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Abstract

Offline safe reinforcement learning (RL) algorithms promise to learn policies that
satisfy safety constraints directly in offline datasets without interacting with the
environment. This arrangement is particularly important in scenarios with high
sampling costs and potential dangers, such as autonomous driving and robotics.
However, the influence of safety constraints and out-of-distribution (OOD) actions
have made it challenging for previous methods to achieve high reward returns
while ensuring safety. In this work, we propose a Variational Optimization with
Conservative Estimation algorithm (VOCE) to solve the problem of optimizing
safety policies in the offline dataset. Concretely, we reframe the problem of offline
safe RL using probabilistic inference, which introduces variational distributions
to make the optimization of policies more flexible. Subsequently, we utilize pes-
simistic estimation methods to estimate the Q-value of cost and reward, which
mitigates the extrapolation errors induced by OOD actions. Finally, extensive ex-
periments demonstrate that the VOCE algorithm achieves competitive performance
across multiple experimental tasks, particularly outperforming state-of-the-art
algorithms in terms of safety. Our code is available at github.VOCE.

1 Introduction

Reinforcement learning (RL) algorithms have made remarkable achievements in various fields such
as robot control [1–3] and strategy games [4–6]. However, limited by the online and trial-and-error
nature, standard RL is challenging to apply to dangerous and expensive scenarios [7–9]. Offline safe
RL is a promising and potential approach to tackle the above problem, which learns policy satisfying
safety constraints from pre-collected offline datasets without interacting with the environment [10, 11].

Since offline safe RL methods aim to learn policies that satisfy safety constraints from offline datasets,
which requires the agent to not only comply with safety constraints but also consider the influence
of out-of-distribution (OOD) actions [12–15]. This makes it difficult for the algorithm to learn
policies that achieve high reward returns while satisfying safety constraints [16]. There are two main
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approaches to deal with the aforementioned challenges: one is based on linear programming [17, 18],
and the other is based on exploration and evaluation [19–21]. Linear programming provides a way to
research offline safe RL problems, but it heavily depends on the F-divergence or KL-divergence to
constrain the distance between the optimal distribution and the sample distribution [17]. Therefore, it
is difficult for linear programming to eliminate the extrapolation errors caused by OOD actions [10,
11]. The exploration evaluation approaches are to introduce conservative Q-value estimation under the
actor-critic framework. Although exploration evaluation approaches avoid the overestimation issue
through lower bound Q-values, they prematurely terminate trajectories that exceed the constraints
during policy updates [16]. The exploration evaluation method with strict constraints on the sample
space makes it challenging to search for reward-maximizing policies. In conclusion, existing methods
face challenges in learning policies from offline datasets that maximize reward while satisfying safety
constraints, particularly when considering the impact of extrapolation errors.

In this work, to solve the constrained policy optimization problem and eliminate the extrapolation
errors caused by OOD actions, we propose a variational optimization with conservative estimates
for the offline safe RL algorithm. Concretely, we reframe the objective of offline safe RL using
probabilistic inference, enhancing the flexibility of policy optimization by replacing parameterized
policies with variational distributions. Furthermore, to avoid extrapolation errors caused by OOD
actions, we derive upper and lower bounds for Q-values and estimate the Q-values of costs and rewards
based on these bounds. Finally, we adopt a supervised learning approach to train a parameterized
policy network according to the variational distribution of policies. The main contributions of this
work are listed as follows:

• We utilize probabilistic inference to address the problem of offline safe RL, which intro-
duces non-parametric variational distributions to replace parameterized policies, providing
increased flexibility for optimizing safe policies in offline datasets.

• We derived upper and lower bounds for Q-value estimation using the pessimistic estimation
approach. Subsequently, we utilized these bounds to estimate the Q-value of costs and
rewards, respectively, to avoid extrapolation errors caused by OOD actions.

• We carry out extensive comparative experiments, and the results indicate that the VOCE
algorithm outperforms state-of-the-art algorithms, especially in terms of safety.

2 Preliminaries

Constrained Markov decision processes (CMDP) provide a theoretical framework to solve safe
RL problems [22], where the agent is cost-bounded by safety constraints. A CMDP is defined
as a tuple (S,A, C, P, r, ρ0, γ), where S ∈ Rn is the state space, A ∈ Rm is the action space,
P : S×A×S → [0, 1] is the transition kernel, which specifies the transition probability p(st+1|st, at)
from state st to state st+1 under the action at, r : S ×A → R represents the reward function, C is
the set of costs {ci : S ×A → R+, i = 1, 2, · · · ,m} for violating m constraints, γ ∈ (0, 1] is the
discount factor, and ρ0 : S → [0, 1] is the distribution of initial states. A policy π maps a probability
distribution from state st to action at. We utilize πθ to denote the parameterization of the policy
with parameter θ. In safe RL, the goal is to maximize the cumulative reward while satisfying safe
constraints:

π∗ = argmax
π

Eτ∼π

[
∞∑
t=0

γtr(st, at)

]
, s.t. Eτ∼π

[
∞∑
t=0

γtci(st, at)

]
≤ c̄i, (1)

where the τ = {s0, a0, · · · } ∼ π denotes the trajectory. c̄i is the i-th safe constraint limit.

In the offline RL setting, we learn a policy according to the offline dataset D collected by one
or more data-collection policies, and without online interaction with the environment (D =
{(st, at, rt, ct)i}ni=1). Although this way of not interacting with the environment brings a lot of
advantages, the offline dataset can not cover all action-state transitions, and the policy evaluation step
actually utilizes the Bellman equation of a single sample [23]. This makes the estimated Q-value
vulnerable to OOD actions, which in turn severely affects the performance of the algorithm [24, 25].
As shown in Fig. 1, under the offline setting, off-policy safe RL methods neither learn a high-reward
policy nor guarantee safety. Additionally, although offline RL methods obtain high rewards under
safe expert data, it is difficult to guarantee safety because it directly ignores the cost. We can conclude
that both offline RL and safe RL face challenges in learning policies that satisfy safety constraints
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from offline datasets. Therefore, it is important to design an algorithm that learns high-reward and
satisfies safety constraints, which is the focus of this paper.
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Figure 1: Reward and cost curves of safe RL and off-policy RL under high-reward and safe datasets in
Point-Button task [26]. The solid line is the mean of the performance, and the shaded line represents
the variance of the performance. All performance curves employ more than 3 random seeds.

3 Method

In this section, we present the details of Variationally Optimized with Conservatively Estimated for
offline-safe RL algorithm (VOCE), which is the main contribution of this paper. We first reformulate
the objective of offline-safe RL with probabilistic inference. Based on this, we derived upper and
lower bounds for Q-value estimation, and adopted a pessimistic and conservative estimation approach
to estimate the Q-value of costs and rewards respectively to eliminate the extrapolation error of
OOD actions. Finally, we employ supervised learning to transform the variational distribution into a
parameterized policy.

