
A Auxiliary Results

In this appendix, we state and collect lemmas and propositions required to prove the main results.

Notation. In the following sections, we denote with Fk the filtration σ(G1, · · · , Gk−1). Moreover,
to simplify the notation, we define gk as the gradient surrogate in eq.(2) at time-step k i.e. gk :=
g(Gk,hk)(xk) and g(·) := g(G,h)(·) for an arbitrary G ∈ O(d) and h > 0. We denote the normalized
Haar measure [37] by µ. We define the unit ball Bd and the unit sphere Sd−1 as follow

Bd := {v ∈ Rd | ∥v∥ ≤ 1} and Sd−1 := {v ∈ Rd | ∥v∥ = 1}.

We denote by σ and σN the spherical measure and the normalized spherical measure on Sd−1,
respectively. Moreover, we denote with Id,ℓ ∈ Rd×ℓ the (truncated) identity matrix.

Lemma 2. Let β(Sd−1) be the surface area of Sd−1 and let I ∈ Rd×d be the identity matrix. Then,∫
Sd−1

vv⊺ dσ(v) =
β(Sd−1)

d
I.

Proof. This result is proved in [21, Lemma 7.3, point (b)].

Lemma 3. Let ϕ : Rd → R be a L-Lipschitz function . If u is uniformly distributed on Sd−1, then

(E[ϕ(u)− E[ϕ(u)]])2 ≤ c
L2

d
,

for some numerical constant c > 0.

Proof. The proof follows the same line as [46, Lemma 9].

A.1 Smoothing Lemma & Properties

In this appendix, we provide the proof of the Smoothing Lemma (i.e. Lemma 1).

Proof of Smoothing Lemma. By eq. (2),

EG[g(G,h)(x)] =
d

ℓ

ℓ∑
i=1

∫
O(d)

f(x+ hGei)− f(x− hGei)

2h
Gei dµ(G).

By [37, Theorem 3.7],

EG[g(G,h)(x)] =
d

2ℓh

ℓ∑
i=1

∫
Sd−1

(f(x+ hv(i))− f(x− hv(i)))v(i) dσN (v(i)).

Since v(i) is uniformly distributed on the sphere, which is symmetric with respect to the origin, we
have

EG[g(G,h)(x)] =
d

ℓh

ℓ∑
i=1

∫
Sd−1

f(x+ hv(i))v(i) dσN (v(i)).

As a consequence of Stokes’ Theorem (details in [18, Lemma 1] and [1, Theorem A8.8]), we get

E[g(G,h)(x)] =
1

ℓ

ℓ∑
i=1

∇fh(x) with fh(x) :=
1

vol(Bd)

∫
Bd

f(x+ hu) du.

Rearranging terms, we get the claim.
Proposition 1 (Smoothing properties). Let fh be the smooth approximation of f defined in eq. (4).
Then the following hold:
If f is convex then fh is convex and, for every x ∈ Rd,

f(x) ≤ fh(x).

14

If f is L0-Lipschitz continuous - i.e. ∀x, y ∈ Rd, |f(x)−f(y)| ≤ L0∥x−y∥, then fh is L0-Lipschitz
continuous, differentiable and for every x, y ∈ Rd

∥∇fh(x)−∇fh(y)∥ ≤ L0

√
d

h
∥x− y∥ and fh(x) ≤ f(x) + L0h.

If f is L1-smooth - i.e. f is differentiable and ∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥ then fh
is L1-smooth and for every x ∈ Rd,

∥∇fh(x)−∇f(x)∥ ≤ hdL1

2
and fh(x) ≤ f(x) +

L1

2
h2.

Proof. These are standard results proposed and proved in different works - see for example [16,
Lemma 8],[21, Proposition 7.5],[34, Proposition 2.2],[49].

Lemma 4 (Approximation Error). Let g(·) be the surrogate defined in eq. (2) for arbitrary h > 0
and G ∈ O(d). Then the following hold:

(i) If f is L0-Lipschitz (see Assumption 1), then, for every x ∈ Rd,

EG[∥g(x)∥2] ≤ 2c
dL2

0

ℓ
,

where c is a numerical constant.

(ii) If f is L1-smooth (see Assumption 3), then, for every x ∈ Rd,

EG[∥g(x)∥2] ≤
2d

ℓ
∥∇f(x)∥2 + L2

1d
2

2ℓ
h2.

Proof. Note that, since directions are orthogonal, we have

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

EG[(f(x+ hGei)− f(x− hGei))
2∥Gei∥2].

By [37, Theorem 3.7],

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Evi [(f(x+ hv(i))− f(x− hv(i)))2∥v(i)∥2], (5)

where each v(i) is uniformly distributed on Sd−1.
(i): Set γ = Ev(i) [f(x+ hv(i))] for every i (this expectation does not depend on i). Then

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x− hv(i)) + γ − γ)2∥v(i)∥2]

=
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)− (f(x− hv(i))− γ))2∥v(i)∥2]

≤ d2

2ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)2 + (f(x− hv(i))− γ)2)∥v(i)∥2]

=
d2

2ℓ2h2

ℓ∑
i=1

[
Ev(i) [(f(x+ hv(i))− γ)2∥v(i)∥2]

+ Ev(i) [(f(x− hv(i))− γ)2∥v(i)∥2]
]
.

Since v(i) is uniformly distributed on Sd−1, it satisfies ∥v(i)∥2 = 1 and by symmetry we have

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− γ)2].

15

The definition of γ yields

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)2]

=
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− Ev(i) [f(x+ hv(i))])2].

