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Abstract

Selective classification allows a machine learning model to reject some hard inputs1

and thus improve the reliability of its predictions. In this area, the ensemble method2

is powerful in practice, but there has been no solid analysis on why the ensemble3

method works. Inspired by an interesting empirical result that the improvement4

of the ensemble largely comes from top-ambiguity samples where its member5

models diverge, we prove that, based on some assumptions, the ensemble has a6

lower selective risk than the member model for any coverage within a range. The7

proof is nontrivial since the selective risk is a non-convex function of the model8

prediction. The assumptions and the theoretical results are supported by systematic9

experiments on both computer vision and natural language processing tasks.10

A Proofs11

A.1 Proof of Lemma 112

The proof of the second inequality in Lemma 1, i.e.,13

P (κE(x) ≥ t|a = 1) ≤MM−1B(1− t)M , (A.1)

can be reduced to the proof of the first inequality, i.e.,14

p(κE(x) = t|a = 1) ≤MMB(1− t)M−1. (A.2)

The reason is as follows. If (A.2) holds, then we have15

P (κE(x) ≥ t|a = 1) =

∫ 1

t

p(κE(x) = t′|a = 1)dt′

≤
∫ 1

t

MMB(1− t′)M−1

=MM−1B(1− t)M ,

which directly derives (A.1). Therefore, we only need to show (A.2) at following.16

Firstly, we derive the PDF of the average of multiple continuous random variables expressed by the17

PDFs of these random variables (Lemma A.1), which helps us to analyze the PDF of the ensemble’s18

predictive probabilities.19
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Lemma A.1. Let X1,X2, . . . ,XM be M continuous random variables, and their average is Xavg :=20

1
M

∑M
i=1 Xi. Then the PDF of Xavg

1 is21

pXavg
(xavg) =M

∫
RM−1

dx1dx2 · · · dxM−1 · p~X(x1, x2, . . . , xM−1,Mxavg −
M−1∑
i=1

xi), (A.3)

where p~X is pX1,X2,...,XM for short.22

Proof. The distribution function of Xavg is23

FXavg
(xavg) =

∫
∑
i xi≤Mxavg

dx1 · · · dxM−1dxM · p~X(x1, . . . , xM )

=

∫
RM−1

dx1 · · · dxM−1

∫ Mxavg−
∑M−1
i=1 xi

−∞
dxM · p~X(x1, · · · , xM ).

Let xM = u−
∑M−1
i=1 xi, then the integral above is equal to24 ∫
RM−1

dx1 · · · dxM−1

∫ Mxavg

−∞
du · p~X(x1, . . . , xM−1, u−

M−1∑
i=1

xi)

=

∫ Mxavg

−∞
du

∫
RM−1

dx1 · · · dxM−1 · p~X(x1, . . . , xM−1, u−
M−1∑
i=1

xi). (A.4)

The PDF of Xavg is the derivative of FXavg
, which, combined with (,A.4) derives25

pXavg(xavg) =F ′Xavg
(xavg)

=
d(Mxavg)

dxavg
·

dFXavg

d(Mxavg)

=M

∫
RM−1

dx1 · · · dxM−1 · p~X(x1, . . . , xM−1,Mxavg −
M−1∑
i=1

xi),

which is exactly (A.3).26

Secondly, we show the relationship between the PDF of confidence score and the PDFs of predictive27

probabilities. Note that the confidence score of an SR model is the maximum predictive probability,28

so the following lemma bounds the PDF of confidence by PDFs of predictive probabilities.29

Lemma A.2. Let Πk (1 ≤ k ≤ K) be K continuous random variables, and C := maxk Πk. Then30

we have31

pC(κ) ≤
K∑
k=1

pΠk(κ). (A.5)

Proof. First of all, we prove ∀κ1, κ2, κ1 < κ2,32

FC(κ2)− FC(κ1) ≤
K∑
k=1

FΠk(κ2)− FΠk(κ1) (A.6)

It is easy to see that

FC(κ) = FΠ1,...,ΠK (κ, . . . , κ) =

∫
(−∞,κ]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK),

1A PDF has a subscript to denote which random variable this PDF belongs to.
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so the left-hand side of (A.6) is33 ∫
(−∞,κ2]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK)

−
∫

(−∞,κ1]K
dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK)

=

∫
(−∞,κ2]K\(−∞,κ1]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK), (A.7)

where the last equality is due to (−∞, κ1] ⊂ (−∞, κ2], and the right-hand side of (A.6) is34

K∑
k=1

∫
[κ1,κ2]

dπk pΠk(πk)

=

K∑
k=1

∫
Rk−1×[κ1,κ2]×RK−k

dπ1 · · · dπK · pΠ1,...,ΠK (π1, · · · , πK)