3.1 Offline-safe RL as Inference

From the probabilistic inference perspective, the offline safe RL can be viewed as the problem of
observing safe actions in states with high rewards. As the probabilistic inference model and notation
in [26, 27], we introduce an optimal variable O to represent the event of maximizing rewards. As-
suming the likelihood of a given trajectory being optimal is proportional to the cumulative discounted
reward, the infinite discounted reward formula is expressed as P(O = 1|τ) ∝

∑
t γ

tr(st, at). Since
P(O = 1|τ) ≥ 0, we further confirm that the likelihood of a given trajectory being optimal is propor-
tional to the exponential of the accumulative discounted reward, then we rewrite the infinite discounted
reward formula asP(O = 1|τ) ∝ exp (

∑
t γ

trt/α). The α is a temperature parameter, and rt is short
for r(st, at). Let Pπ(τ) be the probability of the trajectory under the policy π, then the log-likelihood
of optimality under policy π can be written as logPπ(O = 1) = log

∑
τ P(O = 1|τ)Pπ(τ). Fur-

thermore, according to importance sampling and Jensen’s inequality, we obtain a lower bound of the
log-likelihood of optimality under policy π.

logPπ(O = 1) = logEτ∼Q

[
P(O = 1|τ)Pπ(τ)

Q(τ)

]
≥ Eτ∼Q log

P(O = 1|τ)Pπ(τ)

Q(τ)

∝ Eτ∼Q

[ ∞∑
t=0

γtrt
]
− αDKL(Q(τ)||Pπ(τ)),

(2)

where theQ(τ) is the auxiliary trajectory distribution. Since offline safe RL not only needs to consider
maximizing cumulative rewards but also guaranteeing safety, we restrict Q(τ) to the constrained
feasible distribution space. According to the constraint threshold c̄i, we define the feasible distribution
space as:

Ωc̄i ≜ {q(at|st) : Eτ∼q[
∞∑
t=0

γtci(st, at)] ≤ c̄i}, (3)

where each q(at|st) ∈ Ωc̄i indicates that the action distribution of the sate-condition satisfies the
safety constraint. By factorizing the trajectory distribution [27], we express the trajectory distribution
as:

Q(τ) = ρ(s0)
∏
t≥0

p(st+1|st, at)q(at|st), q(at|st) ∈ Ωc̄i , (4)

Pπθ
(τ) = ρ(s0)

∏
t≥0

p(st+1|st, at)πθ(at|st), (5)
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where ρ(s0) is the distribution of the initial state s0. Substituting Eq. (4) and (5) into Eq. (2) to
eliminate the transitions p(st+1|st, at), and combining the feasible distribution space of Eq. (3), we
obtain the object of offline safe RL problem as shown in Proposition 3.1.

Proposition 3.1. The objective of the offline safe RL problem can be defined through probabilistic
inference as follows:

L(q, π) = Eτ∼q

[ ∞∑
t=0

(γtrt)− αDKL(q(·|st)||πθ(·|st))
]
, q(at|st) ∈ Ωc̄i . (6)

Proposition 3.1 provides a new objective for the problem of offline safe RL. The aforementioned
probabilistic inference method has many optimizations over the previous dual methods in solving the
problem of offline safe RL. This approach provides flexibility for optimizing the optimal policy by
introducing a variational distribution q(at|st) to connect the strong correlation between dual variable
optimization and policy improvement. Furthermore, the approach decouples the optimal policy
optimization problem into independent processes of optimal variational distribution optimization and
parameterized policy update. We will introduce these two update processes in detail later.

3.2 Variational Optimization with Conservative Estimates for Offline-safe RL

The previous standard RL and safe RL also employed the above-mentioned idea of probabilistic
inference to solve the policy optimization problem [26, 28]. However, due to the influence of OOD
actions in the offline setting, previous RL algorithms based on probabilistic inference are difficult to
address the tasks of offline-safe RL. Therefore, we adopt a pessimistic conservative estimation method
to improve the offline-safe RL algorithm based on probabilistic inference and obtain a Variational
Optimization with Conservative Estimation algorithm (VOCE). We divide the VOCE into two steps:
conservatively estimated variational optimization and parameterized policy update.

3.2.1 Conservatively Estimated Variational Optimization

The goal of the conservatively estimated variational optimization is to optimize the optimal variational
distribution q(at|st) with a high reward while satisfying the safety constraints. In this step, we perform
the maximization of the variational distribution q(at|st) by fixing the policy πθ(at|st). According to
proposition 3.1, we write the objective of solving the optimal variational distribution as:

L(q)=Eρ(s0)

[
Eq(at|st)Q

r(st, at)−αDKL(q(·|st)||πθ(·|st))
]
, s.t.Eρ(s0)

[
Eq(at|st)Q

ci(st, at)
]
≤ c̄i. (7)

The optimization objective of the above variational distribution can be regarded as a KL-regularized
constrained optimization problem. However, since the expected reward term Eq(at|st)Q

r(st, at) may
be on different scales depending on the environment, it is difficult to set an appropriate penalty
coefficient α for different environments. Therefore, we introduce hard constraints to replace the
regularization term of the KL-divergence and rewrite the optimization objective of Eq. (7) as:

max
q

Eρ(s0)

[∑
at

q(at|st)Qr(st, at)
]
, s.t. Eρ(s0)

[∑
at

q(at|st)Qci(st, at)
]
≤ c̄i,

Eρ(s0)

[
DKL(q(at|st)||πθ(at|st))

]
≤ ϵ,

∑
at

q(at|st) = 1, ∀st ∈ D,
(8)

where ϵ is the KL-divergence threshold between the variational distribution q(at|st) and the param-
eterized policy πθ(at|st). To solve the above-constrained problem (8), we replace the parametric
q(at|st) with the non-parametric to avoid performance degradation caused by approximation er-
rors [29]. Furthermore, we apply the Lagrange multiplier method to transform the above-constrained
problem into an unconstrained problem. In the non-parametric form q(at|st), since the objective
function is linear and the constraints are convex, the constrained optimization problem shown in
Eq. (8) is a convex optimization problem. Furthermore, through mild assumptions, we can obtain the
strong dual form of Eq. (9).

Assumption 3.2. (Slater’s condition). There exists a variational distribution that satisfies the safety
constraints q(at|st) ∈ Ωc̄i within the current policy trust region DKL(q(at|st)||πθ(at|st)) < ϵ.
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Lemma 3.3. Under Assumption 3.2, there exists a strong duality between the primal problem in
Eq. (8) and the unconstrained problem in Eq. (9).

L(q, λ, η, δ) = min
λ≥0,η≥0,δ

max
q≥0

Eρ(s0)

[∑
at

q(at|st)Qr(st, at)− λT

[∑
at

q(at|st)Qci(st, at)− c̄i

]

− δ
[∑

at

q(at|st)− 1
]
− η

[
DKL

(
q(at|st)||πθ(at|st)

)
− ϵ

]]
,

(9)

where λ, η, δ are the Lagrange multipliers of the above multiple constraints. Based on the strong
duality of the unconstrained problem in Eq. (9), we further derive a closed-form solution q∗(at|st) for
its internal maximization, as shown in Proposition 3.4. Proofs and discussions are in Appendix B.1.
Proposition 3.4. The closed-form solution of the optimal variational distribution that satisfies the
safety constraint in Eq. (9) is given as:

q∗(at|st) = πθ(at|st) exp
[
Qrc(st, at)

η

]
exp

(
−η + δ

η

)
, (10)

where Qrc(st, at) ≜ Qr(st, at)− λTQci(st, at).

