
Supplementary Material:
Segment Any Point Cloud Sequences by Distilling

Vision Foundation Models

Anonymous Author(s)
Affiliation
Address
email

In this file, we supplement the following materials to support the findings and observations in the1

main body of this paper:2

• Section A elaborates on additional implementation details to facilitate reproduction.3

• Section B provides the complete quantitative results of our experiments.4

• Section C includes more qualitative results to allow better visual comparisons.5

• Section D acknowledges the public resources used during the course of this work.6

A Additional Implementation Detail7

A.1 Datasets8

In this work, we conduct extensive experiments from a wide range of point cloud datasets to verify9

the effectiveness of the proposed Seal framework. A summary of the detailed configurations and10

emphases of these datasets is shown in Table A.11

• 1nuScenes [7]: The nuScenes1 dataset offers a substantial number of samples collected12

by the LiDAR, RADAR, camera, and IMU sensors from Boston and Singapore, allowing13

machine learning models to learn useful multi-modal features effectively. For the point14

cloud segmentation task, it consists of 1000 scenes of a total number of 1.1B annotated15

points, collected by a Velodyne HDL32E LiDAR sensor. It also includes image data from six16

cameras, which are synchronized with the LiDAR sensor. In this work, we use the LiDAR17

point clouds and image data from nuScenes for model pretraining. We also conduct detailed18

fine-tuning experiments to validate the effectiveness of representation learning. More details19

of this dataset can be found at https://www.nuscenes.org/nuscenes.20

• 2SemanticKITTI [2]: The SemanticKITTI dataset is a comprehensive dataset designed21

for semantic scene understanding of LiDAR sequences. This dataset aims to advance the22

development of algorithms and models for autonomous driving and scene understanding23

using LiDAR data. It provides 22 densely labeled point cloud sequences that cover urban24

street scenes, which are captured by a Velodyne HDL-64E LiDAR sensor. In this work,25

we use the LiDAR point clouds from SemanticKITTI as a downstream task to validate26

the generalizability of pertaining methods. More details of this dataset can be found at27

http://semantic-kitti.org/.28

• 3Waymo Open [19]: The Waymo Open dataset is a large-scale collection of real-world29

autonomous driving data. The 3D semantic segmentation subset contains 1150 scenes,30

1Here we refer to the lidarseg subset of the nuScenes dataset. Know more details about this dataset at the
official webpage: https://www.nuscenes.org/nuscenes.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://www.nuscenes.org/nuscenes
http://semantic-kitti.org/
https://www.nuscenes.org/nuscenes

Table A: The sensor configuration and data statistics for the eleven datasets used in our experiments.

Dataset Illustration Sensor Setup Statistics Type

nuScenes
[7]

1× LiDAR (32-beam)
6× RGB Camera
5× RADAR
1× IMU & GPS

16 semantic classes
29130 training samples
6019 validation samples
6008 testing samples

Real-world
Low-resolution point cloud
Dense annotation
Multi-modality

SemanticKITTI
[2]

1× LiDAR (64-beam)
1× Stereo Camera
1× IMU & GPS

19 semantic classes
19130 training samples
4071 validation samples
20351 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

Waymo Open
[19]

1× LiDAR (64-beam)
5× RGB Camera
1× IMU & GPS

23 semantic classes
23691 training samples
5976 validation samples
2982 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

ScribbleKITTI
[20]

1× LiDAR (64-beam)
1× Stereo Camera
1× IMU & GPS

19 semantic classes
19130 training samples
4071 validation samples
20351 testing samples

Real-world
High-resolution point cloud
Sparse annotation
Weakly-supervised learning

RELLIS-3D
[9]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× Stereo Camera
1× IMU & GPS

20 semantic classes
7800 training samples
2413 validation samples
3343 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

SemanticPOSS
[16]

1× LiDAR (40-beam)
1× RGB Camera
1× IMU & GPS

14 semantic classes
2488 training samples
500 validation samples

Real-world
High-resolution point cloud
Dense annotation
Dynamic instance

SemanticSTF
[22]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× Stereo Camera
1× RADAR

21 semantic classes
1326 training samples
250 validation samples
500 testing samples

Real-world
High-resolution point cloud
Dense annotation
Adverse weather

SynLiDAR
[21]

1× LiDAR (64-beam)
1× simulation suite

32 semantic classes
198396 total samples

Synthetic
High-resolution point cloud
Dense annotation
Transfer learning

Synth4D
[17]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× simulation suite

22 semantic classes
10000 training samples
10000 validation samples

Synthetic
Low-resolution point cloud
Dense annotation
Transfer learning

DAPS-3D
[11]

3× LiDAR (64-beam)
1× simulation suite

4 semantic classes
19061 training samples
3995 validation samples

Semi-synthetic
High-resolution point cloud
Dense annotation
Transfer learning

nuScenes-C
[12]

1× LiDAR (32-beam)
6× RGB Camera
5× RADAR
1× IMU & GPS

16 semantic classes
144456 validation samples

Synthetic
Low-resolution point cloud
Dense annotation
Robustness

2

split into 798 training, 202 validation, and 150 testing scenes. This subset contains 2369131

training scans, 5976 validation scans, and 2982 testing scans, respectively, with semantic32

segmentation labels from 23 classes. The data are captured by five LiDAR sensors: one33

mid-range LiDAR sensor truncated to a maximum of 75 meters, and four short-range LiDAR34

sensors truncated to a maximum of 20 meters. In this work, we use the LiDAR point clouds35

from Waymo Open as a downstream task to validate the generalizability of pertaining36

methods. More details of this dataset can be found at https://waymo.com/open.37

• 4ScribbleKITTI [20]: The ScribbleKITTI dataset is a recent variant of the SemanticKITTI38

dataset, with weak supervisions annotated by line scribbles. It shares the exact same amount39

of training samples with SemanticKITTI, i.e., 19130 scans collected by a Velodyne HDL-40

