low-resolution point cloud
1x simulation suite 10000 validation samples Dense annotation
Transfer learning
3x LiDAR (64-beam) | 4 semantic classes Semi-synthetic
DAPS-3D 1x simulation suite 19061 training samples High-resolution point cloud
[n 3995 validation samples Dense annotation
Transfer learning
1x LiDAR (32-beam) 16 semantic classes Synthetic
nuScenes-C 6x RGB Camera 144456 validation samples Low-resolution point cloud
[112] 5x RADAR Dense annotation
1x IMU & GPS Robustness

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

46
47
48
49
50
51

52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75

76
77
78
79
80
81
82
83

84
85
86
87

split into 798 training, 202 validation, and 150 testing scenes. This subset contains 23691
training scans, 5976 validation scans, and 2982 testing scans, respectively, with semantic
segmentation labels from 23 classes. The data are captured by five LIDAR sensors: one
mid-range LiDAR sensor truncated to a maximum of 75 meters, and four short-range LiDAR
sensors truncated to a maximum of 20 meters. In this work, we use the LiDAR point clouds
from Waymo Open as a downstream task to validate the generalizability of pertaining
methods. More details of this dataset can be found at https://waymo.com/open.

4ScribbleKITTI [20]: The ScribbleKITTI dataset is a recent variant of the SemanticKITTI
dataset, with weak supervisions annotated by line scribbles. It shares the exact same amount
of training samples with SemanticKITTI, i.e., 19130 scans collected by a Velodyne HDL-
64E LiDAR sensor, where the total number of valid semantic labels is 8.06% compared to
the fully-supervised version. Annotating the LiDAR point cloud in such a way corresponds
to roughly a 90% time-saving. In this work, we use the LiDAR point clouds from Scrib-
bleKITTT as a downstream task to validate the generalizability of pertaining methods. More
details of this dataset can be found at https://github.com/ouenal/scribblekitti,

SRELLIS-3D [9]: The RELLIS-3D dataset is a multimodal dataset collected in an off-road
environment from the Rellis Campus of Texas A&M University. It consists of 13556 LiDAR
scans from 5 traversal sequences. The point-wise annotations are initialized by using the
camera-LiDAR calibration to project the more than 6000 image annotations onto the point
clouds. In this work, we use the LiDAR point clouds from RELLIS-3D as a downstream
task to validate the generalizability of pertaining methods.

6SemanticPOSS [16]: The SemanticPOSS dataset is a relatively small-scale point cloud
dataset with an emphasis on dynamic instances. It includes 2988 scans collected by a Hesai
Pandora LiDAR sensor, which is a 40-channel LiDAR with 0.33 degree vertical resolution,
a forward-facing color camera, 4 wide-angle mono cameras covering 360 degrees around
the ego-car. The data in this dataset was collected from the campus of Peking University. In
this work, we use the LiDAR point clouds from SemanticPOSS as a downstream task to
validate the generalizability of pertaining methods. More details of this dataset can be found
athttp://www.unmannedlab.org/research/RELLIS-3D.

7"SemanticSTF [22]]: The SemanticSTF dataset is a small-scale collection of 2076 scans,
where the data are borrowed from the STF dataset [4]. The scans are collected by a Velodyne
HDL64 S3D LiDAR sensor and covered various adverse weather conditions, including 694
snowy, 637 dense-foggy, 631 light-foggy, and 114 rainy scans. The whole dataset is split
into three sets: 1326 scans for training, 250 scans for validation, and 500 scans for testing.
All three splits have similar proportions of scans from different weather conditions. In this
work, we use the LIDAR point clouds from SemanticSTF as a downstream task to validate
the generalizability of pertaining methods. More details of this dataset can be found at
https://github.com/xiacaoran/SemanticSTF.

8SynLiDAR [21]: The SynLiDAR dataset contains synthetic point clouds captured from
constructed virtual scenes using the Unreal Engine 4 simulator. In total, this dataset contains
13 LiDAR point cloud sequences with 198396 scans. As stated, the virtual scenes in
SynLiDAR are constituted by physically accurate object models that are produced by expert
modelers with the 3D-Max software. In this work, we use the LiDAR point clouds from
SynLiDAR as a downstream task to validate the generalizability of pertaining methods. More
details of this dataset can be found at https://github.com/xiaoaoran/SynLiDAR.