By substituting the closed-form solution (10) into Eq. (9) and eliminating similar terms, we obtain
the convex minimization problem shown in Proposition 3.5. Subsequently, we solve for the dual
variables η and λ using Eq. (11). Proofs and discussions are in Appendix B.2.
Proposition 3.5. The λ, η are dual variables and are solved via the convex optimization problem of
the following formula.

L(λ, η) = min
λ≥0,η≥0

Eρ(s0)

[
η log

∑
at

πθ(at|st) exp
(
Qrc(st, at)

η

)
+ λT c̄i + ηϵ

]
. (11)

The Proposition 3.4 provides a proposal to solve a non-parametric variational distribution q(at|st)
for the given the Q-value Qr(st, at) and Qci(st, at). In addition, we provide the optimality and
uniqueness of the above closed-form q∗(at|st) solution under the premise of strong convexity in
the Appendix B.2. Note that it can be seen from Eq. (10) that providing accurate Qr(st, at) and
Qci(st, at) are the premise and guarantee for accurately computing the non-parametric variational
distribution q(at|st). We can find similar conclusions in the online safe RL algorithm CVPO [26], as
described in Proposition 3.4 and 3.5. In the online setting, the empirical Bellman equation is directly
applied to iteratively update the Q-value. However, in the offline setting, this approach would lead to
clear extrapolation errors in Qci(st, at) and Qr(st, at) due to the OOD actions. Furthermore, it is
difficult to accurately compute the variational distribution q(at|st) according to Eq. (10).

To eliminate the extrapolation error caused by the OOD actions during the evaluation of the Q-value,
we utilize the pessimistic conservative estimation approach to estimate Qr and Qci , respectively.
Specifically, to eliminate the impact of extrapolation error on Qr, we need to avoid overestimation
of Qr [24]. Therefore, similar to CQL [30] to learn a conservative lower bound of the Q-function
by additionally minimizing the Q-values alongside a standard Bellman error objective, we choose
the penalty that minimizes the expected Q-value under special action-state transitions for unknown
actions produced by πM(at|st). Then, we define the Q-value of the iterative reward function as:

Q̂r
k+1 ← argmin

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(st, at)
]2]

+ κEst∼D,at∼πM(·|st)
[
Qr(st, at)

]
, (12)

where the B̂πQ̂r(st, at) = r(st, at) + γQ̂r(st+1, at+1). In Proposition 3.6, we show that Q̂r(st, at)

converges to a lower bound on Q̂r(st, at). However, we can tighten this bound if we are interested in
V r(st). We improve the bounds by introducing an additional maximization term under the sample
distribution π̂β . Then the iterative update Eq. (12) of the reward Q-value can be rewritten as:

Q̂r
k+1 ← argmin

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(st, at)
]2]

+

κ

[
E st∼D
at∼πM(·|st)

Qr(st, at)− E st∼D
at∼π̂β(·|st)

Qr(st, at)

]
,

(13)

where κ is a tradeoff factor. Note that the Eq. (12) and (13) utilize the empirical Bellman operator
B̂π instead of the actual Bellman Operator Bπ. Following the related work [23, 31], we employ the
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concentration properties to compute the error. For any ∀st, at ∈ D, with the probability ≥ 1− δ, the
sampling error can be written as:

|BπQ̂(st, at)− B̂πQ̂(st, at)| ≤
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

, (14)

where Cr,p,δ is a constant depending on the concentration properties of r(st, at), p(st+1|st, at) and
the δ, δ ∈ (0, 1). The 1√

|D(st,at)|
represents a vector of size |S||A| containing the square root inverse

count of each state action transition. Considering the sampling error as shown in Eq. (14), we can
derive the condition for Q̂r converging to the lower-bound Qr at all (st, at) through Eq. (12). The
Proposition 3.6 provides the condition for Q̂r to converge to the lower-bound of the Qr. Proofs and
discussions are in Appendix B.3.
Proposition 3.6. For any πM(at|st) with supp πM(at|st) ⊂ π̂β , ∀st, at ∈ D, the Q-value function
Qr via iterating Eq. (12) satisfies:

Q̂r(st, at) ≤ Qr(st, at)− κ

[
(I − γPπ)−1 πM

π̂β

]
(st, at) +

[
(I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D|

]
(st, at), (15)

Thus, if κ ≥ Cr,p,δRmax

(1−γ)
√

|D(st,at)|

[
πM(at|st)
π̂β(at|st)

]−1

, the iterative update Eq. (12) guarantees Q̂r ≤ Qr.

Next, when πM(at|st) = πθ(at|st), we obtain a not lower-bound for the Q-values estimates point-
wise. based on Eq. (13). We abuse the notation 1√

|D|
to represent a vector of the inverse square root

of state counts. Proofs and discussions are in Appendix B.4.
Proposition 3.7. When πM(at|st) = πθ(at|st), according to Eq. (13), we obtain a lower bound for
the true value of V r = Eat∼πθ(at|st)[Q

r(st, at)] that satisfies the following inequality:

V̂ r(st) ≤ V r(st)− κ

[
(I − γPπ)−1Eat∼πθ

[
πθ

π̂β
− 1

]]
(st) +

[
(I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D|

]
(st), (16)

Thus, if κ ≥ Cr,p,δRmax

(1−γ)
√

|D(st)|

[
Eat∼πθ

[
πθ(at|st)
πβ(at|st) − 1

]]−1

, the Eq. (13) can guarantees V̂ r ≤ V r.

On the other hand, taking into account the need to satisfy the safety constraint
Eρ(s0)

[∑
a q(at|st)Qci(st, at)

]
≤ c̄i, the estimation of the cost Q-value must fulfill Q̂ci ≥ Qci .

Based on the above analysis we choose the penalty that maximizes the expected Q-value under special
action-state transitions for unknown actions produced by πR(a|s). Therefore, we define the Q-value
of the iterative reward function as:

Q̂ci
k+1←argmin

1

2
Est,at∼D

[[
(Qci(st, at))−B̂πQ̂ci

k (st, at)
]2]−χE s∼D

a∼πR(·|st)

[
Qci(st, at)

]
, (17)

where χ is the trade-off factor. The πR denotes the marginal distribution corresponding to the
unknown action. The Proposition 3.8 provides an upper bound on the convergence of the fixed
point of Q̂ci , and clarifies the conditions for Q̂ci to converge to the upper bound of Qci . Proofs and
discussions are in Appendix B.5.
Proposition 3.8. For any πR(at|st) with supp πR(at|st) ⊂ π̂β , ∀st, at ∈ D, the Q-value function
Qci via iterating Eq. (17) satisfies:

Q̂ci(st, at) ≥ Qci(st, at)+χ

[
(I − γPπ)−1 πR

π̂β

]
(st, at)−

[
(I − γPπ)−1 Cr,p,δCmax

(1− γ)
√
|D|

]
(st, at). (18)

Thus, if χ ≥ Cr,p,δCmax

(1−γ)
√

|D(st,at)|

[
πR(at|st)
π̂β(at|st)

]−1

, the iterative update Eq. (17) can guarantee Q̂ci ≥ Qci .