The claim follows by Lemma 3 and the fact that f(x+ hv(i)) is hL0-Lipschitz continuous w.r.t to
v(i).
(ii): Equation (5) yields

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x− hv(i))− f(x) + f(x))2∥v(i)∥2]

≤ d2

2ℓ2h2

ℓ∑
i=1

[
Ev(i) [(f(x+ hv(i))− f(x))2∥v(i)∥2]

+ Ev(i) [(f(x− hv(i))− f(x))2∥v(i)∥2]
]

=
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x))2],

where the last equation follows by symmetry. Adding and subtracting
〈
∇f(x), hv(i)

〉
we derive

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i)

[(
f(x+ hv(i))− f(x)−

〈
∇f(x), hv(i)

〉
+
〈
∇f(x), hv(i)

〉)2]

≤ 2d2

ℓ2h2

ℓ∑
i=1

(
Ev(i)

[(
f(x+ hv(i))− f(x)−

〈
∇f(x), hv(i)

〉)2]

+ Ev(i)

[(〈
∇f(x), hv(i)

〉)2])
.

Denote by β(Sd−1) the surface area of Sd−1. The Descent Lemma [41] implies

EG[∥g(x)∥2] ≤
2d2

ℓ2h2

ℓ∑
i=1

[(L2
1

4
h4
)
+ E

[(〈
∇f(x), hv(i)

〉)2]]

=
L2
1d

2

2ℓ
h2 +

2d2

ℓ2h2

ℓ∑
i=1

E

[(〈
∇f(x), hv(i)

〉)2]

=
L2
1d

2

2ℓ
h2 +

2d2

ℓ2β(Sd−1)

ℓ∑
i=1

∫
Sd−1

∇f(x)⊺v(i)v(i)⊺∇f(x) dσ(v).

By Lemma 2, we get the claim. Indeed,

EG[∥g(x)∥2] ≤
L2
1d

2

2ℓ
h2 +

2d2

ℓ2β(Sd−1)

ℓ∑
i=1

(β(Sd−1)

d
∥∇f(x)∥2

)
=

2d

ℓ
∥∇f(x)∥2 + L2

1d
2

2ℓ
h2.

A.2 Auxiliary results and proofs for the nonsmooth setting, convex, and nonconvex.

In this subsection, for every k, we will denote by Fk the σ-algebra σ(G0, . . . , Gk−1).

16

Lemma 5. Let f : Rd → R be a lower semi-continuous function and denote with S = argmin f
and f∗ = min f . Then,{

(A) ∀x∗ ∈ S, ∃ lim
k

∥xk − x∗∥
(B) lim inf

k
f(xk) = f∗ =⇒ ∃x∞ ∈ S s.t. xk → x∞.

Proof. Since (B) holds, we have that exists (xkj)j∈N subsequence of (xk)k∈N such that f(xkj) → f∗.
Since S ̸= ∅ and (A) we have that

∃x∗ ∈ S and ∃ lim
k

∥xk − x∗∥.

Thus, the sequence (xk)k∈N is bounded and, therefore, also (xkj
)j∈N is bounded. Taking a convergent

subsequence (xkjn
)n∈N of (xkj)j∈N, we have that exists x∞ s.t.

xkjn
→ x∞.

Since f is assumed to be lower semi-continuous, we have that
f(x∞) ≤ lim inf

n
f(xkjn

) = f∗ = lim
j

f(xkj
).

Thus, we have that x∞ ∈ S which implies, by (A), that
∃ lim

k
∥xk − x∞∥ and lim

n
∥xkjn

− x∞∥ = 0.

Hence, since xkjn
is a subsequence of xk,

lim
k

∥xk − x∞∥ = 0,

and, therefore, xk → x∞ ∈ S.

Lemma 6 (Convergence: convex non-smooth). Assume that f is convex and L0 Lipschitz continuous.
Let (xk)k∈N be the sequence generated by Algorithm 1 and let x∗ ∈ argmin f . Then, for every
k ∈ N, the following inequality holds:

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ 2c
L2
0d

ℓ
α2
k + 2L0αkhk,

where c is some non-negative constant independent from the dimension. Moreover, if the stepsizes
satisfy Assumption 2, we have

lim
k→+∞

f(xk) = f(x∗) a.s,

and there exists a random variable x̂ taking values in in argmin f such that xk → x̂ a.s.

Proof. Let k ∈ N. By Algorithm 1,
∥xk+1 − x∗∥2 − ∥xk − x∗∥2 = α2

k∥gk∥2 − 2αk ⟨gk, xk − x∗⟩ . (6)
Since fhk

is convex by Proposition 1 and E[gk|Fk] = ∇fhk
(xk) (see Lemma 1), we have

−⟨∇fhk
(xk), xk − x∗⟩ ≤ fhk

(x∗)− fhk
(xk).

Thus, taking the conditional expectation with respect to Fk, by Lemma 4, we get,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2c
L2
0d

ℓ
α2
k︸ ︷︷ ︸

=:Ck

−2αk(fhk
(xk)− fhk

(x∗)).

Then, by Proposition 1,
E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ Ck − 2αk(f(xk)− f(x∗)) + 2L0αkhk.

Next suppose that Assumption 2 holds. Rearranging the terms,
E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ Ck + 2L0αkhk,

with Ck ∈ ℓ1 and αkhk ∈ ℓ1. Therefore, Robbins-Siegmund Theorem [43] implies that (∥xk −
x∗∥)k∈N is a.s. convergent, αk(f(xk)− f(x∗)) ∈ ℓ1 a.s. and thus, since αk ̸∈ ℓ1,

lim inf
k→∞

f(xk) = f(x∗) a.s. (7)

We derive from [32, Lemma 9.9] and Lemma 5 that there exists a random variable x̂ taking values in
argmin f such that xk → x̂ a.s. Finally, continuity of f yields that lim

k
f(xk) = f(x∗) a.s.

