A Auxiliary Results
In this appendix, we state and collect lemmas and propositions required to prove the main results.

Notation. In the following sections, we denote with 7, the filtration o(Gy, - - - , Gx—1). Moreover,
to simplify the notation, we define gj as the gradient surrogate in eq.(2) at time-step & i.e. gi :=
9(Gr.h) (k) and g(+) := g(c,p)(-) for an arbitrary G € O(d) and h > 0. We denote the normalized

Haar measure [37] by 1. We define the unit ball B? and the unit sphere S?~! as follow
4= v eRY|v| <1} and STl:={veRe||v| =1}

We denote by ¢ and oy the spherical measure and the normalized spherical measure on S?~1,
respectively. Moreover, we denote with I, € R4*£ the (truncated) identity matrix.

Lemma 2. Let 3(S%™1) be the surface area of S*! and let I € R*? be the identity matrix. Then,

/ vl do(v) = 5(%_1)].
§d—1

Proof. This result is proved in [21, Lemma 7.3, point (b)]. O
Lemma 3. Let ¢ : R® — R be a L-Lipschitz function . If u is uniformly distributed on S*~1, then

(E[9(a) ~ Blp()])? < =

for some numerical constant ¢ > 0.
Proof. The proof follows the same line as [46, Lemma 9]. O

A.1 Smoothing Lemma & Properties

In this appendix, we provide the proof of the Smoothing Lemma (i.e. Lemmal[T]).

Proof of Smoothing Lemma. By eq. (2),

x + hGe;) — — hGe;
Eclga.n(z =7 Z/o =)2hf(m <)Gei du(G).

By [37, Theorem 3.7],
Ecloen @] = g5 Z/Sd (ot h) = f@ = o)) doy (v).

Since v(¥ is uniformly distributed on the sphere, which is symmetric with respect to the origin, we
have

Eclgan(@)] = 4 Z - £+ D)o doy (v®).
As a consequence of Stokes’ Theorem (detalls in [18, Lemma 1] and [1, Theorem A8.8]), we get

l
Elga.m(@)] = %Zth(x) with fu(z) = W F(z + hu) du

Rearranging terms, we get the claim. O

Proposition 1 (Smoothing properties). Let f, be the smooth approximation of f defined in eq. ().
Then the following hold:
If f is convex then fj, is convex and, for every x € R?,

f(x) < fr(z).

14

If f is Lo-Lipschitz continuous - i.e. Y,y € RY, | f(x) — f(y)| < Lol —yl|, then f1, is Lo-Lipschitz
continuous, differentiable and for every .,y € R?

Lof

IV n(z) =V in()ll <

If f is Ly-smooth - i.e. fi
is Li-smooth and for every x € RY,

IV fn(x) = V()| <

le =yl and fu(z) < f(z)+ Loh.

(@) = VIl < Lillz — yl| then f,

hdL;
2

L,
2

and fn(x) < f(z) +
Proof. These are standard results proposed and proved in different works - see for example [[L6,
Lemma 8],[21} Proposition 7.5],[34} Proposition 2.2],[49]. O

Lemma 4 (Approximation Error). Let g(-) be the surrogate defined in eq. () for arbitrary h > 0
and G € O(d). Then the following hold:

(i) If f is Lo-Lipschitz (see Assumption , then, for every x € R,

Eallg(e)I?) < 2720,

where c is a numerical constant.
(ii) If f is Ly-smooth (see Assumption , then, for every x € R?,
L3d?

Ballg(@)I?) < 31w r@)? +
Proof. Note that, since directions are orthogonal, we have
Eallg@)I’) = pars ZEG (v 4+ hGe:) = f(o — hGe:)?Ge).
By [37} Theorem 3.7],
Eqllg(x) 4@2,12 fla+ o) = £ — b)) o2,)

where each v(¥) is uniformly distributed on S%~!.
(1): Sety =E o [f(x + hv(i))] for every ¢ (this expectation does not depend on 7). Then

Ec¢lllg(x) €2h2 ZEU(” m—l—hv(i)) — f(z — hv(i))_’_,y_,y)Q”y(i)”Q]

- ﬁ ZEMU[(U(% + o) =) = (flw = o D) = 7))

2
< g S B (e 4+ o) =32 + (1 — ho®) = 1)))
=1

d2 0 . |
= o (B [(Fla+ @))2 o9 2]
=1
+Eyo[(f(z — hv(i)) — 7)2”@(2‘)”2]}

Since v(*) is uniformly distributed on S~ it satisfies ||v(?)||> = 1 and by symmetry we have

Ecllg(=)%) <

2 < |
212 Z]Eum [(f(z + ho D) — 7)?.
i=1

15

The definition of ~y yields

0 L
Bollo@)IF] < gz B (@ + b))

) ¢
= ggl? > E,ol(f@+ho®) = E,o[f(@ + b))%,
i=1

The claim follows by Lemma and the fact that f(z + hv(")) is hLo-Lipschitz continuous w.r.t to
(%)
v