3.2.2 Parametered Policy Update

After solving the optimal variational distribution of each state via Eq. (10), we need to obtain the
policy parameters θ. According to the solution target of Eq. (6), the optimization target can be
obtained by eliminating the quantities irrelevant to θ.
L(θ)=maxEτ∼q [−αDKL(q(·|st)||πθ(·|st))] = maxαEρ(s0)Eq(at|st)

[
log πθ(at|st)−log q(at|st)

]
, (19)
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where α ≥ 0 is the temperature parameters. In addition, the q(at|st) is independent of πθ(at|st).
Therefore, the optimization objective of the above Eq. (19) can be rewriten as:

L(θ) = maxEρ(s0)Eq(at|st)
[
log πθ(at|st)

]
. (20)

4 Experimental Evaluation

In this section, we compare VOCE to previous offline safe RL methods in a range of domains and
dataset compositions, including different action spaces and observation dimensions. To the best of
my knowledge, there is currently no standardized dataset available in the field of offline safe RL.
To facilitate further research and reproducibility of this work, we have collected a series of datasets
using a trained online policy. The parameter settings of the dataset are in Appendix C.1.

4.1 Task and Baseline

Task. We choose Point-Goal, Car-Goal, Point-Button and Car-Button four tasks widely adopted in
the field of safe RL [26, 29, 32–34], as the experimental tasks for this work. A detailed description of
each task is in Appendix C.2.
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Figure 2: Distribution of rewards and costs for samples collected by different behavioral policies.

Baselines. BCQ-Lag is an offline safe RL algorithm that combines the Lagrange multiplier method
with the BCQ [24] algorithm and employs adaptive penalty coefficients to implement offline con-
straints task. The C-CRR is an offline safe RL algorithm improved by the CRR [35] algorithm. It
implements cost constraints by introducing cost evaluation Q-value function and Lagrange multipliers.
Coptidice [10] is a policy optimization method based on the optimal stationary distribution space.
The aforementioned three approaches are currently state-of-the-art algorithms in offline safe RL.

4.2 Performance Comparison Experiment

To evaluate the performance of VOCE on diverse task and behavior samples, we collected sample
data from three distinct behaviors within four different tasks. We introduce parameter φ to represent
the proportion of trajectories in the sample data that satisfy the constraints. Then we employ φ to
characterize samples to different behaviors. Fig. 2 illustrates the marginal distribution of rewards and
costs for sample trajectories in the dataset at different values of φ. The results from Fig. 2 reveal that
as the value φ increases, the mean cost decreases, and the mean reward increases. Fig. 3 displays the
reward and cost curves of VOCE and the state-of-the-art offline safe RL methods under different φ
values for four tasks. The Fig. 3 results demonstrate that the VOCE achieves higher rewards across all
tasks compared to the other three methods, while also satisfying or approaching the safety constraints
threshold. Especially in the Goal task, VOCE consistently meets the safety constraints across different
φ values, while achieving higher reward returns. In the Button task, when the parameter φ is small,
VOCE struggles to ensure safety; however, the cost curve of VOCE remains lower than the other three
methods. Based on the aforementioned results analysis, it can be concluded that the VOCE exhibits
competitive performance across various combinations of samples from multiple tasks, particularly
excelling in terms of safety compared to the state-of-the-art algorithms currently available.

4.3 Ablation Experiment

The parameter φ of the dataset. Fig. 4 displays the boxplots of rewards and costs for the VOCE
under different parameter values of φ in the Point-Goal and Point-Button tasks. The results from
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Figure 3: The reward and cost curves of VOCE and baseline algorithms with different sample data
under 4 tasks. The curve is averaged over 3 random seeds, where the solid line is the mean and the
shaded area is the standard deviation.

Fig. 4 reveals an intriguing phenomenon: VOCE does not achieve the highest reward and lowest
cost at φ=1.0 but instead attains the highest reward within the range of 0.7 to 0.9 (The range will
vary depending on changes in the sampling method or policy.). This indicates that appropriately
increasing the number of constraint-satisfying trajectories in the dataset benefits VOCE in improving
its rewards and reducing costs. However, excessive augmentation of constraint-satisfying trajectories
in the dataset may lead to a decrease in rewards and even an increase in costs.
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Figure 4: Ablation experiments with the same sampling policies and different φ coefficients.

Conservative estimation of rewards and costs. To assess the impact of conservative estimation
on VOCE, we conducted ablation experiments on the conservative estimation of both reward and
cost Q-values. Fig. 5 illustrates the rewards and costs of VOCE, VOCE-Qr, and VOCE-Qc across
four tasks. VOCE-Qr stands for the VOCE method with the conservative estimation of Q-values
removed for rewards. VOCE-Qc represents the VOCE method with the conservative estimation of
Q-values removed for costs. The results presented in Fig. 5 demonstrate that the rewards of VOCE-Qr
are notably lower than those of VOCE. This indicates that employing a lower-bound conservative
estimation of reward Q-values helps eliminate extrapolation errors caused by OOD actions, thereby
significantly improving the reward of VOCE. Furthermore, the results from Fig. 5 reveal that the
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rewards of VOCE-Qc are comparable to or even surpass those of VOCE. However, in some tasks,
the costs of VOCE-Qc exceed the cost constraints. This suggests that utilizing an upper-bound
conservative estimation of cost Q-values helps reduce the costs of VOCE, thereby enhancing the
safety of VOCE.
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Figure 5: Ablation study for conservative Q-value estimation of reward and cost, and constrained
regularize of the policy update. The curve is averaged over 3 random seeds, where the solid line is
the mean and the shaded area is the standard deviation.

5 Related Work

In this section, we elaborate on the work pertaining to offline safe RL and scrutinize three aspects of
safe RL, offline RL, and offline safe RL.

Safe RL. Currently, Safe RL typically addresses optimization objectives with constraints using
the primal-dual framework. The Lagrange version of PPO and TRPO [36, 37] widely used as the
underlying baselines combines the constraint information with the original objective function via
Lagrange multipliers. CPO [38] is the first general-purpose policy search algorithm for safe RL
that guarantees that the near constraints are satisfied at each iteration. However, the second-order
method [38, 39] requires second-order information and thus brings a higher computational burden.
To address the approximation errors associated with Taylor approximations and inverting a high-
dimensional Fisher information matrix, first-order methods such as CUP [40] and APPO [41] achieve
better performance and implementation.

Offline RL. Offline RL, also known as batch RL, considers the problem of updating a policy from an
offline dataset without interacting with the environment. There are mainly two approaches of policy
constraints and Q-value regularization to solve the problem of OOD actions in offline RL [42–44].
The earliest proposed Batch-Constrained deep Q-learning (BCQ) algorithm [24] is a typical policy-
constrained offline RL algorithm, which employs CVAE to learn behavioral policy generation models,
and finds the optimal policy by maximizing the Q-value. On this basis, a series of policy-constrained
algorithms [45–48] are proposed, which mainly constrain the actions explored through the behavioral
policy model. In addition, due to the obvious stability of the Q-value regularization approach, it has
been extensively studied. A conservative Q-learning algorithm [30] proposed by Kumar et al., learns
a conservative Q-value by enhancing the standard Bellman error objective with a simple Q-value
regularizer. Subsequently, a series of Q-value regularization methods [49, 6, 50] were proposed which
generally learn a conservative Q-value through regularization items or clipping Q-learning.