17

In the next Lemma, to derive bounds on function values, we study the sequence (fhk
(xk+1) −

fhk
(xk))k∈N. It is the difference between the smoothed function at iteration k evaluated at xk and

at xk+1. It corresponds to the function value decrease between the iterations k + 1 and k if hk is
constant.
Lemma 7 (Function Value decrease: nonconvex non-smooth setting). Under Assumption 1, let
(xk)k∈N be the sequence generated by Algorithm 1. Then,

E[fhk
(xk+1)|Fk]− fhk

(xk) ≤ −αk∥∇fhk
(xk)∥2 + c

L3
0d
√
d

ℓ

α2
k

hk
,

where c is a numerical constant.

Proof. By Lemma 1, we have that fhk
is L0

√
d/hk-smooth. Thus, by the Descent Lemma [41],

fhk
(xk+1)− fhk

(xk) ≤ −αk ⟨∇fhk
(xk), gk⟩+

L0

√
d

2hk
α2
k∥gk∥2.

Taking the conditional expectation with respect to Fk,

E[fhk
(xk+1)|Fk]− fhk

(xk) ≤ −αk∥∇fhk
(xk)∥2 +

L0

√
d

2hk
α2
k E[∥gk∥2|Fk]. (8)

The claim follows from Lemma 4.

A.3 Auxiliary results for smooth setting.

Lemma 8 (Function value decrease: convex smooth setting). Under Assumption 3 , let (xk)k∈N be
the sequence generated by Algorithm 1. Then the following holds:

E[f(xk+1)|Fk]− f(xk) ≤ −αk

(1
2
− L1d

ℓ
αk

)
∥∇f(xk)∥2 +

L2
1d

2αkh
2
k

8
+

L3
1d

2

4ℓ
α2
kh

2
k.

Proof. By the Descent Lemma [41] and Algorithm 1,

f(xk+1)− f(xk) ≤ −αk ⟨∇f(xk), gk⟩+
L1

2
α2
k∥gk∥2.

Taking the conditional expectation and by Lemma 4,

E[f(xk+1)|Fk]− f(xk) ≤ −αk ⟨∇f(xk),∇fhk
(xk)⟩+

L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

Adding and subtracting ∇f(xk),

E[f(xk+1)|Fk]− f(xk) ≤ −αk ⟨∇f(xk),∇fhk
(xk)−∇f(xk)⟩ − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

By Cauchy-Schwarz inequality and Proposition 1,

E[f(xk+1)|Fk]− f(xk) ≤ αk

(L1d

2
hk

)
∥∇f(xk)∥ − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

By Young’s inequality,

E[f(xk+1)|Fk]− f(xk) ≤
L2
1d

2αkh
2
k

8
+

αk

2
∥∇f(xk)∥2 − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

= −αk

(1
2
− L1d

ℓ
αk

)
∥∇f(xk)∥2 +

L2
1d

2αkh
2
k

8
+

L3
1d

2

4ℓ
α2
kh

2
k.

This concludes the proof.

18

Lemma 9 (Convergence in smooth setting). Let (xk)k∈N be the sequence generated by Algorithm 1
and let x∗ ∈ argmin

x∈Rd

f(x). Then, under Assumption 3, the following inequality holds

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ L1dαkhk∥xk − x∗∥ − 2αk ⟨∇f(xk), xk − x∗⟩ .
Moreover, if f is convex, Assumption 4 holds and αk ≤ ᾱ < ℓ/(2dL1). Then

• (αk∥∇f(xk)∥2)k∈N ∈ ℓ1 a.s.

• (∥xk − x∗∥)k∈N is a.s. convergent.

• (αk(f(xk)− f(x∗)))k∈N ∈ ℓ1 a.s.

• there exists a random variable x̂ taking values in argmin f such that xk → x̂ a.s. and
lim
k→∞

f(xk) = min f .

Proof. We have

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 = α2
k∥gk∥2 − 2αk ⟨gk, xk − x∗⟩ .

Taking the conditional expectation,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 = α2
k E[∥gk∥2|Fk]− 2αk ⟨∇fhk

(xk), xk − x∗⟩ .
For every k, set uk = ∥xk − x∗∥. By Lemma 4,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k − 2αk ⟨∇fhk

(xk), xk − x∗⟩ .

Note that

−2αk ⟨∇fhk
(xk), xk − x∗⟩ = 2αk ⟨∇fhk

(xk)−∇f(xk), x
∗ − xk⟩ − 2αk ⟨∇f(xk), xk − x∗⟩ .

Thus,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ 2αk ⟨∇fhk
(xk)−∇f(xk), x

∗ − xk⟩ − 2αk ⟨∇f(xk), xk − x∗⟩ .
By the Cauchy-Schwarz inequality,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ 2αk∥∇fhk
(xk)−∇f(xk)∥uk − 2αk ⟨∇f(xk), xk − x∗⟩ .

The first claim follows from Proposition 1. By Proposition 1 and Young’s inequality with parameter
τk = αkhk, we get

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2τk
α2
kh

2
k +

L1dτk
2

u2
k − 2αk ⟨∇f(xk), xk − x∗⟩ .

=
2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2
αkhk +

L1d

2
αkhku

2
k

− 2αk ⟨∇f(xk), xk − x∗⟩ .

(9)

Since f is convex, by Baillon-Haddad Theorem [3], we derive that

E[u2
k+1|Fk]− u2

k ≤ −2
(1

L1
− d

ℓ
αk

)
αk∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2
αkhk +

L1d

2
αkhku

2
k.