64E LiDAR sensor, where the total number of valid semantic labels is 8.06% compared to41

the fully-supervised version. Annotating the LiDAR point cloud in such a way corresponds42

to roughly a 90% time-saving. In this work, we use the LiDAR point clouds from Scrib-43

bleKITTI as a downstream task to validate the generalizability of pertaining methods. More44

details of this dataset can be found at https://github.com/ouenal/scribblekitti.45

• 5RELLIS-3D [9]: The RELLIS-3D dataset is a multimodal dataset collected in an off-road46

environment from the Rellis Campus of Texas A&M University. It consists of 13556 LiDAR47

scans from 5 traversal sequences. The point-wise annotations are initialized by using the48

camera-LiDAR calibration to project the more than 6000 image annotations onto the point49

clouds. In this work, we use the LiDAR point clouds from RELLIS-3D as a downstream50

task to validate the generalizability of pertaining methods.51

• 6SemanticPOSS [16]: The SemanticPOSS dataset is a relatively small-scale point cloud52

dataset with an emphasis on dynamic instances. It includes 2988 scans collected by a Hesai53

Pandora LiDAR sensor, which is a 40-channel LiDAR with 0.33 degree vertical resolution,54

a forward-facing color camera, 4 wide-angle mono cameras covering 360 degrees around55

the ego-car. The data in this dataset was collected from the campus of Peking University. In56

this work, we use the LiDAR point clouds from SemanticPOSS as a downstream task to57

validate the generalizability of pertaining methods. More details of this dataset can be found58

at http://www.unmannedlab.org/research/RELLIS-3D.59

• 7SemanticSTF [22]: The SemanticSTF dataset is a small-scale collection of 2076 scans,60

where the data are borrowed from the STF dataset [4]. The scans are collected by a Velodyne61

HDL64 S3D LiDAR sensor and covered various adverse weather conditions, including 69462

snowy, 637 dense-foggy, 631 light-foggy, and 114 rainy scans. The whole dataset is split63

into three sets: 1326 scans for training, 250 scans for validation, and 500 scans for testing.64

All three splits have similar proportions of scans from different weather conditions. In this65

work, we use the LiDAR point clouds from SemanticSTF as a downstream task to validate66

the generalizability of pertaining methods. More details of this dataset can be found at67

https://github.com/xiaoaoran/SemanticSTF.68

• 8SynLiDAR [21]: The SynLiDAR dataset contains synthetic point clouds captured from69

constructed virtual scenes using the Unreal Engine 4 simulator. In total, this dataset contains70

13 LiDAR point cloud sequences with 198396 scans. As stated, the virtual scenes in71

SynLiDAR are constituted by physically accurate object models that are produced by expert72

modelers with the 3D-Max software. In this work, we use the LiDAR point clouds from73

SynLiDAR as a downstream task to validate the generalizability of pertaining methods. More74

details of this dataset can be found at https://github.com/xiaoaoran/SynLiDAR.75

• 9Synth4D [17]: The Synth4D dataset includes two subsets with point clouds captured by76

simulated Velodyne LiDAR sensors using the CARLA simulator. We use the Synth4D-77

nuScenes subset in our experiments. It is composed of around 20000 labeled point clouds78

captured by a virtual vehicle navigating in town, highway, rural area, and city. The label79

mappings are mapped to that of the nuScenes dataset. In this work, we use the LiDAR point80

clouds from Synth4D-nuScenes as a downstream task to validate the generalizability of81

pertaining methods. More details of this dataset can be found at https://github.com/82

saltoricristiano/gipso-sfouda.83

• 10DAPS-3D [11]: The DAPS-3D dataset consists of two subsets: DAPS-1 and DAPS-2;84

while the former is a semi-synthetic one with a larger scale, the latter is recorded during85

a real field trip of the cleaning robot to the territory of the VDNH Park in Moscow. Both86

subsets are with scans collected by a 64-line Ouster OS0 LiDAR sensor. We use the DAPS-187

3

https://waymo.com/open
https://github.com/ouenal/scribblekitti
http://www.unmannedlab.org/research/RELLIS-3D
https://github.com/xiaoaoran/SemanticSTF
https://github.com/xiaoaoran/SynLiDAR
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/saltoricristiano/gipso-sfouda

subset in our experiments, which contains 11 LiDAR sequences with more than 2300088

labeled point clouds. In this work, we use the LiDAR point clouds from DAPS-1 as a89

downstream task to validate the generalizability of pertaining methods. More details of this90

dataset can be found at https://github.com/subake/DAPS3D.91

• 11nuScenes-C [12]: The nuScenes-C dataset is one of the corruption sets in the Robo3D92

benchmark, which is a comprehensive benchmark heading toward probing the robustness of93

3D detectors and segmentors under out-of-distribution scenarios against natural corruptions94

that occur in real-world environments. A total number of eight corruption types, stemming95

from severe weather conditions, external disturbances, and internal sensor failure, are96

considered, including ‘fog’, ‘wet ground’, ‘snow’, ‘motion blur’, ‘beam missing’, ‘crosstalk’,97

‘incomplete echo’, and ‘cross-sensor’ scenarios. These corruptions are simulated with rules98

constrained by physical principles or engineering experiences. In this work, we use the99

LiDAR point clouds from nuScenes-C as a downstream task to validate the robustness of100

pertaining methods under out-of-distribution scenarios. More details of this dataset can be101

found at https://github.com/ldkong1205/Robo3D.102

A.2 Vision Foundation Models103

In this work, we conduct comprehensive experiments on analyzing the effects brought by different104

vision foundation models (VFMs), compared to the traditional SLIC [1] method. Some statistical105

analyses of these different visual partition methods are shown in Table B and Table C.106

• SLIC [1] (traditional method): The SLIC model, which stands for ‘simple linear iterative107

clustering’, is a popular choice for visual partitions of RGB images. It adapts a k-means108

clustering approach to generate superpixels, in an efficient manner, and offers good un-109

supervised partition abilities for many downstream tasks. The pursuit of adherence to110

boundaries and computational and memory efficiency allows SLIC to perform well on111

different image collections. In this work, we follow SLidR [18] and use SLIC to generate112

superpixels, with a fixed quota of 150 superpixels per image, and compare our framework113

with previous ones using SLIC superpixels. More details of this model can be found at114

https://github.com/valeoai/SLidR.115

• SAM [10]: The Segment Anything Model (SAM) is a recent breakthrough towards zero-shot116

transferable visual understanding across a wide range of tasks. This model is trained on SA-117