9Synthd4D [[17]: The Synth4D dataset includes two subsets with point clouds captured by
simulated Velodyne LiDAR sensors using the CARLA simulator. We use the Synth4D-
nuScenes subset in our experiments. It is composed of around 20000 labeled point clouds
captured by a virtual vehicle navigating in town, highway, rural area, and city. The label
mappings are mapped to that of the nuScenes dataset. In this work, we use the LiDAR point
clouds from Synth4D-nuScenes as a downstream task to validate the generalizability of
pertaining methods. More details of this dataset can be found at https://github.com/
saltoricristiano/gipso-sfouda.

10DAPS-3D [[I1]]: The DAPS-3D dataset consists of two subsets: DAPS-1 and DAPS-2;
while the former is a semi-synthetic one with a larger scale, the latter is recorded during
areal field trip of the cleaning robot to the territory of the VDNH Park in Moscow. Both
subsets are with scans collected by a 64-line Ouster OSO LiDAR sensor. We use the DAPS-1

https://waymo.com/open
https://github.com/ouenal/scribblekitti
http://www.unmannedlab.org/research/RELLIS-3D
https://github.com/xiaoaoran/SemanticSTF
https://github.com/xiaoaoran/SynLiDAR
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/saltoricristiano/gipso-sfouda

88
89
90
91

92
93
94
95
96
97
98
99
100
101
102

103

104
105
106

107
108
109
110
111
112
113
114
115

116
17
118
119
120
121
122
123

124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139

140
141

subset in our experiments, which contains 11 LiDAR sequences with more than 23000
labeled point clouds. In this work, we use the LiDAR point clouds from DAPS-1 as a
downstream task to validate the generalizability of pertaining methods. More details of this
dataset can be found at https://github. com/subake/DAPS3D.

HpuScenes-C [12]: The nuScenes-C dataset is one of the corruption sets in the Robo3D
benchmark, which is a comprehensive benchmark heading toward probing the robustness of
3D detectors and segmentors under out-of-distribution scenarios against natural corruptions
that occur in real-world environments. A total number of eight corruption types, stemming
from severe weather conditions, external disturbances, and internal sensor failure, are
considered, including ‘fog’, ‘wet ground’, ‘snow’, ‘motion blur’, ‘beam missing’, ‘crosstalk’,
‘incomplete echo’, and ‘cross-sensor’ scenarios. These corruptions are simulated with rules
constrained by physical principles or engineering experiences. In this work, we use the
LiDAR point clouds from nuScenes-C as a downstream task to validate the robustness of
pertaining methods under out-of-distribution scenarios. More details of this dataset can be
found at https://github. com/1dkong1205/Robo3D.

A.2 Vision Foundation Models

In this work, we conduct comprehensive experiments on analyzing the effects brought by different
vision foundation models (VFMs), compared to the traditional SLIC [1]] method. Some statistical
analyses of these different visual partition methods are shown in Table[B]and Table [C]

SLIC [1]] (traditional method): The SLIC model, which stands for ‘simple linear iterative
clustering’, is a popular choice for visual partitions of RGB images. It adapts a k-means
clustering approach to generate superpixels, in an efficient manner, and offers good un-
supervised partition abilities for many downstream tasks. The pursuit of adherence to
boundaries and computational and memory efficiency allows SLIC to perform well on
different image collections. In this work, we follow SLidR [18]] and use SLIC to generate
superpixels, with a fixed quota of 150 superpixels per image, and compare our framework
with previous ones using SLIC superpixels. More details of this model can be found at
https://github.com/valeoai/SLidR.

SAM [10]]: The Segment Anything Model (SAM) is a recent breakthrough towards zero-shot
transferable visual understanding across a wide range of tasks. This model is trained on SA-
1B, a large-scale dataset with over 1 billion masks on 11M licensed and privacy-respecting
images. As aresult, SAM is able to segment images, with either point, box, or mask prompts,
across different domains and data distributions. In this work, we use a fixed SAM model
with the ViT-H backbone (termed as ViT-H SAM model) to generate superpixels. We use
this pretrained model directly without any further fine-tuning. More details of this model
can be found at https://github.com/facebookresearch/segment-anything.

X-Decoder [24]: The X-Decoder model is a generalized decoding framework that can
predict pixel-level segmentation and language tokens seamlessly. This model is pretrained
on three types of data, including panoptic segmentation, image-text pairs, and referring
segmentation. For the panoptic segmentation task, the model is trained on COC02017,
which includes around 104k images for model training. In this work, we use a fixed X-
Decoder model termed as BestSeg-Tiny to generate superpixels. We use this pretrained
model directly without any further fine-tuning. More details of this model can be found at
https://github.com/microsoft/X-Decoder.

