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Abstract

The diffusion model has shown remarkable success in computer vision, but it re-
mains unclear whether the ODE-based probability flow or the SDE-based diffusion
model is more superior and under what circumstances. Comparing the two is
challenging due to dependencies on data distributions, score training, and other
numerical issues. In this paper, we study the problem mathematically for two
limiting scenarios: the zero diffusion (ODE) case and the large diffusion case. We
first introduce a pulse-shape error to perturb the score function and analyze error ac-
cumulation of sampling quality, followed by a thorough analysis for generalization
to arbitrary error. Our findings indicate that when the perturbation occurs at the
end of the generative process, the ODE model outperforms the SDE model with a
large diffusion coefficient. However, when the perturbation occurs earlier, the SDE
model outperforms the ODE model, and we demonstrate that the error of sample
generation due to such a pulse-shape perturbation is exponentially suppressed
as the diffusion term’s magnitude increases to infinity. Numerical validation of
this phenomenon is provided using Gaussian, Gaussian mixture, and Swiss roll
distribution, as well as realistic datasets like MNIST and CIFAR-10.

1 Introduction

Diffusion models have achieved remarkable success in various artificial intelligence context generation
tasks, particularly in computer vision [13]. This technique is rapidly evolving with industrial-level
products like DALL·E series. The diffusion model was first proposed and studied by Sohl-Dickstein
et al. [26] in 2015. Later, Song and Ermon [29] proposed score matching with Langevin dynamics
(SMLD) and Ho et al. [16] further explored the Denoising Diffusion Probabilistic Models (DDPM).
Both formalisms can be interpreted as time-discretization of stochastic differential equations (SDEs)
[30]. Since the publication of these seminal works, many techniques have been proposed to improve
the efficiency and accuracy of diffusion models, such as DDIM [28], Analytic-DPM [4], gDDIM
[36], EDM [19], and consistency model [31], among others.

The score-based diffusion model involves two steps [30, 17]. Firstly, one estimates the score function,
which is the gradient of the logarithm of the probability density function, in the form of a neural
network. This step uses trajectories of an Ornstein-Uhlenbeck (OU) process starting with given data
∗Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai

200240, China, yucao@sjtu.edu.cn
†University of Science and Technology of China, Hefei 230026, China; Suzhou Institute of Advanced

Research, University of Science and Technology of China, Suzhou 215123, China, jingrunchen@ustc.edu.cn
‡University of Science and Technology of China, Hefei 230026, China; Suzhou Institute of Advanced

Research, University of Science and Technology of China, Suzhou 215123, China, seeing@mail.ustc.edu.cn
§School of Data Science and Department of Mathematics, City University of Hong Kong, Kowloon, Hong

Kong SAR, xizhou@cityu.edu.hk

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



samples. This process of injecting noise into structured data is usually referred to as the inference
process. Secondly, new samples are generated by simulating a time-reversed SDE, with a drift term
depending on the learned score function from the first step. This is known as the generative process.

In general, there are two diffusion coefficients g in the inference process and h in the generative
process; see § 2. Regardless of the choice of h and g, it is always possible to design an SDE in the
generative process that matches the forward inference process in the weak sense, i.e., the probability
density functions match for both processes. We highlight that this function h (unlike g) does not only
appear in the diffusion term, but also enters the drift term in the generative SDE. The choice of g is
equivalent to time re-scaling (see Appx. B.2), while the choice of h is an important topic in practice.
Two common choices of h are Probability Flow h = 0 [9, 32], which refers to as an ODE, and an
SDE-based diffusion model with h = g [16, 29, 30]. When the score training is accurate, the choice
of this function h does not affect the sample generation quality in the continuous-time setting.