1B, a large-scale dataset with over 1 billion masks on 11M licensed and privacy-respecting118

images. As a result, SAM is able to segment images, with either point, box, or mask prompts,119

across different domains and data distributions. In this work, we use a fixed SAM model120

with the ViT-H backbone (termed as ViT-H SAM model) to generate superpixels. We use121

this pretrained model directly without any further fine-tuning. More details of this model122

can be found at https://github.com/facebookresearch/segment-anything.123

• X-Decoder [24]: The X-Decoder model is a generalized decoding framework that can124

predict pixel-level segmentation and language tokens seamlessly. This model is pretrained125

on three types of data, including panoptic segmentation, image-text pairs, and referring126

segmentation. For the panoptic segmentation task, the model is trained on COCO2017,127

which includes around 104k images for model training. In this work, we use a fixed X-128

Decoder model termed as BestSeg-Tiny to generate superpixels. We use this pretrained129

model directly without any further fine-tuning. More details of this model can be found at130

https://github.com/microsoft/X-Decoder.131

• OpenSeeD [23]: The OpenSeeD model is designed for open-vocabulary segmentation132

and detection, which jointly learns from different segmentation and detection datasets.133

This model consists of an image encoder, a text encoder, and a decoder with foreground,134

background, and conditioned mask decoding capability. The model is trained on COCO2017135

and Objects365, under the tasks of panoptic segmentation and object detection, respectively.136

In this work, we use a fixed OpenSeeD model termed as openseed-swint-lang to generate137

superpixels. We use this pretrained model directly without any further fine-tuning. More138

details of this model can be found at https://github.com/IDEA-Research/OpenSeeD.139

• SEEM [25]: The SEEM model contributes a new universal interactive interface for image140

segmentation, where ‘SEEM’ stands for ‘segment everything everywhere with multi-modal141

4

https://github.com/subake/DAPS3D
https://github.com/ldkong1205/Robo3D
https://github.com/valeoai/SLidR
https://github.com/facebookresearch/segment-anything
https://github.com/microsoft/X-Decoder
https://github.com/IDEA-Research/OpenSeeD

Table B: The statistics of superpixels (for front-view cameras) generated by SLIC [1] and different
vision foundation modes [10, 24, 23, 25]. The horizontal axis denotes the number of superpixels per
image. The vertical axis denotes the frequency of occurrence.

Method Front Left Front Front Right

SLIC
[1]

SAM
[10]

X-Decoder
[24]

OpenSeeD
[23]

SEEM
[25]

prompts all at once’. The newly designed prompting scheme can encode various user intents142

into prompts in a joint visual-semantic space, which possesses properties of versatility,143

compositionality, interactivity, and semantic awareness. As such, this model is able to144

generalize well to different image datasets, under a zero-shot transfer manner. Similar to145

X-Decoder, SEEM is trained on COCO2017, with a total number of 107k images used146

during model training. In this work, we use a fixed SEEM model termed as SEEM-oq101147

to generate superpixels. We use this pretrained model directly without any further fine-148

tuning. More details of this model can be found at https://github.com/UX-Decoder/149

Segment-Everything-Everywhere-All-At-Once.150

The quality of superpixels directly affects the performance of self-supervised representation learning.151

Different from the previous paradigm [18, 15], our Seal framework resorts to the recent VFMs152

for generating superpixels. Compared to the traditional SLIC method, these VFMs are able to153

generate semantically-aware superpixels that represent coherent semantic meanings of objects and154

backgrounds around the ego-vehicle.155

5

https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once

Table C: The statistics of superpixels (for back-view cameras) generated by SLIC [1] and different
vision foundation modes [10, 24, 23, 25]. The horizontal axis denotes the number of superpixels per
image. The vertical axis denotes the frequency of occurrence.

Method Back Left Back Back Right

SLIC
[1]

SAM
[10]

X-Decoder
[24]

OpenSeeD
[23]

SEEM
[25]

As been verified in our experiments, these semantic superpixels have the ability to ease the “over-156

segment” problem in current self-supervised learning frameworks [18, 15] and further improve the157

performance for both linear probing and downstream fine-tuning.158

The histograms shown in Table B and Table C verify that the number of superpixels per image of159

VFMs is much smaller than that of SLIC. This brings two notable advantages: i) Since semantically160

similar objects and backgrounds are grouped together in semantic superpixels, the “self-conflict”161

problem in existing approaches is largely mitigated, which directly boosts the quality of representation162

learning. ii) Since the embedding length D of the superpixel embedding features Q ∈ RM×D and163

superpoint embedding features K ∈ RM×D directly relates to computation overhead, a reduction164

(e.g., around 150 superpixels per image in SLIC [1] and around 25 superpixels per image in X-165

Decoder [24], OpenSeeD [23], and SEEM [25]) on D would allow us to train the segmentation166

models in a more efficient manner.167

Some typical examples of our generated superpixels and their corresponding superpoints are shown168

in Fig. A, Fig. B, Fig. C, and Fig. D. As will be shown in Section B, our use of semantic superpixels169

6

Figure A: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [25]. Each color represents one distinct segment. Best viewed in color.

Figure B: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [25]. Each color represents one distinct segment. Best viewed in color.

generated by VFMs brings not only performance gains but also a much faster convergence rate during170

the model pretraining stage.171

A.3 Implementation Details172

A.3.1 Data Split173

For model pertaining, we follow the SLidR protocol [18] in data splitting. Specifically, the nuScenes174

[7] dataset consists of 700 training scenes in total, 100 of which are kept aside, which constitute the175

SLidR mini-val split. All models are pretrained using all the scans from the 600 remaining training176

scenes. The 100 scans in the mini-val split are used to find the best-possible hyperparameters. The177

7

Figure C: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [25]. Each color represents one distinct segment. Best viewed in color.