OpenSeeD [23]: The OpenSeeD model is designed for open-vocabulary segmentation
and detection, which jointly learns from different segmentation and detection datasets.
This model consists of an image encoder, a text encoder, and a decoder with foreground,
background, and conditioned mask decoding capability. The model is trained on COC0O2017
and Objects365, under the tasks of panoptic segmentation and object detection, respectively.
In this work, we use a fixed OpenSeeD model termed as openseed-swint-lang to generate
superpixels. We use this pretrained model directly without any further fine-tuning. More
details of this model can be found athttps://github.com/IDEA-Research/OpenSeeD.

SEEM [25]: The SEEM model contributes a new universal interactive interface for image
segmentation, where ‘SEEM” stands for ‘segment everything everywhere with multi-modal

https://github.com/subake/DAPS3D
https://github.com/ldkong1205/Robo3D
https://github.com/valeoai/SLidR
https://github.com/facebookresearch/segment-anything
https://github.com/microsoft/X-Decoder
https://github.com/IDEA-Research/OpenSeeD

142
143
144
145
146
147
148
149
150

151
152
153
154
155

Table B: The statistics of superpixels (for front-view cameras) generated by SLIC [1]] and different
vision foundation modes [10] [23]). The horizontal axis denotes the number of superpixels per
image. The vertical axis denotes the frequency of occurrence.

Method | Front Left Front Front Right

1600

SLIC

SAM
(10}

X-Decoder

OpenSeeD
231

SEEM
[25]

prompts all at once’. The newly designed prompting scheme can encode various user intents
into prompts in a joint visual-semantic space, which possesses properties of versatility,
compositionality, interactivity, and semantic awareness. As such, this model is able to
generalize well to different image datasets, under a zero-shot transfer manner. Similar to
X-Decoder, SEEM is trained on COCO2017, with a total number of 107k images used
during model training. In this work, we use a fixed SEEM model termed as SEEM-0q101
to generate superpixels. We use this pretrained model directly without any further fine-
tuning. More details of this model can be found at https://github.com/UX-Decoder/
Segment-Everything-Everywhere-All-At-0Oncel

The quality of superpixels directly affects the performance of self-supervised representation learning.
Different from the previous paradigm [18 [T5]], our Seal framework resorts to the recent VFMs
for generating superpixels. Compared to the traditional SLIC method, these VFMs are able to
generate semantically-aware superpixels that represent coherent semantic meanings of objects and
backgrounds around the ego-vehicle.

https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once

156
157
158

159
160
161
162
163
164
165
166
167

168
169

Table C: The statistics of superpixels (for back-view cameras) generated by SLIC [1]] and different
vision foundation modes [10] [23]). The horizontal axis denotes the number of superpixels per
image. The vertical axis denotes the frequency of occurrence.

Method | Back Left Back Back Right

2500
2000
1500
1000

1000

SLIC

SAM
(10}

4000 4000
3000 3000
X-Decoder
o4 2000 2000
1000 1000
o 0

3500

2500
3000

2500 2000

OpenSeeD | ™

1500

1500

1000
1000

500
500

3500
3000
2500
2000
1500
1000
500
0
3000
2500
2000
1500
1000
500
0

As been verified in our experiments, these semantic superpixels have the ability to ease the “over-
segment” problem in current self-supervised learning frameworks [[18], and further improve the
performance for both linear probing and downstream fine-tuning.

8
&

2000
2500

2000

SEEM 1500
[25]

1500

1000

1000

500

The histograms shown in Table [B]and Table[C| verify that the number of superpixels per image of
VFMs is much smaller than that of SLIC. This brings two notable advantages: i) Since semantically
similar objects and backgrounds are grouped together in semantic superpixels, the “self-conflict”
problem in existing approaches is largely mitigated, which directly boosts the quality of representation
learning. ii) Since the embedding length D of the superpixel embedding features Q € R *? and
superpoint embedding features K € RM*P directly relates to computation overhead, a reduction
(e.g., around 150 superpixels per image in SLIC [1] and around 25 superpixels per image in X-
Decoder [24], OpenSeeD [23]], and SEEM [23]]) on D would allow us to train the segmentation
models in a more efficient manner.

Some typical examples of our generated superpixels and their corresponding superpoints are shown
in Fig.[A] Fig.[B] Fig.[C] and Fig.[D] As will be shown in Section[B] our use of semantic superpixels

170
171

172

173

174
175
176
177

BACK_RIGHT LIDAR (SEMANTIC SUPERPOINT)

Figure A: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [23]]. Each color represents one distinct segment. Best viewed in color.