19

By Assumption 4,

E[u2
k+1|Fk]− u2

k ≤ −2
(1

L1
− d

ℓ
ᾱ
)

︸ ︷︷ ︸
=:∆

αk∥∇f(xk)∥2 +
L1d

2
αkhk︸ ︷︷ ︸

=:ρk

u2
k

+
L1d

2
αkhk +

L2
1d

2

2ℓ
α2
kh

2
k︸ ︷︷ ︸

=:Ck

.

Note that ∆ > 0. Thus, rearranging the terms

E[u2
k+1|Fk]− (1 + ρk)u

2
k + 2∆αk∥∇f(xk)∥2 ≤ Ck.

Since ρk, Ck ∈ ℓ1 by Assumption 4, Robbins-Siegmund Theorem [43] ensures that (u2
k)k∈N is

convergent and (αk∥∇f(xk)∥2)k∈N ∈ ℓ1 a.s. Since f is convex, it follows from (9) that

E[u2
k+1|Fk]− (1 + ρk)u

2
k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 − 2αk(f(xk)− f(x∗)) + Ck.

Robbins-Siegmund Theorem [43] implies that (αk(f(xk) − f(x∗)))k∈N ∈ ℓ1 a.s. Assumption 4
implies that αk ̸∈ ℓ1 therefore

lim inf
k

f(xk)− f(x∗) = 0 a.s. (10)

By Lemma 8 and Assumption 4, we have that the sequence E[f(xk+1)−f(x∗)|Fk]−(f(xk)−f(x∗))
is upper-bounded by a sequence in ℓ1. Thus, by Robbins-Siegmund Theorem [43], limk(f(xk)−
f(x∗)) exists a.s. Then, it follows from (10) that

lim
k→∞

f(xk) = f(x∗) a.s.

Moreover, as we saw before, (∥xk − x∗∥)k∈N is convergent a.s. for every x∗ ∈ argmin f . Then, by
Opial’s Lemma [40], there exists a random variable x̂ taking values in argmin f such that xk → x̂
a.s.

Lemma 10 (Gradient bound: convex smooth setting). Suppose that Assumptions 3 and 4 hold, and
assume f to be convex. Let (xk)k∈N be the sequence generated by Algorithm 1. Then, for every
k ∈ N and every x∗ ∈ argmin f ,

k∑
i=0

αi E[∥∇f(xi)∥2] ≤
1

2∆

(
Sk +

k∑
i=0

ρi
√
E[∥xi − x∗∥2]

)
,

and √
E[∥xk − x∗∥2] ≤

√
Sk−1 +

k∑
i=0

ρi,

where

∆ :=
(1

L1
− d

ℓ
ᾱ
)
, Sk := ∥x0 − x∗∥+

k∑
i=0

Ci

Ck :=
L2
1d

2

2ℓ
α2
kh

2
k and ρk := L1dαkhk.

Proof. By Lemma 9 we derive

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 + Ck

+ ρk∥xk − x∗∥ − 2αk ⟨∇f(xk), xk − x∗⟩ .

By Baillon-Haddad Theorem and Assumption 4,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ −2∆αk∥∇f(xk)∥2 + Ck + ρk∥xk − x∗∥.

20

Let uk :=
√
E[∥xk − x∗∥2]. Taking the full expectation, by Jensen inequality we have

u2
k+1 − u2

k ≤ −2∆αk E[∥∇f(xk)∥2] + ρkuk + Ck.

Summing the previous inequality from i = 0, · · · , k, we get

u2
k+1 + 2∆

k∑
i=0

αi E[∥∇f(xi)∥2] ≤ u2
0 +

k∑
i=0

Ci︸ ︷︷ ︸
=:Sk

+

k∑
i=0

ρiui.
(11)

Since uk is non-negative, the first claim of the lemma follows. Since ∆ > 0, ρk ≥ 0, Sk is non
decreasing, and Sk ≥ u2

0 in (11), then

u2
k+1 ≤ Sk +

k∑
i=0

ρiui.

Thus, the (discrete) Bihari’s Lemma [32, Lemma 9.8] yields

uk+1 ≤ 1

2

k∑
i=0

ρi +
[
Sk +

(1
2

k∑
i=0

ρi

)2]1/2
≤
√

Sk +
k∑

i=0

ρi,

concluding the proof.

B Proofs of Main Results

B.1 Proof of Theorem 1

By Lemma 6,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ 2c
L2
0d

ℓ
α2
k + 2L0αkhk.

Rearranging the terms, taking the full expectation, and summing the first k iterations

k∑
i=0

αi E[(f(xi)− f(x∗))] ≤ ∥x0 − x∗∥2

2
+ c

dL2
0

ℓ

k∑
i=0

α2
i + L0

k∑
i=0

αihi.

Let x̄k :=
k∑

i=0

αixi/(
k∑

i=0

αi). Dividing by
k∑

i=0

αi and observing that by convexity we have

E[f(x̄k)−min f] ≤

k∑
i=0

αi E[(f(xi)− f(x∗))]

k∑
i=0

αi

,

we get the first claim. Under Assumption 2, the second claim holds by Lemma 6.

B.2 Proof of Corollary 1

By Theorem 1,

E[f(x̄k)−min f] ≤ 1
k∑

i=0

αi

(
∥x0 − x∗∥2

2
+ c

dL2
0

ℓ

k∑
i=0

α2
i + L0

k∑
i=0

αihi

)
.