≥
∫
⋃K
k=1 Rk−1×[κ1,κ2]×RK−k

dπ1 · · · dπK · pΠ1,...,ΠK (π1, · · · , πK), (A.8)

where the last inequality is because Rk−1 × [κ1, κ2]× RK−k for different k, 1 ≤ k ≤ K, may have35

an intersection. To prove (A.6), we only need to prove that the right-hand side of (A.7) is less than or36

equal to the right-hand side of (A.8), which is equivalent to prove37

(−∞, κ2]K \ (−∞, κ1]K ⊂
K⋃
k=1

Rk−1 × [κ1, κ2]× RK−k. (A.9)

Now we prove (A.9). ∀(π1, . . . , πK) ∈ (−∞, κ2]K \ (−∞, κ1]K , we have38

∀k, 1 ≤ k ≤ K,πk ≤ κ2, (A.10)

∃k0, 1 ≤ k0 ≤ K,πk0 > κ1, (A.11)

where (A.11) is because if all πk is less than or equal to κ1 instead, then (π1, . . . , πK) ∈ (−∞, κ1]K ,
which contradicts with (π1, . . . , πK) ∈ (−∞, κ2]K \ (−∞, κ1]K . Thus, πk0 ∈ [κ1, κ2], so

(π1, . . . , πK) ∈ Rk0−1 × [κ1, κ2]× RK−k0 ⊂
K⋃
k=1

Rk−1 × [κ1, κ2]× RK−k,

which is precisely (A.9), and therefore (A.6) is proved.39

With (A.6) and the definition of derivatives, it is easy to see that F ′C(κ) ≤
∑K
k=1 F

′
Πk(κ), which is40

equivalent to pC(κ) ≤
∑K
k=1 pΠk(κ). Thus, Lemma A.2 is proved.41

Based on the lemmas above, we have the following lemma, which is precisely (A.2). When (A.2) is42

proved, the proof of Lemma 1 completes.43

Lemma A.3. If Assumption 1 holds, then44

p(κE(x) = t|a = 1) ≤MMB(1− t)M−1. (A.12)

Proof. Applying Lemma A.1 to the ensemble, we have45

p(πkE = t|a = 1) =M

∫
RM−1

dπk1 · · · dπkM−1 · p(πk1 , . . . , πkM−1, π
k
M = Mt−

M−1∑
i=1

πki |a = 1),

(A.13)

The integrand in the right-hand side of (A.13) being non-zero requires46 {
0 ≤ πki ≤ 1, i = 1, 2, . . . ,M − 1

0 ≤Mt−
∑M−1
i=1 πki ≤ 1

. (A.14)
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The inequalities above imply Mt ≤ 1 +
∑M−1
i=1 πki ≤M − 1 + πki ,∀i ∈ {1, 2, ...,M − 1}, which47

further derives Mt−M + 1 ≤ πki ≤ 1,∀i ∈ {1, 2, ...,M}. Thus, (A.13) can be rewritten as48

p(πkE = t|a = 1) =M

∫
[Mt−M+1,1]M−1

dπk1 · · · dπkM−1 · p(πk1 , . . . , πkM−1, π
k
M = Mt−

M−1∑
i=1

πki |a = 1).

Considering that p(πk1 , . . . , π
k
M−1, π

k
M |a = 1) is bounded as Assumption 1 claims, let Bk be its least49

upper bound. Then we have50

p(πkE = t|a = 1) ≤M
∫

[Mt−M+1,1]M−1

dπk1 · · · dπkM−1Bk = MMBk · (1− t)M−1. (A.15)

This inequality combined with Lemma A.2 derives p(κ(x) = t|a = 1) ≤
∑K
k=1 p(π

k
E = t|a =51

1) ≤ MM (1 − t)M−1 ·
∑K
k=1Bk, which is equivalent to the conclusion of this lemma since52

B =
∑K
k=1Bk.53

A.2 Proof of Equation (2) of the Main Text (Preparing for Lemma 2)54

According to the definition of selective risk, we have55

R(f, κ; t)

=E(x,y)∼D[1y 6=f(x)|κ(x) ≥ t]
=P (y 6= f(x)|κ(x) ≥ t)
=P (y 6= f(x), a = 0|κ(x) ≥ t) + P (y 6= f(x), a = 1|κ(x) ≥ t)
=P (y 6= f(x)|a = 0, κ(x) ≥ t)P (a = 0|κ(x) ≥ t) + P (y 6= f(x)|a = 1, κ(x) ≥ t)P (a = 1|κ(x) ≥ t).