LIDAR (SEMANTIC SUPERPOINT)

Figure B: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [25]]. Each color represents one distinct segment. Best viewed in color.

generated by VFMs brings not only performance gains but also a much faster convergence rate during
the model pretraining stage.

A.3 Implementation Details
A.3.1 Data Split

For model pertaining, we follow the SLidR protocol [18] in data splitting. Specifically, the nuScenes
[7] dataset consists of 700 training scenes in total, 100 of which are kept aside, which constitute the
SLidR mini-val split. All models are pretrained using all the scans from the 600 remaining training
scenes. The 100 scans in the mini-val split are used to find the best-possible hyperparameters. The

178
179
180

181
182
183

184
185

:
i 2

_RIGHT

BACK

BACK_LEFT

Figure C: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [23]]. Each color represents one distinct segment. Best viewed in color.

FRONT_RIG

R ACK MR BACK BACK_RIGHT LlDAR'(SEMAN';’c SUPERPOINT)

Figure D: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [23]). Each color represents one distinct segment. Best viewed in color.

trained models are then validated on the official nuScenes validation set, without any kind of test-time
augmentation or model ensemble. This is to ensure a fair comparison with previous works and also
in line with the practical requirements.

For linear probing, the pretrained 3D network Fy, is frozen with a trainable point-wise linear
classification head which is trained for 50 epochs on a A100 GPU with a learning rate of 0.05, and
batch size is 16 on the nuScenes train set for all methods.

For downstream fine-tuning tasks, we stick with the common practice in SLidR [18] whenever
possible. The detailed data split strategies are summarized as follows.

186
187

188
189

190
191

192
193
194

195
196
197
198
199
200

201

202

204
205
206
207

208
209
210
211
212
213
214

215
216
217

218

219
220
221

222
223
224
225
226
227
228

229

231
232
233

234
235
236

* For fine-tuning on nuScenes [7], we follow the SLidR protocol to split the train set of
nuScenes to generate 1%, 5%, 10%, 25%, and 100% annotated scans for the training subset.

¢ For fine-tuning on DAPS-3D [11]], we take sequences 38-18_7_72_90 as the training set
and 38-18_7_72_90, 42-48_10_78_90, and 44-18_11_15_32 as the validation set.

* For fine-tuning on SynLiDAR [21]], we use the sub-set which is a uniformly downsampled
collection from the whole dataset.

* For fine-tuning on SemanticPOSS [16], we use sequences 00 and 01 as half of the annotated
training scans and use sequences 00 to 05, except 02 for validation to create full of the
annotated training samples.

¢ For fine-tuning on SemanticKITTI [2], Waymo Open [19], ScribbleKITTI [20]], RELLIS-
3D [9], SemanticSTF [22], and Synth4D [17], we follow the SLidR protocol to create
1%, 10%, half, or full split of the annotated training scans, e.g., one scan is taken every 100
frame from the training set to get 1% of the labeled training samples. Notably, the point
cloud segmentation performance in terms of IoU is reported on the official validation sets
for all the above-mentioned datasets.

A.3.2 Experimental Setup

In our experiments, we fine-tune the entire 3D network on the semantic segmentation task using a
linear combination of the cross-entropy loss and the Lovasz-Softmax loss [3] as training objectives
on a single A100 GPU. For the few-shot semantic segmentation tasks, the 3D networks are fine-tuned
for 100 epochs with a batch size of 10 for the SemanticKITTI [2], Waymo Open [19], ScribbleKITTI
[20], RELLIS-3D [9], SemanticSTF [22], SemanticPOSS [[16], DAPS-3D [11]], SynLiDAR [21]], and
Synth4D [17] datasets.

For the nuScenes [7]] dataset, we fine-tune the 3D network for 100 epochs with a batch size of 16
while training on the 1% annotated scans. The 3D network train on the other portions of nuScenes is
fine-tuned for 50 epochs with a batch size of 16. We adopt different learning rates on the 3D backbone
Fy,, and the classification head, except for the case that Fy is randomly initialized. The learning rate
of Fp is set as 0.05 and the learning rate of the classification head is set as 2.0, respectively, for all
the above-mentioned datasets except nuScenes. On the nuScenes dataset, the learning rate of Fy, is
set as 0.02.