Offline safe RL. Offline safe RL is to solve the optimization problem of safety policy under the
offline dataset. An offline safe RL algorithm with constraint penalty is proposed [16], which improves
the objective function of the cost Q-value via using the constraint penalty item, and ensures the safety
of the policy via terminating unsafe trajectory in advance. On the other hand, a constrained offline
optimization algorithm (COPO) [11] defines the RL problem based on linear programming and
constrains the distance between the final policy and offline sample behavior through regulation terms
to solve the problem of offline safe RL algorithms. Additionally, this algorithm sets the discount
factor γ = 1, and changes the maximizing discount reward objective to the maximizing mean reward
objective. Similar to the COPO algorithm, an offline policy optimization via stationary distribution
correction estimation (CoptiDICE) [18] also utilizes the linear programming method of RL to solve
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the optimal stationary distribution instead of the gradient strategy, which expands the discount factor
to γ ∈ (0, 1].

6 Conclusion
In this work, we propose a variational optimization with conservative estimation for offline safe RL
algorithm to address the problem of optimizing safe policies using offline datasets. We introduce
probabilistic inference to reframe the problem of offline safe RL, and we mitigate estimation errors
caused by parameter approximation through employing nonparametric variational distributions instead
of parameterized policies. Furthermore, we utilize the upper and lower bounds of Q-values to estimate
the Q-values of cost and reward, thereby mitigating extrapolation errors caused by OOD actions.
Finally, extensive comparisons and ablation experiments demonstrate that the VOCE algorithm
outperforms state-of-the-art algorithms in terms of safety.
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A Implementation Details

A.1 Algorithm

The VOCE algorithm is shown in Algorithm 1.

Algorithm 1: VOCE Algorithm
Input: Dataset D = {(st, at, rt, st+1)

n
i=0}

Output: Policy network πθ;
Q-value network of reward Qr , Qr

t , ;
Q-value network of cost Qci , Qci

t ;
1 for each batch do
2 Sample a batch of transitions (st, at, rt, st+1) from the buffer D;
3 Compute the Q-value Q̂r(st, at) and Q̂ci(st, at) via Bellman backup;
4 B̂πQ̂r(st, at) = r(st, at) + γQ̂r(st+1, at+1);
5 B̂πQ̂ci(st, at) = ci(st, at) + γQ̂ci(st+1, at+1);
6 Update the Qr via the Eq. (13);
7 Update the Qci via the Eq. (17);
8 Update the optimal dual variables η and λ via solving the convex optimization issue in the Eq. (11);
9 Compute the optimal variational distribution q∗(at|st) by the Eq. (10) via Qr , Qci and Lagrangian

multipliers η and λ ;
10 Update the Policy Parameter πθ via the Eq. (20);
11 Qr

t ← τQr + (1− τ)Qr
t ;

12 Qci
t, ← τQci + (1− τ)Qci

t ;

B Proofs and Discussions

B.1 Proof and Discussion the Proposition 3.4

Proposition B.1. The closed-form solution of the optimal variational distribution that satisfies the
safety constraint in Eq. (21) is given as:

q∗(at|st) = πθ(at|st) exp
[
Qrc(st, at)

η

]
exp

(
−η + δ

η

)
, (21)

where Qrc(st, at) ≜ Qr(st, at)− λTQci(st, at).

Proof. The unconstrained problem derived through the Lagrange multiplier method is expressed as
follows:

L(q, λ, η, δ) = max
q≥0

min
λ≥0,η≥0,δ

Eρ(s0)

[∑
at

q(at|st)Qr(st, at)− λT

[∑
at

Qci(st, at)− c̄i

]

− η
[
DKL

(
q(at|st)||πθ(at|st)

)
− ϵ

]
− δ

[∑
at

q(at|st)− 1
]]

.

(22)

To simplify Eq. (22), we introduce a composite Q-value and define it as Qrc(st, at) ≜ Qr(st, at)−
λTQci(st, at). Then we rewrite the Eq. (22) as:

L(q, λ, η, δ) = max
q≥0

min
λ≥0,η≥0,δ

Eρ(s0)

[∑
at

q(at|st)Qrc(st, at)− η
∑
at

q(at|st) log
q(at|st)
πθ(at|st)

− δ
∑
at

q(at|st) + λT c̄i + ηϵ+ δ

]
.

(23)
For a fixed λ and η, we write the dual problem [17, 18] of the above optimization problem of
maximization maxq≥0 L(q, λ, η):

max
q≥0

min
u≥0
L(q, λ, η) +

∑
st,at

µ(st, at)q(at|st). (24)
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Since the strong duality holds, satisfying the KKT condition is a necessary and sufficient condition
for the solution of the primal and dual problems.

Condition 1 (Primal feasibility). q∗(at|st) ≥ 0, ∀st, at
Condition 2 (Dual feasibility). µ∗(st, at) ≥ 0, ∀st, at
Condition 3 (Stationarity). Qr(st, at) − λTQci(st, at) − η − η log q∗(at|st) − η log πθ(at|st) +
µ∗(st, at) = 0, ∀st, at
Condition 4 (Complementary). q∗(at|st)µ∗(st, at) = 0, ∀st, at
Form Stationarity we have:

q∗(at|st) = πθ(at|st) exp
[
Qrc(st, at)

η

]
exp

(
− η + δ − u∗(st, at)

η

)
. (25)

Since the πθ(at|st) > 0, thus the q∗(at|st) > 0. Then the Primal feasibility is always satisfied.
Furthermore, we only need to consider the cases where q∗(at|st) > 0.

(Case 1 q∗(at|st) > 0 ) In this case, µ∗(st, at) = 0 where Dual feasibility and Complementary
slackness are satisfied. In addition, Stationarity also applies to :

q∗(at|st) = πθ(at|st) exp
[
Qrc(st, at)

η

]
exp

(
− η + δ

η

)
. (26)

Therefore, KKT conditions (conditions 1-4 ) are satisfied.

B.2 Proof and Discussion the Proposition 3.5

Proposition B.2. The λ, η are dual variables and are solved via the convex optimization problem of
the following formula.

L(λ, η) = min
λ≥0,η≥0

Eρ(s0)

[
η log

∑
at

πθ(at|st) exp
(
Qrc(st, at)

η

)
+ λT c̄i + ηϵ

]
. (27)

Proof. By rearranging terms and taking the expectation over at, Eq. (21) can be rewritten as:

exp
(η + δ

η

)∑
at

q∗(at|st) =
∑
at

πθ(at|st) exp
[
Qrc(st, at)

η

]
, (28)

where the
∑

at
q∗(at|st) = 1, thus the Eq. (28) can be rewritten as:

η + δ

η
= log

∑
at

πθ(at|st) exp
[
Qrc(st, at)

η

]
. (29)

By substituting Eq. (29) and (26) into Eq. (22) to eliminate q(at|st), we can rewrite Eq. (22) as:

L(λ, η, δ) = min
λ≥0,η≥0,δ

Eρ(s0)

[∑
at

q∗(at|st)Qrc(st, at)− η
∑
at

q∗(at|st) log
q∗(a|s)
πθ(a|s)

− δ
∑
at

q∗(at|st) + λT c̄i + ηϵ+ δ

]

= min
λ≥0,η≥0,δ

Eρ(s0)

[∑
at

q∗(at|st)Qrc(st, at)− η
∑
at

q∗(at|st)
[Qrc(st, at)− η − δ

η

]
− δ

∑
at

q∗(at|st) + λT c̄i + ηϵ+ δ

]

= min
λ≥0,η≥0,δ

Eρ(s0)

[∑
at

q∗(at|st)
[
η + δ

]
− δ

∑
at

q∗(at|st) + λT c̄i + ηϵ+ δ

]

= min
λ≥0,η≥0,δ

Eρ(s0)

[
η log

∑
at

πθ(at|st) exp
[
Qrc(st, at)

η

]
+ λT c̄i + ηϵ

]
.