Figure D: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [25]. Each color represents one distinct segment. Best viewed in color.

trained models are then validated on the official nuScenes validation set, without any kind of test-time178

augmentation or model ensemble. This is to ensure a fair comparison with previous works and also179

in line with the practical requirements.180

For linear probing, the pretrained 3D network Fθp is frozen with a trainable point-wise linear181

classification head which is trained for 50 epochs on a A100 GPU with a learning rate of 0.05, and182

batch size is 16 on the nuScenes train set for all methods.183

For downstream fine-tuning tasks, we stick with the common practice in SLidR [18] whenever184

possible. The detailed data split strategies are summarized as follows.185

8

• For fine-tuning on nuScenes [7], we follow the SLidR protocol to split the train set of186

nuScenes to generate 1%, 5%, 10%, 25%, and 100% annotated scans for the training subset.187

• For fine-tuning on DAPS-3D [11], we take sequences 38-18_7_72_90 as the training set188

and 38-18_7_72_90, 42-48_10_78_90, and 44-18_11_15_32 as the validation set.189

• For fine-tuning on SynLiDAR [21], we use the sub-set which is a uniformly downsampled190

collection from the whole dataset.191

• For fine-tuning on SemanticPOSS [16], we use sequences 00 and 01 as half of the annotated192

training scans and use sequences 00 to 05, except 02 for validation to create full of the193

annotated training samples.194

• For fine-tuning on SemanticKITTI [2], Waymo Open [19], ScribbleKITTI [20], RELLIS-195

3D [9], SemanticSTF [22], and Synth4D [17], we follow the SLidR protocol to create196

1%, 10%, half, or full split of the annotated training scans, e.g., one scan is taken every 100197

frame from the training set to get 1% of the labeled training samples. Notably, the point198

cloud segmentation performance in terms of IoU is reported on the official validation sets199

for all the above-mentioned datasets.200

A.3.2 Experimental Setup201

In our experiments, we fine-tune the entire 3D network on the semantic segmentation task using a202

linear combination of the cross-entropy loss and the Lovász-Softmax loss [3] as training objectives203

on a single A100 GPU. For the few-shot semantic segmentation tasks, the 3D networks are fine-tuned204

for 100 epochs with a batch size of 10 for the SemanticKITTI [2], Waymo Open [19], ScribbleKITTI205

[20], RELLIS-3D [9], SemanticSTF [22], SemanticPOSS [16], DAPS-3D [11], SynLiDAR [21], and206

Synth4D [17] datasets.207

For the nuScenes [7] dataset, we fine-tune the 3D network for 100 epochs with a batch size of 16208

while training on the 1% annotated scans. The 3D network train on the other portions of nuScenes is209

fine-tuned for 50 epochs with a batch size of 16. We adopt different learning rates on the 3D backbone210

Fθp and the classification head, except for the case that Fθp is randomly initialized. The learning rate211

of Fθp is set as 0.05 and the learning rate of the classification head is set as 2.0, respectively, for all212

the above-mentioned datasets except nuScenes. On the nuScenes dataset, the learning rate of Fθp is213

set as 0.02.214

We train our framework using the SGD optimizer with a momentum of 0.9, a weight decay of 0.0001,215

and a dampening ratio of 0.1. The cosine annealing learning rate strategy is adopted which decreases216

the learning rate from its initial value to zero at the end of the training.217

A.3.3 Data Augmentation218

For the model pretraining, we apply two sets of data augmentations on the point cloud and the219

multi-view image, respectively, and update the point-pixel correspondences after each augmentation220

by following SLidR [18].221

• Regarding the point cloud, we adopt a random rotation around the z-axis and flip the x-axis222

or y-axis with a 50% probability. Besides, we randomly drop the cuboid where the length of223

each side covers no more than 10% range of point coordinates on the corresponding axis,224

and the cuboid center is located on a randomly chosen point in the point cloud. We also225

ensure that the dropped cuboid retains at least 1024 pairs of points and pixels; otherwise,226

we select another new cuboid instead. For the temporal frame, we apply the same data227

augmentation to it.228

• Regarding the multi-view image, we apply a horizontal flip with a 50% probability and a229

cropped resize which reshapes the image to 416× 224. Before resizing, the random crop230

fills at least 30% of the available image space with a random aspect ratio between 14 : 9 and231

17 : 9. If this random cropping does not preserve at least 1024 or 75% of the pixel-point232

pairs, a different crop is chosen.233

For the downstream fine-tuning tasks, we apply a random rotation around the z-axis and flip the x-234

axis or y-axis with a 50% probability for all the points in the point cloud. If the results are mentioned235

with LaserMix [13] augmentation, we augment the point clouds via the LaserMix before the above236

9

Figure E: The convergence rate comparison between SLidR [18] and the proposed Seal framework.

data augmentations. We report both results in the main paper so that we can fairly compare the point237

cloud segmentation performance with previous works.238

A.3.4 Model Configuration239

For the model pretraining, the 3D backbone Fθp is a Minkowski U-Net [6] with 3× 3× 3 kernels;240

while the 2D image encoder Gθi is a ResNet-50 [8] initialized with 2D self-supervised pretrained241

model of MoCoV2 [5]. These configurations are kept the same as SLidR [18]. The channel dimension242

of Gθi head and Fθp head is set to 64. For the linear probing task, we adopt a linear classification243

head, as mentioned in previous sections. For the downstream fine-tuning tasks, the same 3D244

backbone Fθp , i.e., the Minkowski U-Net [6] with 3× 3× 3 kernels, is used.245

B Additional Quantitative Result246

B.1 Self-Supervised Learning247

We report the complete results (i.e., the class-wise IoU scores) for the linear probing and downstream248

fine-tuning tasks shown in the main paper. We report the official results from previous works249

whenever possible. We also report our reproduced results for random initialization, PPKT [14], and250

SLidR [18]. Specifically, the complete results on the nuScenes [7], SemanticKITTI [2], Waymo Open251