In practice, numerical error is inevitable during training the score function. Recent theoretical works
[10, 7] have shown that the sample generation quality are affected by three aspects: (1) the truncation
of simulation time to a finite T ; (2) the inexact score function; (3) the time-discretization error. The
first error is not significantly since the forward OU process converges to the equilibrium Gaussian
measure exponentially fast in T . The third error can be reduced systematically by more efficient
numerical schemes [21], such as exponential integrator proposed in [35, 36]. The inexact training
of score function has a few important but subtle consequences. Recent works [10, 7] analyzed
the convergence rate of diffusion models, provided that the score training error is sufficient small.
However, once the score training is not accurate, the nice equivalence of the generated distribution
free of the generative diffusion coefficient h no longer holds as in the idealized situation of exact
score function. This raises a key question of our interest about how the choice of h can affect the
sample quality in the face of the inexact score training error. Qualitatively, there are two distinctive
cases: h = 0 or h is large. An important question to ask is: in the presence of non-negligible score
training errors, which h will produce better sampling quality? Is it the probability flow (h = 0)
or the SDE? More quantitatively, what magnitude of h is optimal?

Related works The impact of h on the generative process seems not yet fully investigated in
recent literature, as most experiments used the default choice of this parameter. However, some
authors have reported related empirical observations. For example, Song et al. [30] empirically
observed that the choice of h = g produces better sample generation quality than the ODE case
(h = 0) with real datasets. On the other hand, Denoising Diffusion Implicit Models (DDIM) in
[28] includes both deterministic and stochastic samplers and points out that the probability flow
(h = 0) can produce better samples with improved numerical schemes for the generative process. [36]
generalized the DDIM and tried to explain the advantages of a deterministic sampling scheme over the
stochastic one for fast sampling. Moreover, Karras et. al., [19] had empirically searched for optimal
coefficients which had shown to bring practical advantages. None of these empirical results delivered
comprehensive investigations on the influence of the diffusion coefficient, and a consistent and
affirmative answer to our question still awaits. Recently, there has been rapid progress in theoretical
works on error analysis for diffusion models, as seen in [10, 7] and references therein. However,
these analyses usually assume specific settings of h, such as h = g. Furthermore, it seems that
directly analyzing upper bounds based on these error estimations cannot provide adequate information
about choosing the optimal h; see Appx. B.4. Albergo et al. proposed a unified framework known
as stochastic interpolants and slightly discussed the optimal choice between the probability flow
and diffusion models [1, Sec. 2.4]. It is interesting to see how our theoretical analysis below can
generalize to their promising unified settings [1].

Our approach To investigate the effect of the diffusion coefficient h on sampling quality, we adopt
the continuous-time framework, which precludes time discretization errors. We measure sample
quality by the KL divergence between the data distribution p0 and the distribution of the generative
SDE at the terminal time T . Given the assumption that the score function carries numerical errors,
we consider h as a controller and aim to minimize the KL divergence with respect to h. While
the optimization problem is straightforward to set up, it is challenging to draw valuable theoretical
insights in a general setting of approximate score functions. Therefore, we choose the asymptotic
approach, assuming that the error from the training score is reasonably small with a magnitude of ϵ.
Under this assumption, the leading-order term of the KL divergence takes the form

error of sample generation in KL divergence = L(h) ϵ2 +O
(
ϵ3
)
.
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This ϵ2 order is known in [7, 10], but the dependence of this Gateaux differential L(h) on h and other
factors has yet to be understood at all. Our contribution is to analyze how L(h) behaves as h varies;
in particular, by considering the constant h in two limiting situations: h = 0 and h ≫ 1.

Main Contributions We summarize main contributions below:

• We prove that when the error in score function approximation is a time-localized function only
at the beginning of the inference step (i.e., at the end of the generative process), the ODE case
(h = 0) outperforms the SDE case (h → ∞); see Prop. 3.5. If this (time-localized) error occurs in
the middle, then the SDE case has an exponentially smaller error than the ODE case (h = 0), as
h → ∞ (see Prop. 3.4). See Appx. E.4 for reasons behind the time-localized choice.