Replacing αk and hk with the sequences in the statement,

E[f(x̄k)− f(x∗)] ≤ C1

αk1−θ
+

C2

kρ
h+

d

ℓ

C3

kθ
α,

21

with

C1 :=
(1− θ)∥x0 − x∗∥2

2
, C2 :=

L0(1− θ)

(1− θ − ρ)
and C3 :=

cL2
0(1− θ)

(1− 2θ)
.

The second point of the corollary can be proved replacing αk = α and hk = h. Now, to prove the
third point, fix ε ∈ (0, 1). Since we want E[f(x̄k)− f(x∗)] ≤ ε, we impose

∥x0 − x∗∥2

2αk
+

cdL2
0

ℓ
α+ L0h ≤ ε.

Choosing hk = h ≤ ε
2L0

, to get the previous inequality it is sufficient to impose

∥x0 − x∗∥2

2αk
+

cdL2
0

ℓ
α ≤ ε

2
.

We fix a priori a number of iterations K and we minimize the left handside with respect to α, obtaining

α =

√
ℓ

d

∥x0 − x∗∥√
2cKL0

.

Thus, for hk = h ≤ ε
2L0

, α as above and

K ≥ 8∥x0 − x∗∥2L2
0cd

ℓε2
,

we have E[f(x̄k)−f(x∗)] ≤ ε. Note that, since the computation of the surrogate requires 2ℓ function
evaluations, to ensure an error of ε we need to perform a number of function evaluations of the order

O(dε−2).

This concludes the proof.

B.3 Proof of Theorem 2

By Lemma 7,

E[fh(xk+1)|Fk]− fh(xk) ≤ −αk∥∇fh(xk)∥2 + c
L3
0d
√
d

ℓ

α2
k

h
.

Taking the full expectation and rearranging the terms,

αk E[∥∇fh(xk)∥2] ≤ E[fh(xk)− fh(xk+1)] + c
L3
0d
√
d

ℓ

α2
k

h
.

Next sum from i = 0 to i = k. By definition of fh, we have fh(x) ≥ min f for every x ∈ Rd, thus,

k∑
i=0

αi E[∥∇fh(xi)∥2] ≤ E[fh(x0)−min f] + c
L3
0d
√
d

ℓ

k∑
i=0

α2
i

h
. (12)

The claim follows.

B.4 Proof of Corollaries 2 and 3

By Theorem 2,

η
(h)
k ≤

(
(fh(x0)− f(x∗)) + c

L3
0d
√
d

ℓ

k∑
i=0

α2
i

h

)
/
(k∑
i=0

αi

)
.

Due to the choice of αk = α(k + 1)−θ with θ ∈ (1/2, 1) and α > 0, we get

η
(h)
k ≤ C1

α(k + 1)1−θ
+

C2d
√
dα

ℓh

1

(k + 1)θ
,

22

where

C1 := ∥x0 − x∗∥2(1− θ) and C2 :=
cL3

0(1− θ)

(1− 2θ)
.

If we choose αk = α, we derive

η
(h)
k ≤ fh(x0)−min f

αk
+

cL3
0d
√
dα

ℓh
. (13)

If we fix a priori a number of iteration K and we minimize the right handside with respect to α, we
get

α̂ =

√
(fh(x0)− f(x∗))ℓh

KcL3
0d
√
d

.

Let ε ∈ (0, 1). Choosing α = α̂, we get η(h)K ≤ ε for

K ≥ 4
(fh(x0)− f(x∗))cL3

0d
√
d

ℓh
ε−2. (14)

This concludes the proof of Corollary 2. To prove Corollary 3, we fix a maximum number of
iterations K ∈ N and consider the random variable I of the statement. Let ∂hf be the h-Goldstein
subdifferential defined in Definition 1. It follows from [34, Theorem 3.1] that ∇fh(xI) ∈ ∂hf(xI)
almost surely, therefore

EI min[∥η∥2 : η ∈ ∂hf(xI)] ≤ EI E[∥∇fh(xI)∥2].
In addition, Theorem 2 yields

EI EG[∥∇fh(xI)∥2] =

(K−1∑
j=0

αj EG[∥∇fh(xj)∥2]
)
/

K−1∑
j=0

αj

≤ E[fh(x0)−min f] + c
L3
0d
√
d

ℓ

k∑
i=0

α2
i

h
.

Thus,
EI [∥η∥2 : η ∈ ∂hf(xI)] ≤ EI E[∥∇fh(xI)∥2] = η

(h)
k .

Hence, for α = ᾱ and K chosen s.t. inequality (14) holds, we have

EI [∥η∥2 : η ∈ ∂hf(xI)] ≤ ε.

This concludes the proof.

B.5 Proof of Theorem 3

By Lemma 9,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 + 2αk ⟨∇f(xk), x

∗ − xk⟩

+ L1dαkhk︸ ︷︷ ︸
=:ρk

∥x∗ − xk∥+
L2
1d

2

2ℓ
α2
kh

2
k︸ ︷︷ ︸

=:Ck

.

By convexity,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 − 2αk(f(xk)− f(x∗))

+ ρk∥x∗ − xk∥+ Ck.

Rearranging the terms and taking the full expectation,

2E[αk(f(xk)− f(x∗))] ≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2] + 2d

ℓ
α2
k E[∥∇f(xk)∥2]

+ ρk E[∥x∗ − xk∥] + Ck.

23

Since E[∥x∗ − xk∥] = E[
√
∥x∗ − xk∥2], Jensen’s inequality implies that

2E[αk(f(xk)− f(x∗))] ≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2] + 2d

ℓ
α2
k E[∥∇f(xk)∥2]

+ ρk
√

E[∥x∗ − xk∥2] + Ck.