(i%): Equation (3)) yields
2 & , , ,
Ballo(o)IP] = gazz 3 Buo (o o) = fo = ko) = f(a) +)10
< ; (Y _ 2|12
< g z | Evo [(F(@ 4+ ho®) = (@) [o®)
+ By [(f(z = ho®) = f(@))? 2]
d? (3) 2
= 53 2 Evo [(F(z + ho) — f(2))%),
i=1
where the last equation follows by symmetry. Adding and subtracting <V f(x), hv(i)> we derive

2 <
Ec[llg(@)l’] < 2h2 ZEvm
< Z (o l(z+ o) = f() = (Vf(2), b))2]
()]

Denote by 3(S?1) the surface area of S, The Descent Lemma [41] implies

| () | (s Y|
- A 2 S e | (vremt)) |

= Lid* h? + 2d° ze: Vf(2)Tv DDV f(z) do(v)
20 £23(S4-1) — Jga- '

(f(@+mo®) = f(@) = (T f(2), @) + (V (), o))2]

+ Evm

2d?

Bolla(o)I] < a7z

By Lemma[2] we get the claim. Indeed,

L2d? 2, d? ¢ B(S41))
20 " T B Sd T) Z(d ”Vf(x)”)
i=1
L2d2
20

Ec(llg(=)]?] <

d
= 2w s@r + A

A.2 Auxiliary results and proofs for the nonsmooth setting, convex, and nonconvex.

In this subsection, for every k, we will denote by Fy, the o-algebra o(Gy, ..., Gr_1).

16

Lemma 5. Let f : R? — R be a lower semi-continuous function and denote with S = arg min f
and f* = min f. Then,

(A) Vz* e, Hliin”xk — x|

(B) limkinff(a:k) _ — dx €S St T — Teo.

Proof. Since (B) holds, we have that exists (2,) jen subsequence of (x4)ren such that f(zg;) — f*.
Since S #) and (A) we have that

Jz* €S and ﬂliin leg — 2.

Thus, the sequence () en is bounded and, therefore, also (mkj)jen is bounded. Taking a convergent
subsequence (Zx;,)nen Of (7x;);jen, we have that exists 2 s.t.

Tk,

— Too-
Since f is assumed to be lower semi-continuous, we have that

Thus, we have that =, € S which implies, by (A), that

Jlim ||z — 2ol and lim ||z, — 2| = 0.
k n In
Hence, since xy, is a subsequence of xy,
lilgn |z — 20|l = 0,
and, therefore, x;, — o € S.]

Lemma 6 (Convergence: convex non-smooth). Assume that f is convex and Lq Lipschitz continuous.
Let (x1)ren be the sequence generated by Algorithm and let x* € argmin f. Then, for every
k €N, the following inequality holds:

* * * LQd
Ell|zgr1 — 2* (12| Fe] = llar — a*[* + 205(f (zx) — f(z*)) < 20%0% + 2Loayhy,

where c is some non-negative constant independent from the dimension. Moreover, if the stepsizes

satisfy Assumption |2} we have

S fzr) = f(27) as,

and there exists a random variable T taking values in in arg min f such that x,, — T a.s.

Proof. Let k € N. By Algorithm|[]
ks = 2| = llow — 27|* = ofllgell® — 20 (gr, 21 — 2) . ©)
Since fy, is convex by Proposition [I]and E[gx|Fi] = V fn, (x%) (see Lemmal[T), we have
— (Vi (@g), 2 — %) < frp (@7) = foy (2).

Thus, taking the conditional expectation with respect to F, by Lemma[d] we get,
2

Lzd
Elllzrs1 — =2 Fe] — lon — 2*[* < 20%0@ =20 (fy, (1) = fry, (7)),

—_———
=:C}

Then, by Proposition [T}

Ellwrry — [P 7] = llow — *|* < Cr = 205(f(ax) = f(2")) + 2Loch.
Next suppose that Assumption [2holds. Rearranging the terms,

Ellzr1 — 2|*[Fe] = [z — 2*||* + 200 (f () — f(z")) < Ok + 2Loarhy,

with Cy, € ¢! and aihy € ¢1. Therefore, Robbins-Siegmund Theorem [43] implies that (||x) —
T*||)ken is a.s. convergent, o (f(zx) — f(z*)) € ¢! a.s. and thus, since oy, & £1,

likminff(xk) = f(z¥) as.)
—00

We derive from [32, Lemma 9.9] and Lemma|§| that there exists a random variable & taking values in
arg min f such that x;, — & a.s. Finally, continuity of f yields that 11}131 flzk) = f(x.) as. O

17

In the next Lemma, to derive bounds on function values, we study the sequence (fp, (Zr4+1) —
Iri (k) ken- It is the difference between the smoothed function at iteration k evaluated at x, and
at xy41. It corresponds to the function value decrease between the iterations k£ + 1 and k if hy, is
constant.