[19], and Synth4D [17] datasets are shown in Table D, Table E, Table F, and Table G, respectively.252

We observe that Seal constantly outperforms prior methods for most semantic classes on all datasets.253

We also compare the convergence rate of Seal with SLidR [18] in Fig. E. As can be seen, our254

framework is able to converge faster with the use of semantic superpixels, where these higher255

qualitative contrastive samples gradually form a much more coherent optimization landscape.256

B.2 Robustness Probing257

We report the complete results of the robustness evaluation experiments in the main paper, including258

the per-corruption CE scores and the per-corruption RR scores. Specifically, the complete results on259

the nuScenes-C [12] dataset are shown in Table H and Table I. We observe that Seal is superior to260

previous methods in terms of both CE and RR metrics.261

C Additional Qualitative Result262

C.1 Cosine Similarity263

We provide more examples for the cosine similarity study in Fig. F, Fig. G, and Fig. H.264

C.2 Downstream Tasks265

We provide more qualitative results for downstream fine-tuning tasks in Fig. I, Fig. J, and Fig. K.266

10

Table D: The per-class IoU scores of different pretraining methods pretrained on nuScenes [7] and
linear probed or fine-tuned on different proportions (1%, 5%, 10%, 25%, and Full) of the nuScenes
[7] data. Symbol ¶ denotes our reproduced results and the remaining are reported scores. All IoU
scores are given in percentage (%). The best mIoU score is highlighted in bold.

Method m
Io

U

ba
rr

ie
r

bi
cy

cl
e

bu
s

ca
r

co
ns

t.
ve

h.

m
ot

or
cy

cl
e

pe
de

st
ri

an

tr
af

fic
co

ne

tr
ai

le
r

tr
uc

k

dr
iv

.s
ur

f.

ot
he

rfl
at

si
de

w
al

k

te
rr

ai
n

m
an

m
ad

e

ve
ge

ta
tio

n

Linear Probing

Random ¶ 8.4 0.5 0.0 0.0 3.9 0.0 0.0 0.0 6.4 0.0 3.9 60.4 0.0 0.1 16.2 30.6 12.2
PointContrast 21.9 - - - - - - - - - - - - - - - -
DepthContrast 22.1 - - - - - - - - - - - - - - - -
PPKT 35.9 - - - - - - - - - - - - - - - -
SLidR ¶ 39.2 44.2 0.0 30.8 60.2 15.1 22.4 47.2 27.7 16.3 34.3 80.6 21.8 35.2 48.1 71.0 71.9
ST-SLidR 40.5 - - - - - - - - - - - - - - - -
Seal (Ours) 45.0 54.7 5.9 3.6 61.7 18.9 28.8 48.1 31.0 22.1 39.5 83.8 35.4 46.7 56.9 74.7 74.7

Fine-tuning (1%)
Random 30.3 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3
PointContrast 32.5 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6
DepthContrast 31.7 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0
PPKT 37.8 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9
SLidR 38.8 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3
ST-SLidR 40.8 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9
Seal (Ours) 45.8 0.0 9.4 32.6 77.5 10.4 28.0 53.0 25.0 30.9 49.7 94.0 33.7 60.1 59.6 83.9 83.4

Fine-tuning (5%)
Random 47.8 - - - - - - - - - - - - - - - -
Random ¶ 44.5 50.1 2.9 57.3 70.3 1.1 6.1 39.1 18.3 17.3 44.8 92.3 38.6 54.9 61.1 80.3 77.9
PPKT ¶ 52.7 56.1 8.2 65.3 79.0 9.1 15.5 54.3 34.5 26.7 58.6 93.2 44.1 63.1 64.8 85.1 83.6
SLidR 52.5 - - - - - - - - - - - - - - - -
ST-SLidR 54.7 - - - - - - - - - - - - - - - -
Seal (Ours) 55.6 61.0 7.4 70.4 82.4 11.9 30.4 59.2 34.0 33.6 61.1 94.7 46.2 63.4 63.9 85.7 84.9

Fine-tuning (10%)
Random 56.2 - - - - - - - - - - - - - - - -
Random ¶ 53.2 56.8 5.2 66.3 74.5 5.7 36.1 49.5 38.2 29.2 54.4 94.0 47.7 61.4 67.6 82.8 81.1
PPKT ¶ 60.3 64.0 12.0 67.8 77.6 16.0 56.8 63.3 49.8 28.3 56.3 94.1 62.7 66.4 68.7 85.9 85.4
SLidR 59.8 - - - - - - - - - - - - - - - -
ST-SLidR 60.8 - - - - - - - - - - - - - - - -
Seal (Ours) 63.0 64.9 15.1 78.9 83.5 22.5 61.0 63.0 51.5 37.4 65.2 95.2 59.4 67.7 69.6 86.2 86.4

Fine-tuning (25%)
Random 65.5 - - - - - - - - - - - - - - - -
Random ¶ 63.0 64.9 15.1 78.9 83.5 22.5 61.0 63.0 51.5 37.4 65.2 95.2 59.4 67.7 69.6 86.2 86.4
PPKT ¶ 67.1 63.7 12.1 87.4 85.2 42.0 61.2 69.6 54.7 50.1 74.9 95.8 64.6 69.9 70.4 87.4 85.1
SLidR 66.9 - - - - - - - - - - - - - - - -
ST-SLidR 67.7 - - - - - - - - - - - - - - - -
Seal (Ours) 68.4 67.4 15.5 90.5 85.1 40.0 62.3 68.1 58.3 54.5 76.0 95.8 65.6 69.8 71.0 87.9 86.7

Fine-tuning (Full)
Random 74.7 - - - - - - - - - - - - - - -
Random ¶ 74.9 77.4 34.4 90.4 86.5 51.1 78.4 77.0 64.9 67.8 77.7 96.6 72.2 74.3 73.2 89.6 86.7
PPKT ¶ 74.5 75.4 37.4 91.7 86.1 45.3 77.3 75.6 65.1 65.0 79.9 96.6 72.1 74.6 73.4 89.2 86.6
SLidR 74.8 - - - - - - - - - - - - - - - -
ST-SLidR 75.1 - - - - - - - - - - - - - - - -
Seal (Ours) 75.6 76.7 26.0 93.4 86.1 55.8 82.7 77.3 66.0 67.9 83.9 96.5 73.6 74.3 73.2 89.3 87.1