Denoting with uk = E[∥xk − x∗∥2] and taking the sum from i = 0 to i = k,

2

k∑
i=0

αi E[f(xi)− f(x∗)] ≤ u2
0 +

k∑
i=0

Ci︸ ︷︷ ︸
=:Sk

+
2d

ℓ

k∑
i=0

α2
i E[∥∇f(xi)∥2] +

k∑
i=0

ρiui

≤ Sk +
2d

ℓ
ᾱ

k∑
i=0

αi E[∥∇f(xi)∥2] +
k∑

i=0

ρiui,

where the last inequality holds by Assumption 4. Let ∆ := (1/L1 − (d/ℓ)ᾱ). By Lemma 10, we
have

k∑
i=0

αi E[f(xi)− f(x∗)] ≤ 1

2

(
Sk +

dᾱ

∆ℓ

[
Sk +

k∑
i=0

ρiui

]
+

k∑
i=0

ρiui

)
=

ℓ∆+ dᾱ

2ℓ∆

(
Sk +

k∑
i=0

ρiui

)
≤ ℓ∆+ dᾱ

2ℓ∆

(
Sk +

k∑
i=0

ρi(
√

Si +

i∑
j=0

ρj)
)
.

Let x̄k :=
k∑

i=0

αixi/(
k∑

i=0

αi). Dividing both sides by
k∑

i=0

αi, convexity yields

E[f(x̄k)−min f] ≤

k∑
i=0

αi E[(f(xi)− f(x∗))]

k∑
i=0

αi

.

B.6 Proof of Corollary 4

In this proof, we use the same notation as the one in the proof of Theorem 3. By the choices of the
parameters, we have

k∑
i=0

ρi ≤ C1dαh with C1 :=
L1θ

θ − 1
,

Sk ≤ ∥x0 − x∗∥2 + C2
d2

ℓ
α2h2 with C2 :=

L2
1θ

2θ − 1
.

Thus, using these inequalities in Theorem 3, we get

Dk ≤ ℓ∆+ dᾱ

2ℓ∆

(
∥x0 − x∗∥2 + C2

d2α2h2

ℓ
+
√
∥x0 − x∗∥2C3dαh

+ C4
dαh√

ℓ
+ C5d

2α2h2
)
,

with

C3 :=
L2
1θ

θ − 1
, C4 :=

L2
1√
2
, C5 :=

L2
1θ

(θ − 1)2
.

Dividing by
k∑

i=0

αi, we get

E[f(x̄k)−min f] ≤ C

αk
.

24

Note that by Assumption 4, α < ℓ/(dL1), thus 1/α > (dL1)/ℓ. The algorithm performs 2ℓ function
evaluations at each iteration. Thus, to guarantee E[f(x̄k)−min f] ≤ ε for ε ∈ (0, 1), the algorithm
has to perform a number of function evaluations in the order of

O(dε−1).

Assuming, instead, αk ≤ ᾱ < ℓ/(2dL1), by Lemma 9 we get the last claim; i.e, there exists a random
variable x̂ taking values in argmin f s.t. xk → x̂ a.s.

B.7 Proof of Theorem 4

Set C1 = (dL1)/2. It follows from Lemma 8 that

E[f(xk+1)|Fk]− f(xk) ≤ −
(1
2
− L1d

ℓ
ᾱ
)
αk∥∇f(xk)∥2 +

C2
1αkh

2
k

2
+

L3
1d

2

4ℓ
α2
kh

2
k.

Taking the full expectation and rearranging the terms, and recalling the definition of ∆,

∆αk E[∥∇f(xk)∥2] ≤ E[f(xk)− f(xk+1)] +
C2

1αkh
2
k

2
+

L3
1d

2

4ℓ
α2
kh

2
k.

Summing for i = 0, · · · , k and observing that min f ≤ f(x) for every x,

∆

k∑
i=0

αi E[∥∇f(xi)∥2] ≤ f(x0)−min f +
k∑

i=0

C2
1αih

2
i

2
+

L3
1d

2

4ℓ

k∑
i=0

α2
ih

2
i .

Divinding by ∆
k∑

i=0

αi we get the claim.

B.8 Proof of Corollary 5

(i): From the choice of αk and hk, we have
k∑

i=0

αih
2
i ≤ 2θαh2

2θ − 1

k∑
i=0

α2
ih

2
i ≤ 2θα2h2

2θ − 1
.

It follows from Theorem 4 that

ηk ≤ 1

∆αk

(
f(x0)−min f + C1d

2αh2 +
C2α

2h2d2

ℓ

)
,

with C1 =
L2

1θ
4(2θ−1) and C2 =

L3
1θ

2(2θ−1) .
(ii): It follows directly from Theorem 4 taking into account that

k∑
i=0

αih
2
i = kαh2,

k∑
i=0

α2
ih

2
i = kα2h2,

and setting C1 = L2
1/8 and C2 = L3

1/4.

C Experimental Details

In this appendix, we report details on the experiments performed. We implemented every script in
Python3 (version 3.9.11) and used numpy (version 1.22.2) [27] and matplotlib (version 3.5.1) [29]
libraries.

Machine used to perform the experiments. In the following table, we describe the features of the
machine used to perform the experiments in Section 4.

Table 1: Machine used to perform the experiments

Feature

OS Debian GNU/Linux 11
CPU(s) 4 x Intel(R) Core(TM) i7-1165G7 11th Gen @ 2.80GHz
CPU Core(s) 4
RAM 8 GB

25

Target Functions. We considered two synthetic target functions: a convex smooth function f1 and
a convex non-smooth function f2 defined as follows

(Convex Smooth) f1(x) :=
1

2
∥Ax∥2 with A ∈ Rd×d

(Convex Non-smooth) f2(x) := ∥x− v̄∥1
where A is a random Gaussian matrix (i.e. Ai,j ∼ N (0, 1)) and v̄ := [0, 1, · · · , d− 1]⊺.