Lemma 7 (Function Value decrease: nonconvex non-smooth setting). Under Assumption |ZI let
(z)ken be the sequence generated by Algorithm|[l] Then,

Lidvd o}

Elfn, (@es1)|Fr] = fo, (@r) < ||V i, (@) |* + ¢ T

where c is a numerical constant.

Proof. By Lemma we have that fj, is Lox/g/ hi-smooth. Thus, by the Descent Lemma [41]],

LoVd
fr @rt1) = fri(2r) < —an (Vfo, (T), k) + h aillgk .
Taking the conditional expectation with respect to F,
LoVd
E(fn @rr)|Fr] = fag (2) < —ail|V fu, (2) I + TR o B[l gk [I* Fr)- ®)
The claim follows from Lemma @]]

A.3 Auxiliary results for smooth setting.

Lemma 8 (Function value decrease: convex smooth setting). Under Assumption, let (xk)ken be
the sequence generated by Algorithm[I} Then the following holds:

1 Lid

E[f (@r1)lFil = Flan) < —an (5 — =) IV F@o)] +

L3202 L3d?

3 + o7 aihi.

Proof. By the Descent Lemma [41]] and Algorithm [T]

Florsn) = Fa) < o (VF (i), g6) + o gl

Taking the conditional expectation and by Lemma]

BLf (exs)] — Fon) < —an (VH(a), Vi, (o0)) + k[N F@n) I +

Adding and subtracting V f (x),

E[f (24 1)|F] = flan) < = (VF(2), V fe (2r) = VF(@r) — ar| VF(zx)]?
Ly ,r2d 2 Lid*
+ 2Lt [TV @+ Zihg].
By Cauchy-Schwarz inequality and Proposition]

L2d?

2
26 hk .

L (i) 7] — 7)< (20 ha) IV (@)l = k197 (i) P

Ly ,r2d , L3,
+ S [TV @l + Z2ng)-
By Young’s inequality,
L2d?aph? «
B[f (2r1) | Fr] = flax) < 0= 4+ F V@) [P = oxl[VF ()
Ly ,r2d , L3,
+ St [ZIVF@IP + Z2-hi).
_ 1 Lid , Lid%aph? L34 , ,
= —an (5 — T) IVF@0)|? + 4 Sadnd.
This concludes the proof. O

18

Lemma 9 (Convergence in smooth setting). Let (xy)ren be the sequence generated by Algorithm

and let x* € argmin f(x). Then, under Assumption the following inequality holds
z€R?

)12 w2 o 2d o 2 LA 5
Elleery — " [F1Fk] = llzw — 27| < ok IV F(@)ll” + =5~ akhi
+ leakth{Ek - ,T*H — 2qy <Vf($k)7l‘k - :L‘*> .
Moreover, if f is convex, Assumptionholds and oy, < & < £/(2dLy). Then
o (k| Vf(xi)|I?)ken € € as.
o (|lxx — 2*||)ken is a.s. convergent.
* (o (f(z) = f(@*))ken € £ as.

* there exists a random variable I taking values in argmin f such that x, — T a.s. and
lim f(z)) = min f.
k— o0

Proof. We have
lka = 2% = llaw — 271 = aillgl® — 200 {gu, on — 27
Taking the conditional expectation,
Elllzet1 — 2|1 Fe] = llox — 2% = of Elllgll*|Fe] — 20 (V fu, (2r), z1 —) .
For every k, set uj, = ||z — 2*||. By Lemma[d]
L3d?
20

Qd .
Efui 1 |Fi] — QR IVf (@) |* + = aihi — 200 (V fu, (xx),) — @) .

Note that
=20 AV fy, (), 21 — &%) = 200, (V f, (1) — Vf (1), 2" — 1) — 200 (V f (1), 28 — 7).
Thus,

2d L3d?
Eluj 41| F5] — i gl V(o) + ;E akhi

+ 2ak (Vfne(zr) = Vf(zr), " —zk) — 205 (Vf(zr), 26 — ") .
By the Cauchy-Schwarz inequality,

2d L3d?
Bluf i) — uf < ~ad |V (on)]* + “—ath?

