
A Co-Adaptation in Subset-based FL445

Federated Dropout is originally inspired by regular dropout [40], a regularization technique that446

constrains the capacity of a large NN model by randomly dropping parameters from the training,447

thereby limiting co-adaptation among parameters of the model. This is essential to improve the448

accuracy and reduce the over-fitting of parameters, as shown in various studies. FD and FedRolex449

adopt the dropout technique, removing CNN’s filters in a round-based manner. These techniques,450

however, exercise dropout to its extreme, dropping a large part of filters so that not enough co-451

adaptation between filters remains. In particular, the gradients for the subset of parameters trained on452

a device are calculated without consideration of the error of the remaining parameters that reside on453

the server. These subsets are randomly changing over time and devices, reducing the co-adaptation of454

this distributed training process. Add to these the fact that the data is also distributed over devices,455

so applying such a random scheme significantly decreases the chance that a subset of parameters is456

being trained together over a sizable proportion of the data.457

To further study the effects of co-adaptation on the reachable accuracy and the differences between FD458

and FedRolex, we run the following experiment, using CIFAR10 with ResNet20 and sFD/FedRolex =459

0.25:460

• We modify FD s.t. all devices train the same random subset per round, i.e., the same461

indices I(r,c) = I(r) per round (index k is omitted for simplicity).462

• We limit the randomness by randomly selecting I(r) out of a set I = {I1, . . . , I|I|} of463

randomly initialized subsets that are generated once prior to training. Each round, I(r) is a464

random selection out of I.465

0 200 400

40

60

80

|I|

ac
cu

ra
cy

[%
]Small model

FedRolex [19]
FD [8] with limited randomness

Figure 5: FD with limited randomness using CIFAR10 with ResNet20 and sFD/FedRolex = 0.25.

We vary the randomness by varying the number of sampled subsets in I, s.t. |I| ∈ [0, 500]. Thereby,466

the probability of a specific subset being selected is p = 1
|I| . Therefore, all the devices train the same467

submodel in a round, and there are only |I| submodels that would be trained by devices over the468

training period. Evaluation is done with the full server model.469

We observe the following effects: Firstly, the final accuracy drops proportionally to ∼ p. Secondly,470

it can be observed that in the case of |I| = 1, FD behaves similarly to the small model baseline,471

as always the same subset is used for training. We also observe that remaining untrained filters472

have a minor effect on the accuracy when compared with a small model. However, because of these473

untrained parameters, the model fails to reach higher accuracies as with SLT (see Section 3). The474

accuracy drops with introducing more randomness to the training process (i.e., increasing |I|). Lastly,475

it can be observed that the rolling window approach of FedRolex is a special case of FD with limited476

randomness (i.e., |I| = 5 in this experiment).477

B Training Memory Measurements in PyTorch478

We measure the maximum memory requirement for the evaluated NN models ResNet and DenseNet479

using PyTorch 1.10. Specifically, we measure the size of the activations, gradients, and weights.480

These memory measurements are done offline (prior to training) and do not require any data.481

• Measurement of weights: To measure the size of the weights, we sum up all tensors that482

are present in the NN’s state_dict.483

13

• Measurement of activations and gradients: To measure the size of the activations that have484

to be kept in memory, as well as the gradients, we apply backward_hooks to all relevant485

PyTorch modules in an NN. Specifically, we add these hooks to Conv2d, BatchNorm2d,486

ReLU, Linear, and Add operations. If a hook attached to a module is called, we add the487

respective size of the activation map and the size of the calculated gradient to a global488

variable add up all required activations and gradients.489

14