Choice of the number of directions. We report here the details of the first experiment of Section 4.
For these experiments, we consider d = 50 and we use, for the smooth convex case, the following
parameters

αk = 0.99
ℓ

dL1
and hk =

10−5

k + 1
.

The constant L1 is computed as the maximum eigenvalue of the matrix A⊺A. Note that this parameter
choice satisfies Assumption 4. For the non-smooth target, we used

αk =

√
ℓ

d
k−1/2−10−5

and hk =
10−7

k + 1
.

Note that this parameter configuration satisfies Assumption 2. The maximum number of function
evaluations considered is 4000. The direction matrices Gk are generated with the QR method - see
Appendix D.

Comparison with Finite-difference methods. In Section 4, we compare finite-difference method
with different choice of directions. In order to make a fair comparison we consider only central finite-
differences. However, note that Algorithm 1 can be modified (in practice) considering computationally
cheaper gradient estimators - see Remark 1. For these experiments, we consider d = 10 and ℓ = d
for methods with multiple directions. The maximum number of function evaluations is 1000 for both
smooth and non-smooth targets and the direction matrices Gk for Algorithm 1 are generated with the
QR method - see Appendix D. To solve the smooth problem we consider the following parameter
choice for every method

αk = c
ℓ

dL1
and hk =

10−7

d2(k + 1)
,

where L1 is computed taking the maximum eigenvalue of A⊺A. For Algorithm 1 and finite-difference
with single and multiple spherical directions c = 0.99 while it is equal to c = 0.11 for finite-difference
with single and multiple Gaussian directions. We made this choice since for finite-difference methods
with Gaussian directions we observed divergence for larger choices of c - see Figure 3.

0 200 400 600 800 1000
function evaluations

10−1

102

105

108

1011

1014

1017

f(x
k)

−
f(x

*)

Smooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

10−2

10−1

100

101

102

103

104

105

f(x
k)

−
f(x

*)

Smooth Convex Target
Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

Figure 3: From left to right, comparison of finite-difference methods for smooth convex target with
c = 0.99 and c = 0.2 for methods with Gaussian directions.

For the non-smooth convex target, we considered the following parameter choice

αk = c
ℓ

d
k−1/2−10−5

and hk =
1

d2(k + 1)
.

26

For every method, we selected c = 0.65 except for the method with multiple Gaussian directions in
which we selected c = 0.08 since it provided better performances - see Figure 4.

0 200 400 600 800 1000
function evaluations

100

101
f(x

k)
−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

0 200 400 600 800 1000
function evaluations

100

101

102

f(x
k)

−
f(x

*)

NonSmooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Our

Figure 4: From left to right and up to down, comparison of finite difference method with different
directions and different values of c for multiple Gaussian directions. The values of c considered are
the following [0.085, 0.089, 0.09, 0.1, 0.2, 0.3, 0.5, 0.65]

D Techniques to Generate Orthogonal Direction Matrices

In the literature, different algorithms were proposed to generate orthogonal matrices - see for instance
[23, 38, 11, 28, 7, 2, 4, 44, 8] and references therein. Such methods can be used to generate the
direction matrices Gk required for the iteration proposed in Algorithm (1). In this appendix, we
briefly discuss three of them.

QR factorization. As observed in [32, 42], a way to generate orthogonal consists in generating
a random Gaussian matrix A ∈ Rd×d with Ai,j ∼ N (0, 1) and perform the QR factorization i.e.
A = QR. Then, the direction matrix is the truncation of the Q matrix i.e. QId,ℓ.

Householder Reflection. To obtain a direction matrix, we can use a Householder reflector. This
can be done by sampling a vector v from the unit sphere Sd−1. The direction matrix G is defined as a
Householder reflector, given by

G := I − 2vv⊺,

with I ∈ Rd×d identity matrix. To obtain the desired matrix, we compute the product of G with Id,ℓ,
i.e., we take the first ℓ columns. The (truncated) identity matrix can be generated and stored offline
(note that since it is very sparse, it can be stored using a sparse format (e.g. the COO format proposed
in scikit-learn library[9]). In this way, we can save resources in high-dimensional settings. In order to
quantify the time-cost of this procedure, we compared the time of generating this kind of matrix with
random matrices with different dimensions. For this experiment, we consider the ℓ = d case i.e. the
most expensive. Matrices are computed in CPU and the details of the machine used are described in
Appendix C. We report the mean and standard deviation of the time using 500 repetitions. In Figure
5, we compare the time-cost of generating orthogonal matrices with this procedure against generating
random matrices while in Table 2 we report the mean and standard deviation of the results.

27

2 4 8 16 32 64 128 256 512 1024 2048
d

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Ti
m

e
(s

)

Computational Time to generate matrices
random Gaussian
random spherical
Householder

Figure 5: Time comparison in CPU of different methods to generate direction matrices.

In Figure 5, we can observe that using this strategy we can limit the cost of generating random
orthogonal matrices. In particular, for dimensions larger than 32, our method is faster than random
gaussian and spherical directions.