Table E: The per-class IoU scores of different pretraining methods pretrained on nuScenes [7] and
fine-tuned on 1% of the SemanticKITTI [2] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

Method m
Io

U

ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

tr
un

k

tr
un

k

tr
un

k

tr
un

k

Random 39.5 91.2 0.0 9.4 8.0 10.7 21.2 0.0 0.0 89.4 21.4 73.0 1.1 85.3 41.1 84.9 50.1 71.4 55.4 37.6
PPKT 43.9 91.3 1.9 11.2 23.1 12.1 27.4 37.3 0.0 91.3 27.0 74.6 0.3 86.5 38.2 85.3 58.2 71.6 57.7 40.1
SLidR 44.6 92.2 3.0 17.0 22.4 14.3 36.0 22.1 0.0 91.3 30.0 74.7 0.2 87.7 41.2 85.0 58.5 70.4 58.3 42.4

ST-SLidR 44.7 - - - - - - - - - - - - - - - - - - -
Seal 46.6 92.3 14.9 18.7 16.1 23.7 43.0 34.4 0.0 91.3 27.2 75.3 0.7 85.7 38.8 85.1 61.9 71.3 57.7 47.7

11

Table F: The per-class IoU scores of different pretraining methods pretrained on nuScenes [7] and
fine-tuned on 1% of the Waymo Open [19] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

Method m
Io

U

ca
r

tr
uc

k

bu
s

ot
he

rv
eh

ic
le

m
ot

or
cy

cl
is

t

bi
cy

cl
is

t

pe
de

st
ri

an

si
gn

tr
af

fic
lig

ht

po
le

co
ns

tr
uc

tio
n

bi
cy

cl
e

m
ot

or
cy

cl
e

bu
ild

in
g

ve
ge

ta
tio

n

tr
ee

tr
un

k

cu
rb

ro
ad

la
ne

m
ar

ke
r

ot
he

rg
ro

un
d

w
al

ka
bl

e

si
de

w
al

k

Random 39.4 -
PPKT ¶ 47.6 92.3 48.8 34.8 6.9 0.0 22.0 73.0 58.3 17.6 55.8 20.4 25.5 7.8 91.5 87.1 53.8 55.1 89.1 38.6 34.7 71.4 62.6
SLidR 47.1 -

ST-SLidR 44.9 -
Seal 49.3 92.5 52.6 33.5 3.7 0.0 31.9 73.1 61.0 23.5 57.0 31.4 20.1 12.4 91.4 87.1 53.2 57.2 89.5 38.8 34.9 72.1 68.7

Table G: The per-class IoU scores of different pretraining methods pretrained on nuScenes [7]
and fine-tuned on 1% of the Synth4D [17] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.

Method m
Io

U

bu
ild

in
g

fe
nc

es

ot
he

r

pe
de

st
ra

in

po
le

ro
ad

lin
es

ro
ad

si
de

w
al

k

ve
ge

ta
tio

n

ve
hi

cl
e

w
al

l

tr
af

fic
si

gn

sk
y

gr
ou

nd

br
id

ge

ra
il

tr
ac

k

gu
ar

dr
ai

l

tr
af

fic
lig

ht

st
at

ic

dy
na

m
ic

w
at

er

te
rr

ai
n

Random 20.2 33.2 13.8 0.0 16.3 13.9 0.0 88.6 51.0 48.9 95.7 27.6 0.0 0.0 0.0 0.0 0.1 19.4 0.0 0.2 0.0 0.0 36.2
PPKT ¶ 61.1 84.4 67.1 62.9 77.4 75.0 2.2 92.0 76.3 92.5 99.2 73.4 67.3 0.0 62.2 39.6 83.5 66.8 0.0 63.6 55.3 37.4 66.0
SLidR ¶ 63.1 83.7 66.3 64.9 77.4 76.4 6.5 92.8 78.7 92.5 99.0 72.5 64.2 0.0 74.3 48.9 85.3 67.1 0.0 67.1 60.0 47.1 63.6

Seal 64.5 84.8 70.5 64.8 80.3 76.3 9.3 92.9 79.8 92.7 98.9 73.0 60.7 0.0 75.2 55.3 84.6 67.0 0.0 68.2 60.7 53.2 70.9

Table H: The Corruption Error (CE) scores of different pretraining methods pretrained on nuScenes
[7] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [12]. All CE scores are given in percentage (%). The best CE score for each
corruption type is highlighted in bold.

Initial Backbone mCE ↓ Fog Wet Snow Move Beam Cross Echo Sensor

L
P

PPKT MinkUNet18 183.44 149.59 247.53 120.50 266.03 213.54 109.62 199.03 161.65
SLidR MinkUNet18 179.38 140.47 237.29 112.93 276.44 210.65 107.86 189.27 160.16

Seal (Ours) MinkUNet18 166.18 135.18 219.36 117.47 234.01 189.70 108.54 172.16 153.03

Fu
ll

Random PolarNet 115.09 90.10 115.33 58.98 208.19 121.07 80.67 128.17 118.23
Random FIDNet 122.42 75.93 122.58 68.78 192.03 164.84 57.95 141.66 155.56
Random CENet 112.79 71.16 115.48 64.31 156.67 159.03 53.27 129.08 153.35
Random WaffleIron 106.73 94.76 99.92 84.51 152.35 110.65 91.09 106.41 114.15
Random Cylinder3D 105.56 83.22 111.08 69.74 165.28 113.95 74.42 110.67 116.15
Random SPVCNN18 106.65 88.42 105.56 98.78 156.48 110.11 86.04 104.26 103.55
Random SPVCNN34 97.45 95.21 99.50 97.32 95.34 98.73 97.92 96.88 98.74
Random MinkUNet18 112.20 79.90 112.50 74.64 181.47 120.76 93.22 111.58 123.53
PPKT MinkUNet18 105.64 77.63 104.22 68.60 160.95 114.81 86.71 108.96 123.20
SLidR MinkUNet18 106.08 74.61 106.13 73.75 165.09 118.02 79.08 107.38 124.57

Seal (Ours) MinkUNet18 92.63 58.97 98.47 56.63 127.25 108.20 57.97 110.95 122.63

Table I: The Resilience Rate (RR) scores of different pretraining methods pretrained on nuScenes
[7] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [12]. All RR scores are given in percentage (%). The best RR score for each
corruption type is highlighted in bold.