We train our framework using the SGD optimizer with a momentum of 0.9, a weight decay of 0.0001,
and a dampening ratio of 0.1. The cosine annealing learning rate strategy is adopted which decreases
the learning rate from its initial value to zero at the end of the training.

A.3.3 Data Augmentation

For the model pretraining, we apply two sets of data augmentations on the point cloud and the
multi-view image, respectively, and update the point-pixel correspondences after each augmentation
by following SLidR [18].

» Regarding the point cloud, we adopt a random rotation around the z-axis and flip the x-axis
or y-axis with a 50% probability. Besides, we randomly drop the cuboid where the length of
each side covers no more than 10% range of point coordinates on the corresponding axis,
and the cuboid center is located on a randomly chosen point in the point cloud. We also
ensure that the dropped cuboid retains at least 1024 pairs of points and pixels; otherwise,
we select another new cuboid instead. For the temporal frame, we apply the same data
augmentation to it.

» Regarding the multi-view image, we apply a horizontal flip with a 50% probability and a
cropped resize which reshapes the image to 416 x 224. Before resizing, the random crop
fills at least 30% of the available image space with a random aspect ratio between 14 : 9 and
17 : 9. If this random cropping does not preserve at least 1024 or 75% of the pixel-point
pairs, a different crop is chosen.

For the downstream fine-tuning tasks, we apply a random rotation around the z-axis and flip the z-
axis or y-axis with a 50% probability for all the points in the point cloud. If the results are mentioned
with LaserMix [13]] augmentation, we augment the point clouds via the LaserMix before the above

237
238

239

240
241
242
243
244
245

246

247

248
249
250
251
252
253

254
255
256

257

258
259
260
261

262

263

264

265

266

=——@— SLidR

@ Seal (Ours)

W

%“w M4
,f‘.ﬁ"fw.-MwW”WAMW{w‘(MM‘WNNFW'mlwmywﬂ ol

'."YMV WJ~NMM» A {uw /J’\N(‘VW A

] 5,000 10k 15k 20k 25k 30k 35k

Figure E: The convergence rate comparison between SLidR [18] and the proposed Seal framework.

data augmentations. We report both results in the main paper so that we can fairly compare the point
cloud segmentation performance with previous works.

A.3.4 Model Configuration

For the model pretraining, the 3D backbone Fy, is a Minkowski U-Net [6] with 3 x 3 x 3 kernels;
while the 2D image encoder Gy, is a ResNet-50 [8] initialized with 2D self-supervised pretrained
model of MoCoV2 [5]. These configurations are kept the same as SLidR [18]. The channel dimension
of Gy, head and Fy, head is set to 64. For the linear probing task, we adopt a linear classification
head, as mentioned in previous sections. For the downstream fine-tuning tasks, the same 3D
backbone ng, i.e., the Minkowski U-Net [6] with 3 x 3 x 3 kernels, is used.

B Additional Quantitative Result

B.1 Self-Supervised Learning

We report the complete results (i.e., the class-wise IoU scores) for the linear probing and downstream
fine-tuning tasks shown in the main paper. We report the official results from previous works
whenever possible. We also report our reproduced results for random initialization, PPKT [14], and
SLidR [18]]. Specifically, the complete results on the nuScenes [7], SemanticKITTI [2]], Waymo Open
[19], and Synth4D [17] datasets are shown in Table[D] Table[E] Table[F] and Table[G] respectively.
We observe that Seal constantly outperforms prior methods for most semantic classes on all datasets.

We also compare the convergence rate of Seal with SLidR [18] in Fig. [El As can be seen, our
framework is able to converge faster with the use of semantic superpixels, where these higher
qualitative contrastive samples gradually form a much more coherent optimization landscape.

B.2 Robustness Probing
We report the complete results of the robustness evaluation experiments in the main paper, including
the per-corruption CE scores and the per-corruption RR scores. Specifically, the complete results on

the nuScenes-C [12] dataset are shown in Table H and Table m We observe that Seal is superior to
previous methods in terms of both CE and RR metrics.

C Additional Qualitative Result

C.1 Cosine Similarity

We provide more examples for the cosine similarity study in Fig.[F] Fig.[G] and Fig.[H]

C.2 Downstream Tasks

We provide more qualitative results for downstream fine-tuning tasks in Fig. [l Fig.]} and Fig.