• For a general score training error, we prove that as h → ∞, the leading-order term L(h) above
converges exponentially fast to a constant, which only depends on the distribution p0 and the score
training error at the end of the generative process; see Prop. 3.6. The conclusion about the optimal
h depends on how the score training error is distributed over the time horizon [0, T ].

Numerically, we validate the above phenomenon for 1D Gaussian, 2D Gaussian mixture, and Swiss
roll distribution, as well as realistic datasets like MNIST and CIFAR-10. Due to the tight connection
between the distribution of score training error and h, our results may suggest backwardly modifying
loss functions during training to adapt to a particular diffusion coefficient of interest. This is a topic
of independent interest and we report some preliminary experiments in Appx. I to validate potential
applications of our theoretical analysis. A comprehensive investigation will be left as future works.

Notation convention The time duration T > 0 is a fixed parameter. For any time-dependent
function (t, x) 7→ ft(x), where x ∈ Rd and t ∈ [0, T ], we denote f←t (x) ≡ fT−t(x). Sometimes
we directly use the “arrowed” variables f←t (x) to highlight the direction of time is from reference
noise to the data distribution (i.e., the generative direction) even without referring to f first. The
notation f ≲ g means that f ≤ cg where c → 1 in a certain limit, i.e., lim sup f/g ≤ 1; f ∼ g means
lim(f/g) = 1. The asymptotic parameter will be explained below explicitly. When two matrices
A ⪯ B, it means B −A is positive semidefinite. Id is the d-dimensional identity matrix; IA means
an indicator function of a set A; Id is the identity operator. For a random variable X , law(X) means
the distribution of X . Some important quantities are summarized in Appx. A.

2 Background

Score-based generative models Suppose we have a collection of data from an unknown distribution
with density p0, we can inject noise into data via the following SDEs:

dXt = ft(Xt) dt+ gt dWt, law(X0) = p0, (1)

where the drift coefficient f(·)(·) : Rd × R → Rd is a time-dependent vector field, and the diffusion
coefficient g(·) : R → R is a scalar-valued function (for simplicity). A widely used example is
variance-preserving SDE (VP-SDE) with ft(x) = −1/2 g2t x and g > 0 is typically chosen as a
non-decreasing function in literature [30]. Without loss of generality, we can assume gt = 1 since for
any non-zero g, its effect is simply to re-scale the time; see Appx. B.2.

Denote the probability density of Xt as pt and the score function is defined as ∇ log pt. One main
innovation in diffusion models is to find a “backward” SDE Yt such that Yt drives the state with
distribution pT back to p0. We adopt the arrow of time in this backward direction now and write Yt as

dYt = A←t (Yt) dt+ h←t dW t , law(Y0) = pT , (2)

where h←t is an arbitrary real-valued function of time. The distribution of Yt is denoted as qt. Provided
that the score function is available, we can select A← such that qt is the same as pT−t, in particular,
qT = p0. It is not hard to derive that we can ensure qt ≡ pT−t if we choose

A←t (x) = −f←t (x) +
(g←t )2 + (h←t )2

2
∇ log p←t (x). (3)

A self-contained proof is provided in Appx. B.1. When h← = g←, it refers to the backward SDE
used in [30]; when h← = 0, it refers to the probability flow therein. More general interpolation of
diffusion and flow can be found in, e.g., [1].
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Training of score functions The above score function (t, x) 7→ ∇ log p←t (x) needs to be trained
from data. Denoising score matching [33] refers to the following score-matching loss (SML) function
to train the score whose parameterized architecture is denoted as S:

min
S

∫ T

0

ωt EX0∼p0EXt∼pt|0(·|X0)

[∥∥St(Xt)−∇ log pt|0(Xt|X0)
∥∥2]dt, (4)

where pt|0(xt|x0) is the transition probability of the state x0 at time 0 towards the state xt at time t
for the forward process (1). The function ωt ≥ 0 is a weight function. The default choice in many
literature is that gt =

√
β0 + (β1 − β0)t, 0 < β0 < β1 are parameters, and one chooses the weight

function as follows:

Default weight: ωt = ϖ2
t , ϖt =

√
1− e−

1
2 t

2(β1−β0)−tβ0 . (5)

The quantity ϖt has the meaning as the standard deviation of Xt conditioned on a fixed X0 in the
forward process. See § 3.7 and Appx. I for more weight functions.