According to the definition of conditional selective risk, the equation above can be rewritten as56

R(f, κ; t|a = 0)P (a = 0|κ(x) ≥ t) +R(f, κ; t|a = 1)P (a = 1|κ(x) ≥ t)
=R(f, κ; t|a = 0)[1− P (a = 1|κ(x)] ≥ t) +R(f, κ; t|a = 1)P (a = 1|κ(x) ≥ t)
=R(f, κ; t|a = 0) + P (a = 1|κ(x) ≥ t) · [R(f, κ; t|a = 1)−R(f, κ; t|a = 0)]

=R(f, κ; t|a = 0) + λ(f, κ; t) · P (a = 1|κ(x) ≥ t), (A.16)

where λ(f, κ; t) := R(f, κ; t|a = 1) − R(f, κ; t|a = 0). Applying (A.16) to the ensemble and57

considering λ(fE , κE ; t) ≤ 1, we derive an upper bound of the ensemble’s selective risk58

RE(t) ≤ RE(t|a = 0) + P (a = 1|κE(x) ≥ t). (A.17)

Thus, Equation (2) of the main text is proved.59

A.3 Proof of Theorem 160

Proof. Step 1. We prove61

lim
t→1−

RE(t) < lim
t→1−

R∗(t). (A.18)

Firstly, we prove limt→1− RE(t) ≤ limt→1− R∗(t|a = 0). According to Lemma 2, we have62

lim
t→1−

RE(t) ≤ lim
t→1−

[
R∗(t|a = 0) +

γ · (1− t)M

γ · (1− t)M + P (κ∗(x) ≥ t, a = 0)

]
= lim
t→1−

R∗(t|a = 0) + lim
t→1−

γ · (1− t)M

γ · (1− t)M + P (κ∗(x) ≥ t, a = 0)

= lim
t→1−

R∗(t|a = 0) + lim
t→1−

−Mγ(1− t)M−1

−Mγ(1− t)M−1 − p(κ∗(x) = t, a = 0)

= lim
t→1−

R∗(t|a = 0) (A.19)

where the second-to-last equality is due to L’Hospital’s rule, and the last equality is due to63

limt→1−Mγ(1 − t)M−1 = 0 and limt→1− p(κ∗(x) = t, a = 0) = P (a = 0) limt→1− p(κ∗(x) =64

t|a = 0) > 0 (Assumption 3).65
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Secondly, we prove limt→1− R∗(t) > limt→1− R∗(t|a = 0). According to (A.16), we have66

lim
t→1−

R∗(t) = lim
t→1−

R∗(t|a = 0) + lim
t→1−

λ(f∗, κ∗; t) · lim
t→1−

P (a = 1|κ∗(x) ≥ t). (A.20)

Using Bayes’ rule and L’Hospital’s rule, we have67

lim
t→1−

P (a = 1|κ∗(x) ≥ t) = lim
t→1−

P (κ∗(x) ≥ t|a = 1)P (a = 1)

P (κ∗(x) ≥ t|a = 1)P (a = 1) + P (κ∗(x) ≥ t|a = 0)P (a = 0)

= lim
t→1−

p(κ∗(x) = t|a = 1)P (a = 1)

p(κ∗(x) = t|a = 1)P (a = 1) + p(κ∗(x) = t|a = 0)P (a = 0)

> 0, (A.21)
where the last inequality is due to Assumption 3. Applying this inequality along with68

limt→1− λ(f∗, κ∗; t) = limt→1− [R∗(t|a = 1) − R∗(t|a = 1)] > 0 (Assumption 2) to (A.20),69

we have70

lim
t→1−

R∗(t) > lim
t→1−

R∗(t|a = 0). (A.22)

Combining (A.19) and (A.22), we derive (A.18).71

Step 2. We prove the ensemble’s confidence threshold and the member model’s confidence threshold72

approach 1 when their coverage approach 0. Due to φ∗(t) = P (κ∗(x) ≥ t) = P (κ∗(x) ≥ t|a =73

0)P (a = 0) + P (κ∗(x) ≥ t|a = 1)P (a = 1), we derive74

dφ∗(t)

dt
= −p(κ∗(x) = t|a = 0)P (a = 0)− p(κ∗(x) = t|a = 1)P (a = 1)

≤ −p(κ∗(x) = t|a = 0)P (a = 0). (A.23)
Because limt→1− p(κ∗(x) = t|a = 0) > 0 (Assumption 3), there exists δ1 > 0, such that p(κ∗(x) =75

t|a = 0) > 0,∀t ∈ (1 − δ1, 1). Combining this with (A.23), we have dφ∗(t)
dt < 0,∀t ∈ (1 − δ1, 1)76

and thus φ∗(t) is reversible on (1− δ1, 1). Considering p(κE(x) = t|a = 0) = p(κ∗(x) = t|a = 0),77

we derive φE(t) is reversible on (1− δ1, 1) with the same reasoning as above.78

Let φ−1
∗ and φ−1

E be the reverse functions of φ∗ and φE on (1− δ1, 1), respectively. It is easy to see79

that φ−1
∗ is a continuous function, and φ−1

∗ (0) = 1. Therefore,80

lim
φ→0+

φ−1
∗ (φ) = 1. (A.24)

For the ensemble, we similarly have81

lim
φ→0+

φ−1
E (φ) = 1. (A.25)