+ 20|V f, (1) — V f (2p) |k — 200 (V f (1), 21 — 27) -

The first claim follows from Proposition[I] By Proposition[Tand Young’s inequality with parameter
Ty = aphg, we get

L3

Eluf |7 — uf < 2o 1V (@) | + B adh?
+ %d 2h + leTkui — 20 (V f(xg), xp — ™).
= 2 aaiv o+ Slazg @
+ %d khi + L2dakhkuk

— 20y, (Vf(zg), xp — ™) .
Since f is convex, by Baillon-Haddad Theorem [3]], we derive that

2 o o(1 d o, Lid® 5
Elujqq1|Fr] —uj < =2 a |||V f(ze) " + ajhi,
Ly ¢ 20
Lid Ld
+ %O&khk + 9 akhkuk

19

By Assumption[d]

1 d Lyd
Efuf 1| Fil —uf < —2 (T — 76) anllV@e) | + S anhe uf
;/_/ N—r
=:A =Pk
Lid L3d?
=:C}

Note that A > 0. Thus, rearranging the terms
Eluj i1 |Fr] = (1 + pr)ui + 2804]|V f (1) [|> < Cy.
Since py, Cx € ¢! by Assumption 4] Robbins-Siegmund Theorem [43] ensures that (u})ken is

convergent and (ag||V f(zx)||*)ken € ¢! a.s. Since f is convex, it follows from (9)) that

Efuj 1| Fk] = (1+ pr)u < 27Cia§IIVJ”(9ﬁzc)||2 = 2ax(f(2x) — f(27)) + Cr.

Robbins-Siegmund Theorem [43] implies that (o (f(xr) — f(2%)))ken € £ ass. Assumption
implies that o, ¢ ¢! therefore

limkinff(gck) — f(z*) =0as. (10)
By Lemma|[8|and Assumption[d} we have that the sequence E[f (z441)— f(2*)|Fi] — (f (z) — f(z))

is upper-bounded by a sequence in £!. Thus, by Robbins-Siegmund Theorem [43], limy (f(zx) —
f(z*)) exists a.s. Then, it follows from (IO} that

klinéo flzr) = f(z") a.s.

Moreover, as we saw before, (||z — 2*||)ken is convergent a.s. for every z* € argmin f. Then, by
Opial’s Lemma [40]], there exists a random variable & taking values in arg min f such that z, — &
a.s. O

Lemma 10 (Gradient bound: convex smooth setting). Suppose that Assumptions[3|and[] hold, and
assume f to be convex. Let (xy)ren be the sequence generated by Algorithm|l| Then, for every
k € Nand every x* € argmin f,

k
1
> BV (@) —A(swzm [w: —=*T7])),

and

k
VE[zx — =7 < VSt + 3 i
i=0
where

1 d ;
A= (E—Z@>, Sk = ||$0—$*||+Z:Oz

L2d?

Ck ==

a%hﬁ and pg := Lidayghg.

Proof. By Lemmal[9we derive

Elllzner — 2" 217%] = lloe — 27* < 2751042\\Vf($k)||2 +Cr
+ piller — 2] = 20 (V f(2R), 20 — ™) .
By Baillon-Haddad Theorem and Assumption 4}
Eflersr — 2" |2IF] = ok — 27]” < 28|V (@) + Cr + prllas, — 271

20

Let uy := y/E[||z) — x*||?]. Taking the full expectation, by Jensen inequality we have
uerl — ui < —2Aqy E[HVf(l‘k)HQ] + prug + Ch.

Summing the previous inequality from ¢ = 0, - - - , k, we get

k k k
Uiy + 20D B[V < ud+ > Cit Y pius. an
1=0 zS:O 1=0
=:5k

Since wuy, is non-negative, the first claim of the lemma follows. Since A > 0, pi, > 0, Sy is non
decreasing, and Sy, > u3 in (TI)), then

k

2
gy < Sk + Z Pil;-
i=0

Thus, the (discrete) Bihari’s Lemma [32, Lemma 9.8] yields

1 F . 1k 911/2 \/§ k
<= E ; — E . < E .
Uk+1 = Qi:Opz"'_ |: k+<2 i_opz) :l >~ k+i:0pz,
concluding the proof. O

B Proofs of Main Results

B.1 Proof of Theorem /]

By Lemmal(6]

Elllzesr — 2|12 Fe] — lox — 2)1* 4 20 (f (k) — f(z*)) < 20%042 + 2Loakhy.

Rearranging the terms, taking the full expectation, and summing the first & iterations

S o —a*l? | LB~ o g N
ZaiE[(f(xi)—f(x*))] < 5 +ey Za +LOZaihi.
i=0 i=0 =0
k k k
Let Zx := > a;x; /(D ;). Dividing by > «; and observing that by convexity we have
i=0 i=0 =0

S i E[(f(z1) — ()]
E[f(Zx) — min f] < =2

k)

we get the first claim. Under Assumption 2] the second claim holds by Lemma 6]

B.2 Proof of Corollary|]

By Theorem T}
. 1 2o — |2 dL2 & k
E[f(74) — min f] < (” 0 I S 0y LY o).
Eai i=0 i=0
=0