(30)

Since Eq. (30) eliminates δ, the dual optimization problem of λ and η can be written as:

L(λ, η) = min
λ≥0,η≥0

Eρ(s0)

[
η log

∑
at

πθ(at|st) exp
[
Qrc(st, at)

η

]
+ λT c̄i + ηϵ

]
. (31)
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B.3 Proof and Discussion the Proposition 3.6

Proposition B.3. For any πM(at|st) with supp πM(at|st) ⊂ π̂β , ∀st, at ∈ D, the Q-value function
Qr via iterating Eq. (12) satisfies:

Q̂r(st, at) ≤ Qr(st, at)− κ

[
(I − γPπ)−1 πM

π̂β

]
(st, at) +

[
(I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D|

]
(st, at). (32)

Thus, if κ ≥ Cr,p,δRmax

(1−γ)
√

|D(st,at)|

[
πM(at|st)
πβ(at|st)

]−1

, the iterative update Eq. (12) can guarantees Q̂r ≤ Qr.

Proof. The iterative equation for updating the reward Q-value, which involves an additional mini-
mization of the Q-value and the standard Bellman error objective, is expressed as follows:

Q̂r
k+1 ← argmin

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(st, at)
]2]

+

κEst∼D,at∼πM(·|st)
[
Qr(st, at)

]
,

(33)

where the B̂πQ̂r(st, at) = r(st, at) + γQ̂r(st+1, at+1). With importance sampling, the Eq. (33) can
be written as:

Q̂r
k+1 ← argmin

Qr

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(s, a)
]2]

+

κEst∼D,at∼π̂β(·|st)

[
πM(at|st)
π̂β(at|st)

Qr(st, at)

]
.

(34)

Setting the derivative of Eq. (34) to 0, we obtain the following expression:

Q̂r
k+1(st, at) = B̂πQ̂k(st, at)− κ

πM(at|st)
π̂β(at|st)

. (35)

Note that the Eq. (34) utilizes the empirical Bellman operator B̂π instead of the actual Bellman
Operator Bπ. Following the related work [23, 31], we employ the concentration properties to
determine the error. For any ∀st, at ∈ D, with the probability ≤ 1− δ, the error can be written as:

|BπQ̂(st, at)− B̂πQ̂(st, at)| ≤
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

, (36)

where Cr,p,δ is a constant depending on the concentration properties of r(st, at), p(st+1|st, at)
and the δ, δ ∈ (0, 1). The (D(st, at))−

1
2 represents a vector of size |S||A| containing the square

root inverse count of each state action transition. Rmax = maxst,at∼D{r(st, at)} represents the
maximum reward obtained in a single step. Based on the inequality of Eq. (36) and Eq. (35) we
obtain:

Q̂r
k+1(st, at) = B̂πQ̂r

k(st, at)− κ
πM(at|st)
π̂β(at|st)

≤ BπQ̂r
k(st, at) +

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

.

(37)

The fixed point in the updating process of Eq. (37) can be expressed as:

Q̂r(st, at) ≤ BπQ̂r(st, at) +
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

≤ r + γPπQ̂r(st, at) +
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

≤ Qr(st, at)− γPπQr(st, at) + γPπQ̂r(st, at) +
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

,

(38)

(I − γPπ)Q̂r(st, at) ≤ (I − γPπ)Qr(st, at) +
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

, (39)
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Q̂r(st, at) ≤ Qr(st, at) + (I − γPπ)−1

[
Cr,p,δRmax

(1− γ)
√
|D(st, at)|

− κ
πM(at|st)
π̂β(at|st)

]

≤ Qr(st, at)− κ(I − γPπ)−1πM(at|st)
π̂β(at|st)

+ (I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D(st, at)|

.

(40)

To guarantee the lower bound of Q̂r, we eliminate the potential overestimation caused by
Cr,p,δRmax

(1−γ)
√

|D(st,at)|
via choosing an appropriate κ. Since (I − γPπ)−1 is a matrix of non-negative

entries, the κ that guarantees the lower bound of Qr needs to satisfy:

κ ≥ Cr,p,δRmax

(1− γ)
√
|D(st, at)|

[
πM(at|st)
π̂β(at|st)

]−1

. (41)

B.4 Proof and Discussion the Proposition 3.7

Proposition B.4. When πM(at|st) = πθ(at|st), according to Eq. (13), we obtain a lower bound for
the true value of V r = Eat∼πθ(at|st)[Q

r(st, at)] that satisfies the following inequality:

V̂ r(st) ≤ V r(st)− κ

[
(I − γPπ)−1Eat∼πθ

[
πθ(at|st)
π̂β(at|st)

− 1

]]
(st) +

[
(I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D|

]
(st).

(42)

Thus, if κ ≥ Cr,p,δRmax

(1−γ)
√

|D(st)|

[
Eat∼π̂β

[
πθ(at|st)
πθ(at|st) − 1

]]−1

, the Eq. (13) can guarantee V̂ r ≤ V r.

Proof. The following Eq. (43) represents the iterative formula for the reward Q-value with an
additional maximization term introduced under the sample distribution π̂β .

Q̂r
k+1 ← argmin

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(st, at)
]2]

+

κ

[
E st∼D
at∼πM(·|st)

Qr(st, at)− E st∼D
at∼π̂β(·|st)

Qr(st, at)

]
,

(43)

where κ is a tradeoff factor. With importance sampling, the Eq. (43) can be rewritten as:

Q̂r
k+1 ← argmin

1

2
Est,at∼D

[[
(Qr(st, at))− B̂πQ̂r

k(st, at)
]2]

+

κ

[
E st∼D
at∼π̂β(·|st)

πM(at|st)
π̂β(at|st)

Qr(st, at)− E st∼D
at∼π̂β(·|st)

Qr(st, at)

]
.

(44)

Setting the derivative of Eq. (44) to 0, we obtain the following expression:

Q̂r
k+1(st, at) = B̂πQ̂k(st, at)− κ

[
πM(at|st)
π̂β(at|st)

− 1

]
(45)

By taking the expectation of both side of Eq. (45) with respect of the action, we obtain:

V̂ r
k+1(st) = B̂πV̂k(st)− κ

∑
at

πθ(at|st)
[
πM(at|st)
π̂β(at|st)

− 1

]
= B̂πV̂k(st)− κ

∑
at

[πθ(at|st)− π̂β(at|st) + π̂β(at|st)]
[
πM(at|st)
π̂β(at|st)

− 1

]
.