Table 2: Comparison of the time-cost (seconds) of generating random and orthogonal matrices with
different dimensions

d Random Gaussian Random Spherical Householder

2 9.27× 10−7 ± 7.96× 10−7 5.49× 10−6 ± 2.05× 10−6 9.32× 10−6 ± 3.34× 10−6

4 1.30× 10−6 ± 7.21× 10−7 6.56× 10−6 ± 2.63× 10−6 1.12× 10−5 ± 5.79× 10−6

8 2.18× 10−6 ± 6.06× 10−7 8.01× 10−6 ± 5.32× 10−6 1.11× 10−5 ± 5.20× 10−6

8 2.18× 10−6 ± 6.06× 10−7 8.01× 10−6 ± 5.32× 10−6 1.11× 10−5 ± 5.20× 10−6

16 5.69× 10−6 ± 1.61× 10−6 1.15× 10−5 ± 4.10× 10−6 1.18× 10−5 ± 7.20× 10−6

32 1.78× 10−5 ± 6.42× 10−6 2.49× 10−5 ± 1.33× 10−5 1.16× 10−5 ± 7.25× 10−6

64 6.58× 10−5 ± 7.03× 10−6 7.74× 10−5 ± 1.95× 10−5 1.62× 10−5 ± 3.79× 10−6

128 2.73× 10−4 ± 2.37× 10−5 2.98× 10−4 ± 2.45× 10−5 3.32× 10−5 ± 4.02× 10−6

256 1.26× 10−3 ± 2.79× 10−5 1.36× 10−3 ± 2.90× 10−5 1.20× 10−4 ± 1.04× 10−4

512 5.50× 10−3 ± 1.63× 10−4 5.91× 10−3 ± 1.22× 10−4 1.22× 10−3 ± 3.82× 10−4

1024 2.16× 10−2 ± 6.92× 10−4 2.41× 10−2 ± 7.35× 10−4 4.83× 10−3 ± 2.26× 10−3

2048 8.92× 10−2 ± 8.19× 10−2 1.04× 10−1 ± 1.03× 10−1 2.40× 10−2 ± 3.87× 10−2

Moreover, if more computational resources are available, we can build m > 1 Householder reflectors
G1, · · · , Gm using m random vectors v1, · · · , vm sampled i.i.d from Sd−1 and define the direction
matrix as

G1G2 · · ·GmId,ℓ.

It is important to note that when m = d, this procedure is equivalent to using the QR factorization.

Haar Butterfly matrices. We can build orthogonal matrices using Butterfly matrices [48]. Let
G(0) := [1], we can build an orthogonal matrix of dimension d = 2n with the following recursion

G(n) =

[
cos(θn)G

(n−1) sin(θn)G
(n−1)

− sin(θn)G
(n−1) cos(θn)G

(n−1)

]
where θn is sampled uniformly in [0, 2π]. Then we compute GId,ℓ (we take the first ℓ columns).
The construction of Haar butterfly matrices is faster than previous methods because it only requires
simple operations. However, this procedure allows to build only matrices with d = 2n for n ≥ 0. In
literature, different methods were proposed to cope with this limitation e.g. [23].

28

E Limitations

In this appendix, we discuss the main practical limitations of Algorithm 1. Like all finite-difference
methods with multiple directions, O-ZD requires multiple function evaluations to execute a single
step. In many practical applications, function evaluations can be time-consuming, leading to the use
of a small number of directions ℓ. This may result in poor performance as observed in numerical
experiments. As for the subgradient method, in O-ZD the step size significantly affects performance,
and tuning it can be challenging. To address this limitation, an adaptive stepsize selection method
could be proposed. Furthermore, decreasing the sequence hk too quickly can lead to numerical
instability, as noted in [42].

F Other Experiments

We performed other experiments in minimizing convex functions. We considered the targets defined
in Table 3 and, for each experiment, we reported the mean and standard deviation using 20 repetitions.

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

10−1

100

101

102

103

f(x
k)

−
f(x

*)

Elastic Net

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

100

101

102

f(x
k)

−
f(x

*)

Total Variation

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

10−14

10−11

10−8

10−5

10−2

101

f(x
k)

−
f(x

*)

Huber Loss

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

101

5 × 100

6 × 100

7 × 100

8 × 100

9 × 100

f(x
k)

−
f(x

*)

Infinity Norm

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

100

101

f(x
k)

Sparse Group Lasso

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 2500 5000 7500 10000 12500 15000 17500 20000
function evaluations

10−14

10−11

10−8

10−5

10−2

101

f(x
k)

−
f(x

*)
L1 Norm

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

Figure 6: Function values per function evaluation in optimizing functions with different algorithms.

In Figure 6, we can observe that structured finite-difference performs better than unstructured
methods.

Table 3: Functions used and relative dimension and number of directions considered.

Name Definition d ℓ

Sparse Group Lasso f(x) :=
p∑

i=1

∥x(βi)∥ 50 25

Huber Loss f(x) :=

{
0.5∥x∥22 ∥x∥2 ≤ δ

δ∥x∥2 − 0.5δ2 otherwise for δ > 0 50 25

Elastic Net f(x) := α∥x∥1 + 0.5β∥x∥22 50 25
L1 f(x) := ∥x∥1 50 25
Infinity Norm f(x) := ∥x∥∞ 50 20
Total Variation f(x) := ∥x∥TV 50 25

In Table 3, we define the function used for the experiments. In particular:

29

• Sparse Group Lasso: p is set to 3 and given an x ∈ Rd, x(βi) is a vector obtained by taking
3 entries of x.

• Huber Loss: δ is set to 0.5.
• Elastic Net: α, β are set to 0.5.

30

	Auxiliary Results
	Smoothing Lemma & Properties
	Auxiliary results and proofs for the nonsmooth setting, convex, and nonconvex.
	Auxiliary results for smooth setting.

	Proofs of Main Results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Corollaries 2 and 3
	Proof of Theorem 3
	Proof of Corollary 4
	Proof of Theorem 4
	Proof of Corollary 5

	Experimental Details
	Techniques to Generate Orthogonal Direction Matrices
	Limitations
	Other Experiments