Replacing oy, and Ry, with the sequences in the statement,
Ci Cs d Cs

E[f(zg) — f(2")] < m-i-ﬁh zﬁa,

21

with))
(L —=0)[lzo — =~ Lo(1—90) cL3(1—-10)
, Cyi= ———= d C3:=—7—"—7-=.
2 2T 0 —a—p M OTT a2
The second point of the corollary can be proved replacing o, = o and hy, = h. Now, to prove the
third point, fix £ € (0,1). Since we want E[f(Zx) — f(z*)] < &, we impose

C1 =

lzo — 2| | cdL
Loh < e.
dak g CTron=e
Choosing by, = h < ﬁ, to get the previous inequality it is sufficient to impose

2o — a*|? n cdL§
2k Y4

We fix a priori a number of iterations K and we minimize the left handside with respect to «, obtaining

a <

| ™

_ [Tlme =
d \/ZCKLO
Thus, for h, = h < ﬁ, « as above and
K> 8||zo — 2*||*L3cd

L2 ’

we have E[f(Zx) — f(2*)] < e. Note that, since the computation of the surrogate requires 2¢ function
evaluations, to ensure an error of € we need to perform a number of function evaluations of the order

O(de™2).

This concludes the proof.

B.3 Proof of Theorem 2|

By Lemmal[/]
Lidvd a3
E[fn(r+1)Fx] = falzr) < —an||V (e[+ COT#“
Taking the full expectation and rearranging the terms,
LydvVd o}
ap B[V fu(e)|I®] < Elfu(zr) — faleeia)] + ¢ Oé W
Next sum from i = 0 to i = k. By definition of f},, we have f;,(z) > min f for every x € R?, thus,
k : k
. L3dvd ozf
> @i B[V fn(@a)lY] < E[fa(wo) —min f] + == L. (12)
i=0 i=0

The claim follows.

B.4 Proof of Corollaries 2] and 3

By Theorem 2}

(h) o Ch N CodvVda 1
M=ok + 1)10 th (k+1)7

22

where L3()
(12 cLy(l —
— _ 1—90 d =0
Cy = ||lxg — x™]|7() and Cy =)
If we choose o, = «, we derive

W/(ch) < Jn(xo) — min f N chd\/&a.
ak h

If we fix a priori a number of iteration K and we minimize the right handside with respect to a, we
get

13)

4— (fn(zo) — f(a*))lh
KeL3dvd

Lete € (0,1). Choosing o = &, we get n%) < ¢ for

(nlwo) = fa)eLfdvd__,
th '

This concludes the proof of Corollary 2] To prove Corollary 3] we fix a maximum number of
iterations K € N and consider the random variable I of the statement. Let 0y, f be the h-Goldstein
subdifferential defined in Deﬁnition It follows from [34] Theorem 3.1] that V f;,(z) € On f(xr)
almost surely, therefore

Ermin(||n|* : 1 € O f(r)] < ErE[||V fa(z1)|?].
In addition, Theorem 2] yields

K >4 (14)

ErEc[|V fa(zr)|?]

(3 amellvn)/ X o

7=0 Jj=0

. L3dVd ka2

< Elfa(wo) —min f]+ == L.
=0

Thus,
h
Er[llnl? : n € 0nf(wn)] < By B[V fu(en)]?) = nf.
Hence, for o = @ and K chosen s.t. inequality (]EI) holds, we have

Eilnll* : n € Onf(xr)] <e.

This concludes the proof.

B.5 Proof of Theorem[3|

By Lemma(9]

, L 2d)
Elllzrsr — =2 Fe] — lox — 2*)* < 7ai|\vf(wk)ll2 + 20y (V f(wr), 2" — xx)

L3d>
+ Lidaghg ||z* — x| + ;Z aih?.
=Pk VC
—C

By convexity,

Elllzks — @[Fk] = llax — 7" < gV F (@) |” = 200 (f (@) — f(27))
+ prllz™ = il + Ck.
Rearranging the terms and taking the full expectation,

2Eln(F(wx) = F(&)] < Elllew — a2 = s — 2|7 + 2o BV ())

L
+ prEfll2" — i ||| + Ci.

23

Since E[||z* — z||] = E[y/||x* — xx]|?], Jensen’s inequality implies that
* * * d
2E[on(f(zx) = ()] < Elllox = 27|* = lonn — 27 |*) + R B[V f (1)]
+ peVE[||z* — zk|]?] + Ch.