Step 3. Combining (A.18), (A.24) and (A.25), we have RE(φ−1
E (φ)) < R∗(φ

−1
∗ (φ)) when φ→ 0+,82

which is equivalent to the result of Theorem 1.83

B Details of Experiments84

B.1 Datasets85

The experiments were conducted on multiple data sets of image classification and text classification.86

The image classification datasets are CIFAR-10, CIFAR-100, [1] and SVHN [2], whose image sizes87

are all 32 × 32 × 3 pixels. The datasets of text classification are MRPC [3], MNLI [4] and QNLI88

[5]. The task of MRPC is to judge whether two paragraphs of text are semantically equivalent.89

MNLI’s task is to judge the inferential relationship between sentences (three categories). The task90

of QNLI is to determine whether a paragraph has the answer to a given question. The sizes of the91

training set, development set, and test set of each data set used in experiments are shown in Table B.1.92

MNLI’s development set and test set are divided into matched and mismatched parts. In the table, (m)93

represents matched, and (mm) represents mismatched. The matched parts are sampled from the same94

source as the training set, while the mismatched parts are sampled from different sources. Current95

selective classification only considers test samples from the same distribution as the training set, so96

only the matched parts are used in experiments. In addition, test sets of MRPC, QNLI, and MNLI are97

not accessible, so we use their development sets as test sets. According to [6, 7], since CIFAR-10,98

CIFAR-100 and SVHN originally had no development set, their development sets were 2000 samples99

randomly divided from corresponding test sets.100
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Table B.1: Sizes of training sets, development sets, and test sets for each dataset used in experiments

Datasets Training Set Development Set Test Set Number of Classes

CIFAR-10 50.0k 10.0k 10
CIFAR-100 50.0k 10.0k 100

SVHN 73.3k 26.0k 10
MRPC 3.7k 0.4k 1.7k 2
QNLI 104.7k 5.5k 5.5k 2
MNLI 392.7k 9.8k (m)/ 9.8k(mm) 9.8k(m)/9.8k(mm) 3

Table B.2: The value of o on each dataset

Dataset CIFAR-10 SVHN CIFAR-100 MRPC QNLI MNLI-(m)

o 2.20 2.60 4.60 1.80 1.60 2.80

B.2 Model Implementations and Training Procedures101

For image classification, the backbone model is VGG-16 [8] with Dropout [9], batch normalization102

[10]. It is trained in the same way as [7]. The model is optimized using SGD with an initial learning103

rate of 0.1 (the learning rate decays by half in every 25 epochs), the momentum of 0.9, weight decay104

of 0.0005, batch size of 128, and a total training epoch of 300. Data preprocessing includes data105

augmentation (random cropping and flip) and normalization. The implementations of the backbone106

model and data preprocessing are based on the official open-sourced implementation of SAT to ensure107

a fair comparison.108

For text classification, the backbone model of selective classifiers is BERT-base [11]. Pretrained109

BERT-base is provided by the Huggingface Transformer Library [12]. It is trained/fine-tuned in the110

same way as [13], except on dataset MRPC. On QNLI and MNLI, the model is trained/fine-tuned111

using AdamW [14] for 3 epochs, with a learning rate of 2× 10−5, batch size of 32, and the maximum112

input sequence length of 128. On MRPC, the model is trained/fine-tuned for 10 epoch, with other113

settings the same as those on QNLI and MNLI. This unique setting of training epoch is due to114

the small number of samples in MRPC, which makes the training require more epochs to reach115

convergence on MRPC.116

B.3 Hyperparameters of Selective Classifiers117

For the hyperparameter o of Gambler, we tune o on validation sets in the same way as [6]. The value118

of o on each dataset is listed in Table B.2. For the hyperparameter α of SAT, we set α = 0.99, the119

same as [7]. For the hyperparameter λ of Reg-curr, we set λ = 0.05.120

C Selective Risks of Ensembles121

Table C.1 and C.2 shows the selective risks of ensembles under coverage 10%-100% on each dataset.122

Notably, no ensemble consistently outperforms others under all coverage on all datasets. This123

phenomenon is because different ensembles have similar overall performance but adopt different124

trade-offs between coverage and selective risk.125

D Further Properties of Selective Classifier Ensemble126

D.1 The Effect of Number of Members on Selective Classifier Ensemble127

We evaluate AURCs of the SR ensemble (i.e., Deep Ensemble), Gambler ensemble, and SAT ensemble128

of different numbers of members on CIFAR10, and find that an ensemble with more members has129

a better performance, but is less efficient. The results are shown in Figure D.1. In most cases, the130

AURC on the test set of CIFAR-10 decreases as the number of members in the ensemble increases.131
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Table C.1: The selective risks of ensembles under coverage 10%-100% on image classification
datasets. The means and standard deviations are calculated over three trials. The best entries are
marked in bold.