(46)

When πM(at|st) = πθ(at|st), we obtain from Eq. (46):

V̂ r
k+1(st) = B̂πV̂k(st)− κ

∑
at

[
(πθ(at|st)− π̂β(at|st))2

π̂β(at|st)

]
︸ ︷︷ ︸

≥0

−κ


∑
at

πθ(at|st)︸ ︷︷ ︸
=1

−
∑
at

π̂β(at|st)︸ ︷︷ ︸
=1

 .

(47)
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Since
∑

at
πθ(at|st) =

∑
at
π̂β(at|st) = 1, we can conclude that the value estimate V̂k(st) is

underestimated as V̂ r
k+1(st) ≤ B̂πV̂k(st) based on Eq. (47). Next, considering the sampling error,

we obtain from Eq. (45) and Eq. 36:

Q̂r
k+1(st, at) = B̂πQ̂r

k(st, at)− κ

[
πM(at|st)
π̂β(at|st)

− 1

]
≤ BπQ̂k(st, at)− κ

[
πM(at|st)
π̂β(at|st)

− 1

]
+

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

.

(48)

When πM(at|st) = πθ(at|st), the fixed point of the update process in Eq. 48 can be expressed as:

Q̂r(st, at) ≤ BπQ̂r(st, at)− κ

[
πθ(at|st)
π̂β(at|st)

− 1

]
+

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

≤ r + γPπQ̂r(st, at)− κ

[
πθ(at|st)
π̂β(at|st)

− 1

]
+

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

≤ Qr(st, at)− γPπQr(st, at) + γPπQ̂r(st, at)− κ

[
πθ(at|st)
π̂β(at|st)

− 1

]
+

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

(49)

(I − γPπ)Q̂r(st, at) ≤ (I − γPπ)Qr(st, at)− κ

[
πθ(at|st)
π̂β(at|st)

− 1

]
+

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

, (50)

Q̂r(st, at) ≤ Qr(st, at)− κ(I − γPπ)−1

[
πθ(at|st)
π̂β(at|st)

− 1

]
+ (I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D(st, at)|

,

(51)

Eat∼πθ Q̂
r(st, at) ≤ Eat∼πθQ

r(st, at)− κ(I − γPπ)−1Eat∼πθ

[
πθ(at|st)
π̂β(at|st)

− 1

]
+ (I − γPπ)−1Eat∼πθ

Cr,p,δRmax

(1− γ)
√
|D(st, at)|

,

(52)

V̂ r(st) ≤ V r(st)− κ(I − γPπ)−1Eat∼πθ

[
πM(at|st)
πβ(at|st)

− 1

]
+ (I − γPπ)−1 Cr,p,δRmax

(1− γ)
√
|D(st)|

. (53)

To guarantee the lower bound of V̂ r, we eliminate the potential overestimation caused by
Cr,p,δRmax

(1−γ)
√

|D(st)|
via choosing an appropriate κ. Since (I − γPπ)−1 is a matrix of non-negative

entries, the κ that guarantees the lower bound of V r needs to satisfy:

κ ≥ Cr,p,δRmax

(1− γ)
√
|D(st)|

[
Eat∼πθ

[
πθ(at|st)
π̂β(at|st)

− 1

]]−1

. (54)

B.5 Proof and Discussion the Proposition 3.8

Proposition B.5. For any πR(at|st) with supp πR(at|st) ⊂ π̂β , ∀st, at ∈ D, the Q-value function
Qci via iterating Eq. (17) satisfies:

Q̂ci(st, at) ≥ Qci(st, at) + χ

[
(I − γPπ)−1 πR

π̂β

]
(st, at)−

[
(I − γPπ)−1 Cr,p,δCmax

(1− γ)
√
|D|

]
(st, at).

(55)

Thus, if χ ≥ Cr,p,δCmax

(1−γ)
√

|D(st,at)|

[
πR(at|st)
π̂β(at|st)

]−1

, the iterative update Eq. (17) can guarantee Q̂ci ≥ Qci .

Proof. Using the importance sampling, Eq. (17) can be written as:

Q̂ci
k+1(st, at)← argmin

Qci

1

2
Est,at∼D

[[
(Qct(st, at))− B̂πQ̂ci

k (st, at)
]2]−

χEst∼D,at∼π̂β(·|st)

[
πR(a|s)
π̂β(at|st)

Qci(st, at)

]
.

(56)
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Setting the derivative of Eq. (56) to 0, we obtain the following expression:

Q̂ci
k+1(st, at) = B̂

πQ̂ci
k (s, a) + χ

πR(at|st)
π̂β(at|st)

(57)

Note that the Eq. (57) utilizes the empirical Bellman operator B̂π instead of the actual Bellman
Operator Bπ. Following the related work [23, 31], we employ the concentration properties to
determine the error. For any ∀st, at ∈ D, with the probability ≤ 1− δ, the error can be written as:

|BπQ̂(st, at)− B̂πQ̂(st, at)| ≤
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

. (58)

where Cr,p,δ is a constant depending on the concentration properties of c(st, at), p(st+1|st, at)
and the δ, δ ∈ (0, 1). The (D(st, at))−

1
2 represents a vector of size |S||A| containing the square

root inverse count of each state action transition. Cmax = maxst,at∼D{ci(st, at)} represents the
maximum cost obtained in a single step. Based on the inequality of Eq. (58) and Eq. (57) we can
obtain:

Q̂ci
k+1(st, at) = B̂

πQ̂ci
k (st, at) + χ

πR(at|st)
π̂β(at|st)

≥ BπQ̂ci
k (st, at)−

Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ κ
πR(at|st)
π̂β(at|st)

.

(59)

The fixed point in the updating process of Eq. (59) can be expressed as:

Q̂ci(st, at) ≥ BπQ̂ci(st, at)−
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ χ
πR(at|st)
π̂β(at|st)

≥ c+ γPπQ̂ci(st, at)−
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ χ
πR(at|st)
π̂β(at|st)

≥ Qci(st, at)− γPπQci(st, at) + γPπQ̂ci(st, at)−
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ χ
πR(at|st)
π̂β(at|st)

,

(60)

(I − γPπ)Q̂ci(st, at) ≥ (I − γPπ)Qci(st, at)−
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ χ
πR(at|st)
π̂β(at|st)

, (61)

Q̂ci(st, at) ≥ Qci(st, at)− (I − γPπ)−1

[
Cr,p,δCmax

(1− γ)
√
|D(st, at)|

+ χ
πR(at|st)
π̂β(at|st)

]

≥ Qci(st, at) + χ(I − γPπ)−1πR(at|st)
π̂β(at|st)

− (I − γPπ)−1 Cr,p,δCmax

(1− γ)
√
|D(st, at)|

.

(62)

We guarantee the upper bound of Q̂ci via choosing an appropriate value of χ based on the Eq. (62).
Beside the (I − γPπ)−1 is a matrix of non-negative entries.