Denoting with uy = E[||zx — 2*||?] and taking the sum fromi = 0to i = k,

QZ% z;) = f(@ <uo+ZC+£ZaEHWxZH +szuz

%,_/
=:Sk

< Sk: =+ 2*&20@ |Vf x; || + szuu
=0

=0
where the last inequality holds by Assumption[d] Let A := (1/L; — (d/{)@&). By Lemma[10} we

have
iaiw(m—m*)} e [sﬁzplulthzuz)

_ k i
< m%%do‘(sk + > n(VSi+ 3 p).
i=0 =0

k k k
Let Ty := > a;x;/(D_ ;). Dividing both sides by > «;, convexity yields
i=0 i=0 i=0
k
> @ El(f(wi) — f(&*))]
ELf (@) — min f] < =0

k
Ma

i=0
B.6 Proof of Corollary[]

In this proof, we use the same notation as the one in the proof of Theorem [3] By the choices of the
parameters, we have

k

L0
S pi < Cidah with Cpi= 57
1=0
d L20
Sk < ||1‘0 - 1'*“2 + 027012}12 with 02 = 291_ T

Thus, using these inequalities in Theorem 3} we get

(A + da d a2h2
Dy < (” To—Z ||2+02 +\/WC3dah

= 2N
dah
+ Cy—~= + Csd*a®h?
").
with 2) 2
L L2 L
Cs: 1 Cy 7 Cs -1

k
Dividing by > «;, we get
i=0

Note that by Assumption[d} v < ¢/(dLy), thus 1/a > (dL1)/¢. The algorithm performs 2¢ function
evaluations at each iteration. Thus, to guarantee E[f(Zx) — min f] < e fore € (0, 1), the algorithm
has to perform a number of function evaluations in the order of

O(de™1).
Assuming, instead, a, < & < £/(2dLy), by Lemma@]we get the last claim; i.e, there exists a random
variable Z taking values in arg min f s.t. z, — Z a.s.

B.7 Proof of Theorem [
Set Cy = (dL1)/2. It follows from Lemma [g]that
1 ILid_ Ciaph? L3id?
E[f (@)l Fil = F(a) < = (5 = 5@l Vo)l + 525 + adnd.
Taking the full expectation and rearranging the terms, and recalling the definition of A,

2 2 3 72
Aoy B[V (@0)l?) < Elf(a) — flonsr) + T 219

+
Summing for i = 0, - - - , k and observing that min f < f(x) for every z,

aihi.

2 44

k k k
, C2a;h2 L3d?
A B[V ()] < flwo) —min f+) ==t + =D otk
=0 =0 =0

k
Divinding by A Y «; we get the claim.
i=0

7

B.8 Proof of Corollary[5|

(i): From the choice of o, and hy, we have

k 2 k 272
i=0 i=0

201 =20 -1
It follows from Theorem [4] that

1
Mk < Aok (f(éﬂo) —min f + Cid*ah® +

02a2h2d2>
e)

2 3
with Cl = % and 02 = %

(¢): It follows directly from Theorem 4] taking into account that

k k
> aih} =kah®, Y alh? =ka’h?,
i=0 i=0

and setting C; = L?/8 and Cy = L3 /4.

C Experimental Details
In this appendix, we report details on the experiments performed. We implemented every script in
Python3 (version 3.9.11) and used numpy (version 1.22.2) [27]] and matplotlib (version 3.5.1) [29]]

libraries.

Machine used to perform the experiments. In the following table, we describe the features of the
machine used to perform the experiments in Section 4]

Table 1: Machine used to perform the experiments

Feature

OS Debian GNU/Linux 11

CPU(s) 4 x Intel(R) Core(TM) i7-1165G7 11th Gen @ 2.80GHz
CPU Core(s) 4

RAM 8 GB

25

Target Functions. We considered two synthetic target functions: a convex smooth function f; and
a convex non-smooth function fo defined as follows

1
(Convex Smooth) fi(x) := §HA.”L'||2 with A € R%*?
(Convex Non-smooth) f3(z) := || — 0|1

where A is a random Gaussian matrix (i.e. A; ; ~ N (0,1))and v :=[0,1,--- ,d — 1]T.

Choice of the number of directions. We report here the details of the first experiment of Section 4]
For these experiments, we consider d = 50 and we use, for the smooth convex case, the following
parameters
l 1075
A 0.99 dLl and hk 1l .
The constant L, is computed as the maximum eigenvalue of the matrix AT A. Note that this parameter
choice satisfies Assumption[d} For the non-smooth target, we used

_ g _1/2_1075 _ 10_7

Note that this parameter configuration satisfies Assumption |2} The maximum number of function
evaluations considered is 4000. The direction matrices G, are generated with the QR method - see
Appendix D]

Comparison with Finite-difference methods. In Section[d we compare finite-difference method
with different choice of directions. In order to make a fair comparison we consider only central finite-
differences. However, note that Algorithm|I|can be modified (in practice) considering computationally
cheaper gradient estimators - see Remark|l| For these experiments, we consider d = 10 and ¢ = d
for methods with multiple directions. The maximum number of function evaluations is 1000 for both
smooth and non-smooth targets and the direction matrices Gy, for Algorithm|[I]are generated with the
QR method - see Appendix D] To solve the smooth problem we consider the following parameter
choice for every method
4 107
=cqr ™ M= ag Ty

where L, is computed taking the maximum eigenvalue of AT A. For Algorithm[T]and finite-difference
with single and multiple spherical directions ¢ = 0.99 while it is equal to ¢ = 0.11 for finite-difference
with single and multiple Gaussian directions. We made this choice since for finite-difference methods
with Gaussian directions we observed divergence for larger choices of ¢ - see Figure 3]