Dataset coverage (%) Deep Ensemble Gambler ensemble SAT ensemble Reg-curr ensemble

CIFAR-10

100 5.31±0.03 5.29±0.03 5.47±0.04 5.74±0.07
90 1.68±0.02 1.99±0.01 2.15±0.06 1.89±0.02
80 0.45±0.05 0.51±0.02 0.63±0.03 0.61±0.09
70 0.17±0.01 0.21±0.01 0.26±0.01 0.18±0.02
60 0.11±0.01 0.18±0.03 0.17±0.01 0.08±0.00
50 0.11±0.01 0.14±0.02 0.11±0.01 0.07±0.01
40 0.12±0.03 0.15±0.02 0.06±0.01 0.07±0.01
30 0.13±0.05 0.13±0.03 0.06±0.02 0.08±0.03
20 0.12±0.02 0.17±0.05 0.00±0.00 0.02±0.02
10 0.10±0.08 0.14±0.05 0.00±0.00 0.00±0.00

SVHN

100 2.44±0.01 2.42±0.02 2.36±0.01 2.41±0.01
90 0.59±0.00 0.60±0.03 0.50±0.01 0.54±0.02
80 0.42±0.03 0.38±0.01 0.34±0.01 0.39±0.02
70 0.34±0.02 0.32±0.01 0.31±0.01 0.35±0.01
60 0.32±0.02 0.30±0.01 0.28±0.01 0.35±0.01
50 0.29±0.02 0.26±0.01 0.26±0.00 0.30±0.01
40 0.25±0.02 0.27±0.02 0.25±0.01 0.28±0.01
30 0.22±0.03 0.26±0.01 0.20±0.01 0.25±0.03
20 0.22±0.01 0.26±0.01 0.18±0.02 0.19±0.03
10 0.21±0.02 0.23±0.00 0.17±0.02 0.18±0.03

CIFAR-100

100 24.66±0.08 25.50±0.05 25.23±0.13 25.70±0.09
90 19.15±0.15 19.88±0.05 19.77±0.28 20.16±0.14
80 14.32±0.22 15.75±0.09 15.00±0.20 15.22±0.07
70 9.78±0.13 12.11±0.18 10.29±0.24 10.41±0.38
60 5.81±0.06 8.89±0.16 6.43±0.20 6.58±0.27
50 2.95±0.04 6.22±0.10 3.41±0.15 3.45±0.05
40 1.40±0.13 4.37±0.06 1.96±0.13 1.74±0.11
30 0.75±0.05 2.67±0.01 1.13±0.02 0.89±0.06
20 0.62±0.06 1.91±0.04 0.72±0.06 0.62±0.04
10 0.33±0.09 1.42±0.16 0.57±0.09 0.13±0.05

In addition, as the number of members in the ensemble grows, the effect of adding one member132

drops. On the one hand, the result shows that an ensemble with a small number of members has133

good selective classification performance. On the other hand, it indicates that when the number134

of member models is large, increasing the number of members to improve the performance of the135

selective classification ensemble is inefficient.136
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65
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Figure D.1: The AURCs on the test set of CIFAR-10 of the SR ensemble (Deep Ensemble), Gambler
ensemble, and SAT ensemble of different numbers of members
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Table C.2: The selective risks of ensembles under coverage 10%-100% on text classification datasets.
The means and standard deviations are calculated over three trials. The best entries are marked in
bold.

Dataset coverage (%) Deep Ensemble Gambler ensemble SAT ensemble Reg-curr ensemble

MRPC

100 14.13±0.23 14.62±0.23 13.64±0.23 15.28±0.31
90 11.41±1.02 11.50±0.46 10.69±0.13 11.68±0.44
80 7.75±0.29 9.99±0.88 8.46±0.63 8.36±0.29
70 6.41±0.33 8.51±0.72 7.93±0.44 6.64±0.29
60 5.71±0.33 7.35±1.20 6.39±0.19 6.12±0.33
50 4.08±1.29 4.41±0.40 3.59±1.01 4.74±0.23
40 3.25±0.29 3.86±0.76 3.25±0.76 3.66±0.50
30 3.25±0.00 3.52±0.38 3.52±0.38 2.98±0.77
20 2.44±1.72 3.25±0.58 3.25±0.58 3.66±0.00
10 3.25±2.30 4.88±0.00 1.63±1.15 5.69±1.15

QNLI

100 8.16±0.04 8.18±0.20 8.03±0.09 8.17±0.01
90 4.74±0.04 5.04±0.14 5.03±0.09 4.74±0.12
80 2.94±0.11 3.08±0.08 2.97±0.04 2.98±0.01
70 1.84±0.10 1.91±0.04 1.92±0.11 1.88±0.06
60 1.20±0.05 1.27±0.05 1.36±0.01 1.30±0.08
50 1.04±0.05 1.04±0.08 1.13±0.03 0.98±0.03
40 0.72±0.02 0.73±0.04 1.02±0.11 0.70±0.06
30 0.45±0.03 0.51±0.03 0.83±0.08 0.43±0.09
20 0.30±0.11 0.37±0.15 0.67±0.04 0.30±0.09
10 0.30±0.09 0.12±0.09 0.61±0.34 0.12±0.09