10

Table D: The per-class IoU scores of different pretraining methods pretrained on nuScenes [7]] and
linear probed or fine-tuned on different proportions (1%, 5%, 10%, 25%, and Full) of the nuScenes
[7] data. Symbol T denotes our reproduced results and the remaining are reported scores. All IoU
scores are given in percentage (%). The best mIoU score is highlighted in bold.

const. veh.
motorcycle
pedestrian
traffic cone
trailer
truck

driv. surf.
other flat
sidewalk
manmade
vegetation

mloU
barrier
bicycle
bus

car
terrain

Method

Linear Probing

Random Y 8.4 05 00 00 39 00 00 00 64 00 39 604 00 01 162 306 122
PointContrast | 21.9 - - - - - - - R
DepthContrast | 22.1 - - - - - - - - - - - - - - - _

PPKT 359 | - - - - - - - - - - - - - - - -
SLidR ¥ 392 | 442 0.0 308 602 151 224 472 27.7 163 343 80.6 21.8 352 481 71.0 719
ST-SLidR 405 - - - -

Seal (Ours) 45.0 | 54.7 59 3.6 61.7 189 288 481 31.0 221 39.5 838 354 46.7 56.9 747 747
Fine-tuning (1%)

Random 303 00 00 81 650 0.1 66 21.0 9.0 93 258 89.5 148 41.7 487 724 733
PointContrast | 32.5 | 0.0 1.0 56 674 00 33 316 56 121 308 91.7 219 484 50.8 750 74.6
DepthContrast | 31.7 | 0.0 0.6 6.5 647 0.2 51 290 95 121 299 903 178 444 495 735 74.0

PPKT 378 | 0.0 22 207 754 12 132 456 85 175 384 925 19.2 523 56.8 80.1 80.9
SLidR 388 | 00 1.8 154 731 19 199 472 171 145 345 920 271 536 61.0 79.8 823
ST-SLidR 408 | 0.0 27 160 745 3.2 254 509 200 17.7 40.2 92.0 30.7 542 61.1 80.5 82.9

Seal (Ours) 458 | 0.0 94 326 77.5 104 28.0 53.0 250 309 49.7 940 33.7 60.1 59.6 839 834
Fine-tuning (5%)

Random 47.8 - - - = o o o o - - - - - - - _
Random ¥ 445 | 50.1 29 573 703 1.1 6.1 39.1 183 173 448 923 386 549 61.1 80.3 77.9
PPKT I 52.7 | 56.1 82 653 79.0 9.1 155 543 345 26.7 586 93.2 44.1 63.1 64.8 85.1 83.6
SLidR 52.5 - - - - - - - - - - R - R R - R
ST-SLidR 54.7 -

Seal (Ours) 55.6 | 61.0 7.4 704 824 119 304 592 340 33.6 61.1 94.7 46.2 634 63.9 85.7 849
Fine-tuning (10%)

Random 56.2 - - - - - - - - - - - - - - - -
Random Y 53.2 | 56.8 5.2 663 745 57 361 49.5 382 292 544 940 477 614 67.6 828 811
PPKT ¥ 60.3 | 64.0 12.0 678 77.6 16.0 56.8 63.3 49.8 283 56.3 941 62.7 664 687 859 854
SLidR 59.8 - - - - - - - - - - - - - - - -
ST-SLidR 60.8 -

Seal (Ours) 63.0 | 649 151 789 835 225 61.0 63.0 515 374 652 952 594 67.7 69.6 86.2 864
Fine-tuning (25%)

Random 65.5 - - - - - - - - - - - - - - - -
Random Y 63.0 | 649 151 789 835 225 61.0 63.0 51.5 374 652 952 594 67.7 69.6 86.2 86.4
PPKT ¥ 67.1 | 63.7 121 874 852 420 61.2 69.6 54.7 50.1 749 958 64.6 69.9 704 874 851
SLidR 66.9 - - - - - - - - - - - - - - - -
ST-SLidR 67.7

Seal (Ours) 68.4 | 674 155 90.5 851 40.0 623 68.1 583 54.5 76.0 958 65.6 69.8 71.0 87.9 86.7
Fine-tuning (Full)

Random 4.7 - - - - - - - - - - - - - - -

Random Y 749 | 774 344 904 86.5 51.1 784 770 649 678 777 96.6 722 743 732 89.6 86.7
PPKT 1 74.5 | 754 374 91.7 86.1 453 773 756 651 65.0 79.9 966 721 746 734 892 86.6
SLidR 74.8 - - - - - - - - - - - - - - - -
ST-SLidR 75.1 R

Seal (Ours) 75.6 | 76.7 26.0 934 86.1 558 827 773 66.0 679 839 965 73.6 743 732 893 871