Smooth Convex Target Smooth Convex Target

—— Single Gaussian

Single Spherical
—— Multi Gaussian
104§ = Multi Spherical
—— our

—— Single Gaussian

single Spherical
—— Multi Gaussian
—— Multi Spherical
—— our

flxe) = f(x)
fixe) = fix™)

o 200 400 600 800 1000 o 200 400 600 800 1000
function evaluations function evaluations

Figure 3: From left to right, comparison of finite-difference methods for smooth convex target with
¢ = 0.99 and ¢ = 0.2 for methods with Gaussian directions.

For the non-smooth convex target, we considered the following parameter choice
4 /2—107° 1
- d hi = .

an PR+

26

For every method, we selected ¢ = 0.65 except for the method with multiple Gaussian directions in
which we selected ¢ = 0.08 since it provided better performances - see Figure[d]

Convex Target Convex Target Convex Target Convex Target

flox) = i)
i) =)
i) = f1x)

flox) =)

o) =)
o) = fix)
flox) = i)

fox) = i)

function evaluat

Figure 4: From left to right and up to down, comparison of finite difference method with different
directions and different values of ¢ for multiple Gaussian directions. The values of ¢ considered are
the following [0.085, 0.089, 0.09,0.1,0.2,0.3, 0.5, 0.65]

D Techniques to Generate Orthogonal Direction Matrices

In the literature, different algorithms were proposed to generate orthogonal matrices - see for instance
[23L (38} 11} 28 [7, 12}, 14} 144 [8]] and references therein. Such methods can be used to generate the
direction matrices G, required for the iteration proposed in Algorithm (). In this appendix, we
briefly discuss three of them.

QR factorization. As observed in [32] 42], a way to generate orthogonal consists in generating
a random Gaussian matrix A € R4*? with A; ; ~ N(0,1) and perform the QR factorization i.e.
A = QR. Then, the direction matrix is the truncation of the () matrix i.e. QI .

Householder Reflection. To obtain a direction matrix, we can use a Householder reflector. This
can be done by sampling a vector v from the unit sphere S?~!. The direction matrix G is defined as a
Householder reflector, given by

G:=1-2vT,

with I € R4*? identity matrix. To obtain the desired matrix, we compute the product of G with I,
i.e., we take the first £ columns. The (truncated) identity matrix can be generated and stored offline
(note that since it is very sparse, it can be stored using a sparse format (e.g. the COO format proposed
in scikit-learn library[9]). In this way, we can save resources in high-dimensional settings. In order to
quantify the time-cost of this procedure, we compared the time of generating this kind of matrix with
random matrices with different dimensions. For this experiment, we consider the ¢ = d case i.e. the
most expensive. Matrices are computed in CPU and the details of the machine used are described in
Appendix [C] We report the mean and standard deviation of the time using 500 repetitions. In Figure
[5] we compare the time-cost of generating orthogonal matrices with this procedure against generating
random matrices while in Table 2] we report the mean and standard deviation of the results.

27

Computational Time to generate matrices

] —— random Gaussian

107t .
random spherical /

—e— Householder

2 4 8 16 32 64 128 256 512 1024 2048

d

Figure 5: Time comparison in CPU of different methods to generate direction matrices.

In Figure 5] we can observe that using this strategy we can limit the cost of generating random
orthogonal matrices. In particular, for dimensions larger than 32, our method is faster than random
gaussian and spherical directions.

Table 2: Comparison of the time-cost (seconds) of generating random and orthogonal matrices with
different dimensions

d Random Gaussian Random Spherical Householder

2 927 %1077 +796x 1077 549 x1075+2.05%x 1076 9.32x10"6+3.34 x 106
4 130 x 1076 £ 721 x 1077 6.56 x 1076 £2.63 x 107% 1.12x 107> £5.79 x 1076
8 218 x 1076 +6.06 x 1077 8.01x107%+532x1076 1.11 x107°+5.20 x 10~
8 2.18 x 1076 +6.06 x 1077 8.01 x 10794+5.32x107% 1.11 x 107> £5.20 x 106
16 569 x 1076 +1.61 x107% 1.15x107°+4.10x 1076 1.18 x 107°+7.20 x 10~
32 1.78 x 1072 +£6.42 x 107% 249 x107°+1.33 x107° 1.16 x 1075 +£7.25 x 1076
64 658 x 107°+7.03x1076 7.74x10°+1.95x107° 1.62x107°+3.79 x 10~
128 273 x107%+£237x 1075 298 x 1074 +245 x107° 3.32x 107°+4.02 x 106
256 1.26x1073+£279%x107° 1.36x10734+290x 107> 1.20x 107*+1.04 x 1074
512 550x107234+1.63x107* 591 x1073+1.22x107% 1.22x1073+3.82x10~*
1024 216 x10724+6.92x107% 241 x1072£735x107% 4.83x 1073 £2.26 x 1073