MNLI

100 15.04±0.06 14.82±0.15 15.03±0.06 14.89±0.14
90 11.01±0.11 11.78±0.09 11.37±0.06 11.21±0.17
80 7.93±0.08 9.62±0.08 8.26±0.20 8.02±0.07
70 5.81±0.04 8.03±0.23 5.81±0.12 5.85±0.22
60 4.28±0.07 6.41±0.25 4.08±0.19 4.05±0.10
50 3.22±0.04 4.95±0.10 2.99±0.18 3.04±0.10
40 2.69±0.11 3.57±0.21 2.08±0.03 2.22±0.06
30 2.13±0.14 2.35±0.18 1.57±0.03 1.75±0.06
20 1.34±0.10 1.53±0.17 1.39±0.13 1.36±0.06
10 0.98±0.05 1.32±0.14 0.71±0.22 0.71±0.08

D.2 Good Classification Performance Does Not Imply Good Selective Classification137

Performance138

It is well known that the ensemble has better classification performance than an individual model, but139

this does not guarantee a better selective classification performance of the ensemble. To demonstrate140

this, we design an SR model with a big backbone, and show that it has as good classification141

performance as an Deep Ensemble with a standard backbone but worse selective classification142

performance than an SR model with a standard backbone. The big backbone is designed to have twice143

as many filters in every convolutional layer and neurons in every fully connected hidden layer as144

those of the standard VGG-16, which is therefore called Big VGG-16. It is easy to see that its number145

of parameters is approximately 22 = 4 times as many as that of standard VGG-16. We train an Deep146

Ensemble of 4 VGG-16s and an SR model with a backbone of Big VGG-16 on CIFAR-10 and show147

the evaluation results in Figure D.2 and Table D.1. Figure D.2 shows that when coverage is high, the148

ensemble and the big individual model have similar selective risks, and especially, the classification149

error rates (i.e., selective risk of 100% coverage) of the ensemble and the big individual model are150

similar. However, when coverage is low, the big individual model has significantly higher selective151

risk than the ensemble. Table D.1 shows that the AURC of Big VGG-16 is much higher than the152

ensemble of 4 VGG-16s and even higher than SR. In summary, we show that a selective classifier with153

a good classification performance is not guaranteed to have good selective classification performance,154

so the good selective classification performance of the ensemble is not a trivial result of its good155

classification performance.156
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Figure D.2: Risk-coverage curves of the ensemble of 4 VGG-16s and the Big VGG-16 on CIFAR-10

Table D.1: The AURCs(/10−4) of Big VGG-16, a vanilla VGG-16, and the ensemble of 4 VGG-16s
on CIFAR-10. The best entries are marked in bold.

Dataset Big VGG-16 VGG-16 Ensemble

CIFAR-10 89.2 69.6 49.3

D.3 The Effects of Label Noise of SVHN on Selective Classifier Ensembles157

In this section, we compare the effect of label noise of SVHN on the Deep Ensemble with that on158

SAT ensemble, whose result might explain the abnormal experimental results (compared to results on159

other datasets) on SVHN in Section 6 of the main text. SVHN is not a clean dataset, and much more160

label noise can be detected in SVHN than in CIFAR-10 and CIFAR-100. Using the soft label of SAT161

[7], we detect label noise in SVHN, CIFAR-10, and CIFAR-100, and find that SVHN has significantly162

more label noise than CIFAR-10 and CIFAR-100. The result is presented in the following. In addition,163

it is known that SAT is robust to label noise [7], while SR is not so, so we conjecture that the label164

noise of SVHN is why the Deep Ensemble is inferior to SAT on SVHN.165

We detect label noise with the help of the soft label of SAT. For a sample xi, the soft label of SAT [7],166

ti,yi , is used to measure xi’s learning difficulty. The soft label of SAT is initialized as 1 and updated167

at every training epoch as below168

ti,yi ← α× ti,yi + (1− α)× pθ(yi|xi),

where pθ(Y |x) is the predictive probability distribution of the classifier, yi is the label of xi, α is a169

hyperparameter. The smaller the ti,yi is, the lower the true class predictive probability of the classifier170

on xi during training time, indicating that xi is more difficult to learn. By selecting a percentage of171

samples with the lowest ti,yi , we get the most difficult samples to learn for the classifier, from which172

we can easily detect label noise manually.173

In training sets of SVHN, CIFAR-10, and CIFAR-100, we detect label noise manually among the174

top-0.1% difficult (measured by the soft label of SAT) samples. The numbers of mislabeled samples175

detected in SVHN, CIFAR-10, and CIFAR100 are shown in Table D.2. The result shows that SVHN176

has significantly more mislabeled samples detected than CIFAR-10 and CIFAR-100, indicating much177

more label noise in SVHN than in CIFAR-10 and CIFAR-100.178

Table D.2: Numbers of mislabeled samples in the top-0.1% difficult training samples of SVHN,
CIFAR-10, and CIFAR-100.