Table E: The per-class IoU scores of different pretraining methods pretrained on nuScenes [[7] and
fine-tuned on 1% of the SemanticKITTI [2] data. Symbol 1 denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

) - =
2 S 2 E =
o = - o <]
S s Z 2 . 2 7 » 3 b F g
Q =] < = o Q =] v} = =] 9 b5 <z A 3 A~
° o 2 3 Bl 2 2 2 = 2 =< 5] 1 = 9 &b = = = =
Method | £ | 8 2 € & % & £ & ¢ & ¥ ¥ 2 &8 ¢ 2 & & &
Random 39.5 | 91.2 0.0 94 80 107 212 00 0.0 894 214 730 1.1 853 41.1 849 50.1 714 554 37.6
PPKT 439 1913 19 112 231 121 274 373 0.0 91.3 270 746 03 86.5 382 853 582 T71.6 57.7 40.1
SLidR | 44.6 | 922 3.0 17.0 224 143 360 221 0.0 91.3 300 747 0.2 87.7 41.2 850 585 704 583 424
ST-SLidR | 44.7 - - - - - - - - - - - - - - - - - - -
Seal 46.6 | 923 149 187 161 237 43.0 344 00 91.3 272 753 0.7 857 388 851 61.9 713 57.7 47.7

11

Table F: The per-class IoU scores of different pretraining methods pretrained on nuScenes [[7]] and
fine-tuned on 1% of the Waymo Open [19] data. Symbol ¥ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

o - =
5 2 = 5 o o] £
5 2 - z £ o] = 5 5
S 2 oz £ = g L, 3 p £ = 5 5 2 %
= 2 5 £ S 3 . & o 2 2 g8 2§ £ . <5 E 5 E %
= -] S =] = =] = = ja ° = o =1 1 2 2 =
Method | £ | § & 2 ¥ € £ & ¥ E & § £ € 2 ¢ g 3 & & ¥ § %
Random 394 - - - - = = = = - - - - - - -
PPKT ¥ 47.6 | 92.3 488 348 69 00 220 73.0 583 17.6 558 204 255 7.8 91.5 87.1 538 55.1 89.1 38,6 347 714 62.6
SLidR 47.1 - - - - - - - - - - - - - - - - - - - _
ST-SLidR | 44.9 - - -

Seal 49.3 | 925 52.6 33.5 73.1 61.0 235 57.0 314 201 124 914 87.1 532 572 895 388 349 721 687

w
=i
@w
=
©

Table G: The per-class IoU scores of different pretraining methods pretrained on nuScenes [1]]
and fine-tuned on 1% of the Synth4D [[17]] data. Symbol I denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

w | H = £ 5 - ¥ =z B o

g @ = g = 5] K b o Fi 5 = g o

2 5 g 5 3 E z 3 2 - g s 5 2 & g 5} 5 ‘3

212 ¢ 58 £ =2 5 ¢z : & £ =z £ . £ 2 Z T £ £ § & £

Method| £ | 2 & % & & ¢ & % ¢ T § £ £ 5 £ T & E & &5 & =5
Random | 202 | 33.2 138 0.0 163 139 00 886 510 489 957 27.6 00 00 00 00 01 194 00 02 00 00 362
PPKTY | 611 | 844 67.1 629 774 750 22 920 763 925 992 734 67.3 00 622 306 83.5 668 00 63.6 553 374 66.0
SLidR Y | 63.1 | 83.7 663 649 77.4 764 65 928 787 925 990 725 642 00 743 489 853 67.1 0.0 67.1 60.0 471 63.6
Seal | 645|848 705 648 803 763 9.3 929 798 927 989 73.0 607 00 752 553 846 67.0 00 682 60.7 532 70.9

Table H: The Corruption Error (CE) scores of different pretraining methods pretrained on nuScenes
[7] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [[12]]. All CE scores are given in percentage (%). The best CE score for each
corruption type is highlighted in bold.

| Initial | Backbone | mCE| | Fog Wet Snow Move Beam Cross Echo Sensor
PPKT MinkUNet; g 183.44 149.59 247.53 120.50 266.03 213.54 109.62 199.03 161.65