2048 892 x 1072 £8.19 x 1072

1.04 x 1071 £1.03 x 1071

2.40 x 1072 4+ 3.87 x 1072

Moreover, if more computational resources are available, we can build m > 1 Householder reflectors
Gy, -+, Gy, using m random vectors vy, - - - , v, sampled i.i.d from S?~! and define the direction
matrix as

G1Gy---Grlgy.

It is important to note that when m = d, this procedure is equivalent to using the QR factorization.

Haar Butterfly matrices. We can build orthogonal matrices using Butterfly matrices [48]. Let
G(©) := [1], we can build an orthogonal matrix of dimension d = 2" with the following recursion

cos(0,)G"~ 1)
—sin(f,)GY

G(n) _ Sin(@n)G(”_l)

cos(,)G"=1)

where 0,, is sampled uniformly in [0, 27]. Then we compute G1,4 ¢ (we take the first £ columns).
The construction of Haar butterfly matrices is faster than previous methods because it only requires
simple operations. However, this procedure allows to build only matrices with d = 2" for n > 0. In
literature, different methods were proposed to cope with this limitation e.g. [23].

28

E Limitations

In this appendix, we discuss the main practical limitations of Algorithm[I] Like all finite-difference
methods with multiple directions, O-ZD requires multiple function evaluations to execute a single
step. In many practical applications, function evaluations can be time-consuming, leading to the use
of a small number of directions ¢. This may result in poor performance as observed in numerical
experiments. As for the subgradient method, in O-ZD the step size significantly affects performance,
and tuning it can be challenging. To address this limitation, an adaptive stepsize selection method
could be proposed. Furthermore, decreasing the sequence hj too quickly can lead to numerical
instability, as noted in [42].

F Other Experiments

We performed other experiments in minimizing convex functions. We considered the targets defined
in Table[3]and, for each experiment, we reported the mean and standard deviation using 20 repetitions.

Elastic Net Total Variation Huber Loss

—— single Gaussian

Single Spherical
—— Multi Gaussian
—— Multi Spherical
— ours

flxi) = fix”)
fixi) = fix ™)
fxi) = flx™)

o | — single Gaussian

single Spherical
—— Multi Gaussian
—— Multi Spherical
— ours

—— single Gaussian

Single Spherical
. | = mutti Gaussian
—— Multi Spherical
— ours

0 250 5000 7500 10000 12500 15000 17500 20000 0 250 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17300 20000
function evaluations function evaluations function evaluations

Infinity Norm Sparse Group Lasso L1 Norm

———

—— Single Gaussian
Single Spherical

x

- =

3 —— Multi Gaussian |
= —— Multi Spherical =100

- X

ours =

fix) = fix™)

—— Single Gaussian
Single Spherical

— Single Gaussian

single Spherical
.| — Multi Gaussian
—— Multi Spherical
— ours

— Multi Gaussian
5%10°{ —— Multi Spherical
— ours

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations function evaluations function evaluations

Figure 6: Function values per function evaluation in optimizing functions with different algorithms.

In Figure [6] we can observe that structured finite-difference performs better than unstructured
methods.

Table 3: Functions used and relative dimension and number of directions considered.

Name Definition d /
P
Sparse Group Lasso f(z) := > [|J2(5)|] 50 25
i=1
_ 0.5]z[3 fzf2 <0
Huber Loss f(z) = 5l|zfls — 0.562 otherwise ford >0 50 25
Elastic Net f(z) = allz||; +0.58]|z|3 50 25
L1 f(z) == ||z|1 50 25
Infinity Norm f(z) = ||2|loo 50 20
Total Variation f(z) == ||z|lTv 50 25

In Table[3] we define the function used for the experiments. In particular:

29

» Sparse Group Lasso: p is set to 3 and given an z € R, 2(%) is a vector obtained by taking
3 entries of x.

* Huber Loss: d is set to 0.5.
* Elastic Net: «, (3 are set to 0.5.

30

	Auxiliary Results
	Smoothing Lemma & Properties
	Auxiliary results and proofs for the nonsmooth setting, convex, and nonconvex.
	Auxiliary results for smooth setting.

	Proofs of Main Results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Corollaries 2 and 3
	Proof of Theorem 3
	Proof of Corollary 4
	Proof of Theorem 4
	Proof of Corollary 5

	Experimental Details
	Techniques to Generate Orthogonal Direction Matrices
	Limitations
	Other Experiments