Dataset #Mislabeled #Top-0.1% Proportion

SVHN 73 73 100%
CIFAR-10 1 50 2%

CIFAR-100 1 50 2%

9



Table D.3: AURC/10−4 of Deep Ensemble and SAT ensemble on the clean SVHN

Dataset #Member Deep Ensemble SAT Ensemble

clean SVHN

1
2
3
4
5

12.3
8.2
7.3
6.8
6.4

7.8
7.1
6.8
6.8
6.8

To verify the effect of label noise, the following experiments are designed. Firstly, we detect label179

noise manually among the 1% of the hardest-to-learn samples of SVHN training set and test set,180

using the soft label of SAT. Secondly, we remove the detected mislabeled samples from the original181

dataset. The remaining SVHN dataset is called the clean SVHN. Accordingly, the original dataset is182

called the original SVHN. Finally, we retrain and test the Deep Ensemble and SAT ensemble and183

compare their test results. In the second step, the reason for removing mislabeled samples rather than184

modifying them is that some samples cannot be classified even by humans, and some samples are not185

in the range of categories of SVHN. Thus, the label noise cannot be eliminated by modifying the186

labels but by removing mislabeled samples.187

The test results of the Deep Ensemble and SAT ensemble on clean SVHN are shown in Table D.3. It188

is not surprising that the AURCs of the Deep Ensemble and SAT ensemble are significantly lower on189

the clean SVHN than the original SVHN. Furthermore, on the clean SVHN, when the number of190

members is 5, the AURC of the Deep Ensemble is lower than that of SAT ensemble. Combined with191

results on the original SVHN, where the AURC of the Deep Ensemble is higher than that of SAT192

ensemble, we conclude that label noise in SVHN is why the Deep Ensemble has a higher AURC than193

SAT ensemble. In other words, label noise is why the Deep Ensemble performs worse in selective194

classification than SAT ensemble on SVHN.195

In summary, by experiments, we show that the Deep Ensemble is not as robust to label noise as SAT196

ensemble, and label noise in SVHN is why the Deep Ensemble is not as good as SAT ensemble on197

SVHN. We construct the clean SVHN, which is SVHN without some mislabeled samples. On the198

clean SVHN, we compare the Deep Ensemble with SAT ensemble and find that the Deep Ensemble is199

superior to SAT ensemble in selective classification performance. Combined with former experimental200

results, we conclude that label noise in SVHN is why the Deep Ensemble is inferior to SAT on201

SVHN.202

Considering the experimental results on the clean SVHN and previous experimental results on CIFAR-203

10 and CIFAR-100 (see Table D.3 and Table 1 of the main text), the Deep Ensemble is superior to204

SAT ensemble in selective classification on clean image classification datasets, Thus, Deep Ensemble205

is the state-of-the-art selective classification method on clean image classification datasets, but is not206

as robust to label noise as SAT ensemble.207

E The Lower Bound of Maximum φ0 in Theorem 1208

This section discusses the lower bound of maximum φ0 mentioned in Theorem 1. We aim to calculate209

the maximum φ0’s lower bound without training an ensemble (otherwise, we can measure it directly210

on the ensemble).211

Optimization Problem. To calculate the lower bound of maximum φ0, we need to solve the following212

optimization problem213

min
t,tE

φ∗(t) s.t. φE(tE) ≥ φ∗(t) (E.1)

RE(tE) < R∗(t).
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Algorithm 1 A Lower Bound of Maximum φ0.
Input: κ∗(·), B, the test set D = {(xi, yi)}Ni=1; the oracle Ω : X → {0, 1} that tells whether a
sample is definite; the number of member models M .
Output: An lower bound of maximum φ0 mentioned in Theorem 1
left = 0
right = 1
ε = 10−9

while right− left > ε do
t∗ = (left+ right)/2
tE = SEARCHFORTAUENS(t∗, κ∗,D,Ω)
if tE is not None and VERIFYSECONDCONSTRAINT(κ∗, t∗, tE , D, Ω, M , B) is True then
right = t∗

else
left = t∗

end if
end while
opt = (left+ right)/2

return 1
N

∑N
i=1 1κ∗(xi)≥opt

Using Lemma 2 and φE(t) ≥ P (κE(x) ≥ t, a = 0) = P (κ∗(x) ≥ t, a = 0), we strengthen the214

constraints of (E.1) to obtain a looser lower bound of maximum φ0:215

max
t∗,tE

φ∗(t∗) s.t. P (κ∗(x) ≥ tE , a = 0) ≥ φ∗(t∗)

R∗(tE |a = 0) +
γ · (1− tE)M

γ · (1− tE)M + P (κ∗(x) ≥ tE , a = 0)
< R∗(t∗).