χ ≥ Cr,p,δCmax

(1− γ)
√
|D(st, at)|

[
πR(at|st)
π̂β(at|st)

]−1

. (63)

C Experimental Details

C.1 Dataset Details

As shown in Fig. 6, we utilize the online policy CVPO to collect sample data with different φ values
during three distinct stages of the training process. The variable φ represents the proportion of safe
trajectories in the collected samples compared to the total number of sample trajectories. Behavior 1
corresponds to φ = 0.4, behavior 2 corresponds to φ = 0.6, and so on. To ensure that the collected
sample data satisfies the designated φ value, we incorporate an additional trajectory filtering policy
into the data collection procedure. Furthermore, the total number of steps for each category of
samples collected is 1e7.
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Figure 6: Collect datasets with different values φ in the Point-Button task.

C.2 Experimental Task Details

The Point-Goal and Car-Goal task. The objective of the agent is to reach a goal while avoiding
surrounding obstacles. Once the agent reaches the correct goal, the environment randomly generates a
new goal. The agent receives a reward when it approaches or reaches the goal. There are hazards and
vases as obstacles in the environment, and the agent incurs a cost when encountering them. Hazards
are immovable, while vases can be moved. The observation state is the relative pose between the
agent and obstacles and goals, represented by a point-based pseudo-LIDAR. We select two tasks,
namely Point-Goal and Car-Goal tasks [26, 29]. These tasks are performed by the Point and Car
agents, respectively. The Point agent is a robot constrained to a 2D plane, capable of rotation as
well as forward and backward movement. The Car agent is a slightly more complex robot with two
independent parallel wheels and a freely rolling rear wheel.

Table 1: The hyper-parameters of the VOCE algorithm model. The variables s and a represent the
dimensions of the state and action, respectively.

Categories Hyper-parameters Value

Policy network

Sizes s× 256× 256× a
Activation function ReLu

Number of networks 2
Learning rate 2.0e-3

Optimizer Adam

Q-value network of reward

Sizes (s+ a)× 256× 256× 1
Activation function ReLu

Number of networks 4
Learning rate 1.0e-3

Optimizer Adam

Q-value network of cost

Sizes (s+ a)× 256× 256× 1
Activation function ReLU

Number of networks 4
Learning rate 1.0e-3

Optimizer Adam

Others

Batch size 600
Discount factor γ 0.99

KL threshold ϵ 0.1
The clip of the dual variable η [1.0e-6, 1.0e5]
The clip of the dual variable λ [1.0e-6, 1.0e5]

The clip of the trade-off factor κ [0, 1.0e6]
The clip of the trade-off factor χ [0, 1.0e6]

The Point-Button and Car-Button task. The objective of the agent is to navigate around stationary
and moving obstacles in the environment and press one of the multiple target buttons. The task is
similar to the goal task, where the agent receives a reward for either approaching or pressing the
target button. The Button task involves the presence of dynamic obstacles that move rapidly along
predefined trajectories. As the agent incurs costs upon colliding with these dynamic obstacles, the
Button task is more challenging compared to the Goal task. In the Button task, we select two tasks:
the Point-Button task and the Car-Button task [26, 29].
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C.3 Hyper-parameters

As shown in Table 1, we share the hyperparameters of the CEVO algorithm to facilitate reproducibility.
Furthermore, we will share the code on GitHub at a later time.

C.4 Datasets for the Preliminaries Section

In the preliminaries section, we employed a dataset with φ = 1.0 to evaluate offline RL methods.
Additionally, we utilized a dataset with φ = 0.8 to evaluate off-policy safe RL methods. As shown
in Fig. 7, φ = 1.0 indicates that the dataset includes samples with not only high rewards but also
costs within the cost limit. In addition, φ = 0.8 indicates that the dataset includes samples with high
rewards, while also containing samples that exceed the cost limit.

C.5 Datasets for the Ablation Experiment

Fig 7 presents the datasets collected under the same policy but with different φ values. To ensure the
acquisition of datasets that satisfy the φ values, we incorporate a trajectory filtering strategy into the
data collection procedure and introduce random actions. Concretely, when the random value is less
than the predefined threshold ε, we employ random actions instead of the actions provided by the
policy.
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Figure 7: Collect datasets with the same policy and different values φ in the Point-Button task.

C.6 The Ablation Experiment of the Parameters

We intuitively believe that the value of the parameter ϵ in the objective 8 affects the performance of
the VOCE algorithm. Therefore, we conduct ablation experiments on this parameter. The results
shown in Fig 8 indicate that setting the parameter ϵ too small reduces the convergence speed of the
policy and even decreases the algorithm’s performance. Conversely, when the parameter ϵ is set
to larger, it may lead to instability in the policy training process. Furthermore, from the illustrated
results, we can conclude that within this range of parameter ϵ ∈ [0, 1], it ensures the policy’s good
convergence speed and stability. Note that the parameter ϵ ∈ [0, 1] represents a feasible range rather
than an optimal interval.
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Figure 8: Reward and cost curves of VOCE in the Point-Goal task for different values of the parameter
ϵ. The parameter ϵ is the KL-divergence threshold between the variational distribution q(at|st) and
the parameterized policy πθ(at|st).
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C.7 The trade-off factors

Regarding the trade-off factors κ and χ, we adopt a dual-tuning approach with gradient-based
adaptation instead of a manual setting. To facilitate the observation of changes in the trade-off factors
κ and χ, we record the variation curves of these parameters during the training process. The results of
Fig. 9 indicate that as the model gradually converges, the trade-off factors κ and χ gradually decrease,
eventually approaching zero.
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Figure 9: The trade-off factors κ and χ, are considered along with the curves of rewards and costs
during the training process in task Point-button. Both the trade-off factors κ and χ are adaptively
adjusted using the dual-tuning approach through gradient-based.

C.8 The time costs of training and testing

We recorded the time costs of various modules of the VOCE and the baseline algorithm during
both training and testing. The results presented in Table 2 indicate that during training, the VOCE
algorithm incurs additional time costs per step compared to the baseline algorithm due to the execution
of additional networks and optimization parameters. However, during the testing phase, as only the
policy network is executed, the time cost of VOCE is similar to the baseline algorithm. Furthermore,
the execution time per step during testing is significantly lower than 1ms, meeting the real-time
requirements for robot and autonomous driving control. Additionally, the results from Table 3 reveal
that the evaluation time cost of the Q-values is relatively high due to the computation of multiple
target Q-values and gradients.

Table 2: The time costs per single step of the algorithm during training and testing processes. The
units for the numerical values are all in seconds.

Algorithms Training(s) Testing(s)
VOCE 3.1498 3.0665 × 1e-4
C-CRR 0.0891 1.5140 × 1e-4

COptiDICE 0.0358 1.4316 × 1e-4
BCQ-Lag 0.1104 2.7976 × 1e-4

Table 3: The time costs during the training processes of various modules in VOCE. The units for the
numerical values are all in seconds.

Critic Actor
Qr(st, at) Qc(st, at) (λ, η) q(at|st) πθ(at|st)

1.2728 1.2668 0.0026 0.5533 0.0543

D Limitations and Future Work

The setup of this work involves learning safety-constrained policies from offline data without in-
teracting with the environment. Therefore, both the size and quality of the dataset directly impact
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the algorithm’s performance. Moreover, in the offline setting, the available sample data is limited,
making it challenging to adequately represent the state transition matrix P , in a non-stationary
environment. Consequently, the VOCE algorithm struggles to learn high-reward policies that satisfy
safety constraints in non-stationary environments.
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