Initial Backbone mRR ↑ Fog Wet Snow Move Beam Cross Echo Sensor

L
P

PPKT MinkUNet18 78.15 85.38 98.66 78.33 81.36 91.42 54.37 78.02 57.69
SLidR MinkUNet18 77.18 89.90 98.17 84.12 68.14 86.93 53.63 81.29 55.26

Seal (Ours) MinkUNet18 75.38 83.05 95.15 66.59 83.94 89.70 45.18 83.94 55.48

Fu
ll

Random PolarNet 76.34 81.59 97.95 90.82 62.49 86.75 57.12 75.16 58.86
Random FIDNet 73.33 90.78 95.29 82.61 68.51 67.44 80.48 68.31 33.20
Random CENet 76.04 91.44 95.35 84.12 79.57 68.19 83.09 72.75 33.82
Random WaffleIron 72.78 73.71 97.19 65.19 78.16 85.70 43.54 80.86 57.85
Random Cylinder3D 78.08 83.52 96.57 79.41 76.18 87.23 61.68 81.55 58.51
Random SPVCNN18 74.70 79.31 97.39 55.22 78.44 87.85 49.50 83.72 66.14
Random SPVCNN34 75.10 72.95 96.70 54.79 97.47 90.04 36.71 84.84 67.35
Random MinkUNet18 72.57 84.33 94.63 74.31 69.26 83.06 42.27 79.88 52.79
PPKT MinkUNet18 76.06 85.90 97.71 79.28 76.72 85.72 48.77 81.31 53.10
SLidR MinkUNet18 75.99 87.46 96.68 74.89 74.97 84.06 56.08 81.78 52.01

Seal (Ours) MinkUNet18 83.08 96.11 98.29 87.59 87.49 87.25 75.98 79.19 52.71

12

Figure F: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [10, 24, 23, 25]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.

13

Figure G: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [10, 24, 23, 25]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.

14

Figure H: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [10, 24, 23, 25]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.

15

Figure I: The qualitative results of different point cloud pretraining approaches pretrained on the raw
data of nuScenes [7] and fine-tuned with 1% labeled data. To highlight the differences, the correct /
incorrect predictions are painted in gray / red, respectively. Best viewed in color.

16

Figure J: The qualitative results of different point cloud pretraining approaches pretrained on the raw
data of nuScenes [7] and fine-tuned with 1% labeled data. To highlight the differences, the correct /
incorrect predictions are painted in gray / red, respectively. Best viewed in color.

17

Figure K: The qualitative results of different point cloud pretraining approaches pretrained on the
raw data of nuScenes [7] and fine-tuned with 1% labeled data. To highlight the differences, the
correct / incorrect predictions are painted in gray / red, respectively. Best viewed in color.

18

D Public Resources Used267

We acknowledge the use of the following public resources, during the course of this work:268

• nuScenes2 . CC BY-NC-SA 4.0269

• nuScenes-devkit3 . Apache License 2.0270

• SemanticKITTI4 . CC BY-NC-SA 4.0271

• SemanticKITTI-API5 .MIT License272

• Waymo Open Dataset6 . Waymo Dataset License273

• ScribbleKITTI7 . Unknown274

• RELLIS-3D8 . CC BY-NC-SA 3.0275

• SemanticPOSS9 . Unknown276

• SemanticSTF10 .CC BY-NC-SA 4.0277

• SynLiDAR11 . MIT License278

• Synth4D12 . GNU General Public License 3.0279

• DAPS-3D13 . MIT License280

• nuScenes-C14 . CC BY-NC-SA 4.0281

• MinkowskiEngine15 . MIT License282

• SLidR16 . Apache License 2.0283

• spvnas17 . MIT License284

• Cylinder3D18 . Apache License 2.0285

• LaserMix19 . CC BY-NC-SA 4.0286

• mean-teacher20 .Attribution-NonCommercial 4.0 International287

• PyTorch-Lightning21 . Apache License 2.0288

• mmdetection3d22 . Apache License 2.0289

2https://www.nuscenes.org/nuscenes.
3https://github.com/nutonomy/nuscenes-devkit.
4http://semantic-kitti.org.
5https://github.com/PRBonn/semantic-kitti-api.
6https://waymo.com/open.
7https://github.com/ouenal/scribblekitti.
8http://www.unmannedlab.org/research/RELLIS-3D.
9http://www.poss.pku.edu.cn/semanticposs.html.

10https://github.com/xiaoaoran/SemanticSTF.
11https://github.com/xiaoaoran/SynLiDAR.
12https://github.com/saltoricristiano/gipso-sfouda.
13https://github.com/subake/DAPS3D.
14https://github.com/ldkong1205/Robo3D.
15https://github.com/NVIDIA/MinkowskiEngine.
16https://github.com/valeoai/SLidR.
17https://github.com/mit-han-lab/spvnas.
18https://github.com/xinge008/Cylinder3D.
19https://github.com/ldkong1205/LaserMix.
20https://github.com/CuriousAI/mean-teacher.
21https://github.com/Lightning-AI/lightning.
22https://github.com/open-mmlab/mmdetection3d.