For the convenience of solving this optimization problem, we further strengthen the first constraint to216

obtain a looser lower bound:217

max
t∗,tE

φ∗(t∗) s.t. P (κ∗(x) ≥ tE , a = 0) = φ∗(t∗) (E.2)

R∗(tE |a = 0) +
γ · (1− tE)M

γ · (1− tE)M + P (κ∗(x) ≥ tE , a = 0)
< R∗(t∗).

Algorithm. We design Algorithm 1 to search for the solution to (E.2), where oracle tells whether a218

sample is definite, and this oracle can be implemented by an ensemble with M ′ (M ′ �M ) members.219

Since tE is determined by t∗ according to the first constraint of (E.2), (E.2) can be reduced to a220

one-dimensional search problem. Our algorithm adopts a binary search for efficiency, although this221

method might provide a suboptimal solution. Because φ∗(t∗) is a non-increasing function of t∗,222

Algorithm first search for the minimum t∗ by binary search. The procedure of Algorithm 1 in each223

iteration of the binary search is as follows.224

1. Given current t∗, Algorithm 1 determines tE using SEARCHFORTAUENS (see Algorithm225

2), a procedure that searches for tE ∈ [0, 1] using binary search s.t. P (κ∗(x) ≥ tE , a =226

0) = φ∗(t∗). Note that tE might not exist if t∗ is so low that φ∗(t∗) > P (a = 0) =227

suptE∈[0,1] P (κ∗(x) ≥ t, a = 0). This problem will be addressed shortly.228

2. Algorithm 1 exams whether tE exists. If tE exists, Algorithm 1 then examines whether the229

second constraint of (E.2) holds for current t∗ and tE , which is implemented by VERIFY-230

SECONDCONSTRAINT (see Algorithm 3).231

3. If tE exists and the second constraint holds, Algorithm 1 searches for a smaller t∗ in the left232

half feasible area; otherwise, Algorithm 1 searches for a greater t∗ in the right half feasible233

area.234

Once the binary search completes, Algorithm 1 returns the coverage of minimum t∗.235

Experiment. To show that Algorithm 1 works in reality, we run this algorithm in the same setting as236

Section 6 of the main text. In this experiment, M = 5, the oracle is implemented by another ensemble237
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Algorithm 2 SEARCHFORTAUENS

Input: κ∗(·), the confidence threshold t∗; the test set D = {(xi, yi)}Ni=1; the oracle Ω : X →
{0, 1} that tells whether a sample is definite.
Output: tE ∈ [0, 1] that satisfies the first constraint of (E.2) given t∗.
φ = 1

N

∑N
i=1 1κ∗(xi)≥t∗

if φ > 1
N

∑N
i=1 Ω(xi) then

return None
end if
left = 0
right = 1
ε = 10−9

while right− left > ε do
tE = (left+ right)/2

if 1
N

∑N
i=1 1κ∗(xi)≥tE · Ω(xi) < φ then

right = tE
else
left = tE

end if
end while
return (left+ right)/2

Algorithm 3 VERIFYSECONDCONSTRAINT

Input: κ∗(·); the confidence threshold t∗; tE ; the test set D = {(xi, yi)}Ni=1; the oracle Ω : X→
{0, 1} that tells whether a sample is definite; the number of member models M ; and B.
Output: True if and only if t∗ and tE satisfy the second constraint of (E.2).
γ = BMM−1 1

N

∑N
i=1[1− Ω(xi)]

leftHandSide =
∑N
i=1 1f(xi;θ)6=yi ·Ω(xi)·1κ∗(xi)≥tE∑N

i=1 Ω(xi)·1κ∗(xi)≥tE
+ γ(1−tE)M

γ(1−tE)M+ 1
N

∑N
i=1 Ω(xi)·1κ∗(xi)≥tE

rightHandSide =
∑N
i=1 1f(xi;θ) 6=yi ·1κ∗(xi)≥t∗∑N

i=1 1κ∗(xi)≥t∗
return 1leftHandSide<rightHandSide

with two member models and outputs True if and only if the S < 10−3. Note that it is difficult to238

estimate B, because: 1. we need to train an ensemble with M models to estimate B, which is costly;239

2. the domain of p(πk1 , ..., π
k
M |a = 1) is of high dimension, so the observed data points are sparse in240

this domain, which makes the estimation of B more difficult. Thus, we do not estimate B but try241

several hypothetical values of B to see at what B the lower bound of maximum φ0 is big.242

With different Bs, we obtain different lower bounds of maximum φ0 as Table E.1 shows. We can243

see that when the order of magnitude of B is not too big, the lower bound of maximum φ0 is large244

and stable, which makes it possible for our algorithm to be used in practical applications. This245

result also indicates the relationship between the ensemble’s diversity and its selective classification246

performance. Since an ensemble with a smaller B seems to have more diversity over ambiguous247

samples, the result in Table E.1 suggests that as long as the ensemble has enough diversity over248

ambiguous samples, the ensemble is guaranteed to have a lower selective risk than the member model249

under a considerable range of coverage.250
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