5 SLidR MinkUNet; g 179.38 140.47 237.29 112.93 276.44 210.65 107.86 189.27 160.16
Seal (Ours) | MinkUNet;g | 166.18 | 135.18 219.36 117.47 234.01 189.70 108.54 172.16 153.03
Random PolarNet 115.09 90.10 115.33 58.98 208.19 121.07 80.67 128.17 118.23
Random FIDNet 122.42 75.93 122.58 68.78 192.03 164.84 57.95 141.66 155.56
Random CENet 112.79 71.16 115.48 64.31 156.67 159.03 53.27 129.08 153.35
Random WaffleIron 106.73 94.76 99.92 84.51 152.35 110.65 91.09 106.41 114.15

_ Random Cylinder3D 105.56 83.22 111.08 69.74 165.28 113.95 74.42 110.67 116.15
= Random SPVCNN;g 106.65 88.42 105.56 98.78 156.48 110.11 86.04 104.26 103.55
= Random SPVCNN3y 97.45 95.21 99.50 97.32 95.34 98.73 97.92 96.88 98.74
Random MinkUNet; g 112.20 79.90 112.50 74.64 181.47 120.76 93.22 111.58 123.53
PPKT MinkUNet; g 105.64 77.63 104.22 68.60 160.95 114.81 86.71 108.96 123.20
SLidR MinkUNet; g 106.08 74.61 106.13 73.75 165.09 118.02 79.08 107.38 124.57

Seal (Ours) | MinkUNet; g 92.63 58.97 98.47 56.63 127.25 108.20 57.97 110.95 122.63

Table I: The Resilience Rate (RR) scores of different pretraining methods pretrained on nuScenes
[7]] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [12]. All RR scores are given in percentage (%). The best RR score for each
corruption type is highlighted in bold.

| Inmitial | Backbone | mRRT | Fog Wet Snow Move Beam Cross Echo Sensor
PPKT MinkUNet; g 78.15 85.38 98.66 78.33 81.36 91.42 54.37 78.02 57.69

5 SLidR MinkUNet; g 77.18 89.90 98.17 84.12 68.14 86.93 53.63 81.29 55.26
Seal (Ours) | MinkUNet;g 75.38 83.05 95.15 66.59 83.94 89.70 45.18 83.94 55.48
Random PolarNet 76.34 81.59 97.95 90.82 62.49 86.75 57.12 75.16 58.86
Random FIDNet 73.33 90.78 95.29 82.61 68.51 67.44 80.48 68.31 33.20
Random CENet 76.04 91.44 95.35 84.12 79.57 68.19 83.09 72.75 33.82
Random WaffleIron 72.78 73.71 97.19 65.19 78.16 85.70 43.54 80.86 57.85

_ | Random Cylinder3D 78.08 83.52 96.57 79.41 76.18 87.23 61.68 81.55 58.51
;:: Random SPVCNN; g 74.70 79.31 97.39 55.22 78.44 87.85 49.50 83.72 66.14

Random SPVCNN3y 75.10 72.95 96.70 54.79 97.47 90.04 36.71 84.84 67.35
Random MinkUNet; g 72.57 84.33 94.63 74.31 69.26 83.06 42.27 79.88 52.79
PPKT MinkUNet; g 76.06 85.90 97.71 79.28 76.72 85.72 48.77 81.31 53.10
SLidR MinkUNet;g 75.99 87.46 96.68 74.89 74.97 84.06 56.08 81.78 52.01
Seal (Ours) | MinkUNet;g | 83.08 96.11 98.29 87.59 87.49 87.25 75.98 79.19 52.71

12

Query: “car” (near, middle) Query: “car” (near, right)

Query: “car” (near, left)

geesuadp

iolet to

larity between the query point (denoted as the red dot) and the feature

imi

and different VFMs [10, 24} 23] 23]]. The color goes from v

Figure F: The cosine s
learned with SLIC

similarity scores, respectively. Best viewed in color.

denoting low and

13

Query: “car” (near, middle) Query: “car” (near, right)

Query: “car” (near, left)

Figure G: The cosine similarity between the query point (denoted as the red dot) and the feature

learned with SLIC [1]] and different VFMs [10,

denoting low and

[23]]. The color goes from violet to

similarity scores, respectively. Best viewed in color.

14

Query: “car” (near, left) Query: “car” (near, middle) Query: “vegetation” (near, right)

OpenSeeD X-Decoder SAM SLIC

SEEM

s 7 il S22

Figure H: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1]] and different VFMs [[10] 25]]. The color goes from violet to
denoting low and similarity scores, respectively. Best viewed in color.

15

SLidR Random Seal (Ours) SLidR Random

Seal (Ours)

Figure I: The qualitative results of different point cloud pretraining approaches pretrained on the raw
data of nuScenes [[1|] and fin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>