19

https://www.nuscenes.org/nuscenes
https://github.com/nutonomy/nuscenes-devkit
http://semantic-kitti.org
https://github.com/PRBonn/semantic-kitti-api
https://waymo.com/open
https://github.com/ouenal/scribblekitti
http://www.unmannedlab.org/research/RELLIS-3D
http://www.poss.pku.edu.cn/semanticposs.html
https://github.com/xiaoaoran/SemanticSTF
https://github.com/xiaoaoran/SynLiDAR
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/subake/DAPS3D
https://github.com/ldkong1205/Robo3D
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/valeoai/SLidR
https://github.com/mit-han-lab/spvnas
https://github.com/xinge008/Cylinder3D
https://github.com/ldkong1205/LaserMix
https://github.com/CuriousAI/mean-teacher
https://github.com/Lightning-AI/lightning
https://github.com/open-mmlab/mmdetection3d

References290

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic291

superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and292

Machine Intelligence, 34(11):2274–2282, 2012.293

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Juergen294

Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In IEEE/CVF295

International Conference on Computer Vision, pages 9297–9307, 2019.296

[3] Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: a tractable297

surrogate for the optimization of the intersection-over-union measure in neural networks. In IEEE/CVF298

Conference on Computer Vision and Pattern Recognition, pages 4413–4421, 2018.299

[4] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus, Werner Ritter, Klaus Dietmayer, and Felix300

Heide. Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather.301

In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11682–11692, 2020.302

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive303

learning. arXiv preprint arXiv:2003.04297, 2020.304

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski305

convolutional neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,306

pages 3075–3084, 2019.307

[7] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lubing Zhou, Holger Caesar, Oscar Beijbom, and308

Abhinav Valada. Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation and tracking.309

IEEE Robotics and Automation Letters, pages 3795–3802, 2022.310

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.311

In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.312

[9] Peng Jiang, Philip Osteen, Maggie Wigness, and Srikanth Saripallig. Rellis-3d dataset: Data, benchmarks313

and analysis. In IEEE International Conference on Robotics and Automation, 2021.314

[10] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,315

Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything.316

arXiv preprint arXiv:2304.02643, 2023.317

[11] Alexey Klokov, Di Un Pak, Aleksandr Khorin, Dmitry Yudin, Leon Kochiev, Vladimir Luchinskiy, and318

Vitaly Bezuglyj. Daps3d: Domain adaptive projective segmentation of 3d lidar point clouds. Preprint,319

2023.320

[12] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen,321

and Ziwei Liu. Robo3d: Towards robust and reliable 3d perception against corruptions. arXiv preprint322

arXiv:2303.17597, 2023.323

[13] Lingdong Kong, Jiawei Ren, Liang Pan, and Ziwei Liu. Lasermix for semi-supervised lidar semantic324

segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21705–21715,325

2023.326

[14] Yueh-Cheng Liu, Yu-Kai Huang, Hung-Yueh Chiang, Hung-Ting Su, Zhe-Yu Liu, Chin-Tang Chen, Ching-327

Yu Tseng, and Winston H. Hsu. Learning from 2d: Contrastive pixel-to-point knowledge transfer for 3d328

pretraining. arXiv preprint arXiv:2104.0468, 2021.329

[15] Anas Mahmoud, Jordan SK Hu, Tianshu Kuai, Ali Harakeh, Liam Paull, and Steven L. Waslander. Self-330

supervised image-to-point distillation via semantically tolerant contrastive loss. In IEEE/CVF Conference331

on Computer Vision and Pattern Recognition, 2023.332

[16] Yancheng Pan, Biao Gao, Jilin Mei, Sibo Geng, Chengkun Li, and Huijing Zhao. Semanticposs: A point333

cloud dataset with large quantity of dynamic instances. In IEEE Intelligent Vehicles Symposium, pages334

687–693, 2020.335

[17] Cristiano Saltori, Evgeny Krivosheev, Stéphane Lathuiliére, Nicu Sebe, Fabio Galasso, Giuseppe Fiameni,336

Elisa Ricci, and Fabio Poiesi. Gipso: Geometrically informed propagation for online adaptation in 3d lidar337

segmentation. In European Conference on Computer Vision, pages 567–585, 2022.338

[18] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei Bursuc, and Renaud Marlet.339

Image-to-lidar self-supervised distillation for autonomous driving data. In IEEE/CVF Conference on340

Computer Vision and Pattern Recognition, pages 9891–9901, 2022.341

20

[19] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James342

Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao,343

Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,344

Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving: Waymo open345

dataset. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2446–2454, 2020.346

[20] Ozan Unal, Dengxin Dai, and Luc Van Gool. Scribble-supervised lidar semantic segmentation. In347

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2697–2707, 2022.348

[21] Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, and Shijian Lu. Transfer learning from synthetic349

to real lidar point cloud for semantic segmentation. In AAAI Conference on Artificial Intelligence, pages350

2795–2803, 2022.351

[22] Aoran Xiao, Jiaxing Huang, Weihao Xuan, Ruijie Ren, Kangcheng Liu, Dayan Guan, Abdulmotaleb El352

Saddik, Shijian Lu, and Eric Xing. 3d semantic segmentation in the wild: Learning generalized models for353

adverse-condition point clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,354

2023.355

[23] Hao Zhang, Feng Li, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianfeng Gao, Jianwei Yang, and Lei Zhang.356

A simple framework for open-vocabulary segmentation and detection. arXiv preprint arXiv:2303.08131,357

2023.358

[24] Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl,359

Jianfeng Wang, Lu Yuan, Nanyun Peng, Lijuan Wang, Yong Jae Lee, and Jianfeng Gao. Generalized360

decoding for pixel, image, and language. In IEEE/CVF Conference on Computer Vision and Pattern361

Recognition, 2023.362

[25] Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Gao, and Yong Jae Lee. Segment363

everything everywhere all at once. arXiv preprint arXiv:2304.06718, 2023.364

21

	Additional Implementation Detail
	Datasets
	Vision Foundation Models
	Implementation Details
	Data Split
	Experimental Setup
	Data Augmentation
	Model Configuration

	Additional Quantitative Result
	Self-Supervised Learning
	Robustness Probing

	Additional Qualitative Result
	Cosine Similarity
	Downstream Tasks

	Public Resources Used