Source of errors There is usually intrinsic error due to an inexact score function. It is not negligible
in many scenarios, e.g., there is only a finite amount of samples of p0 available or only a small neural
network architecture is achievable. However, it is reasonable to assume that this non-negligible error
is reasonably small, and we decompose the trained score function S←t into

S←t (x) = ∇ log p←t (x) + ϵE←t (x), (6)

where ϵ is small, E←t is assumed to be O(1) and the total error is ϵE←t . The generative process
used in practice has to use law(Y0) = N (0, Id) instead since pT is intractable in (2). By choosing T
large enough so that pT ≈ N (0, Id), we can neglect this error due to the finite T . Besides, we also
need some numerical schemes to simulate this generative SDE, which also leads into discretization
errors. In summary, there are three sources of errors (1) pT ̸= N (0, Id): this is the source of
errors in the initial distribution of the generative process; (2) E← ̸= 0: error from imperfect score
function from training; (3) numerical discretization of the generative process. The third error can be
systemically eliminated by choosing a high-order scheme [21] or an extremely small time step. It has
been observed that by choosing a more accurate numerical scheme, e.g., exponential integrator, one
can reduce the computational costs [35, 36]. As for the first error, if one chooses the OU process for
(1), pT converges to N (0, Id) exponentially fast and thus T = O(ln(δ)) where δ is the error between
p0 and the distribution of generated samples. Therefore, the choice of T is, in practice, not hard to
manage. More details about these three error sources can be found in, e.g., [7, 10] or Appx. B.3.

Figure 1: Schematic illustration of the main message: the distribution of the score error E←t w.r.t.
time also matters, in addition to the score-matching loss (4). Asymptotically, the score error can be
viewed as “additive” and the error from two time regions (blue and green) might decay or magnify as
the magnitude of diffusion coefficient h← increases (see the right picture). The yellow region is a
transitional region whether the effect of h is not easy to decide.

3 Asymptotic analysis of terminal errors

We use the KL divergence between the data distribution p0 and the distribution of generated samples
to quantify the performance of generative model, which depends on the error of score function ϵE←,
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the diffusion coefficient h←, and data distribution p0. To extract the main feature, we first let ϵ → 0
and estimate

sample generation error in KL divergence = L(h←,E←, p0)ϵ
2 +O

(
ϵ3
)
.

Whenever p0 and E← are obvious from the context, we simply write L(h←) ≡ L(h←,E←, p0).
Next, we formulate the main problem setup and assumptions in § 3.1. The expression of L is shown
in Prop. 3.2. Then we let h←t ≡ h be independent of time, and study how the leading order function L
depends on h in various settings of the error function E←t . Firstly, we consider E←t (x) = δt−sE(x)
as a time-localized function and two limiting scenarios: h← = h where h = 0 (ODE case) and
h → ∞ (SDE case with large diffusion). When E←t (x) = δt−sE(x) is a time-localized function at
the end of the generative process (i.e., s is close to T ), the ODE case will outperform the SDE case
(see Prop. 3.5); otherwise, the SDE case has an exponentially smaller error than the ODE case as
h → ∞ (see Prop. 3.4). Secondly, by combing Prop. 3.4 and Prop. 3.5, the tail behavior of h 7→ L(h)
for a general E← is described in Prop. 3.6. The reasons behind considering this pulse-shape E←t will
be discussed in Appx. E.4.

3.1 Set-up and assumptions

We fix the time T and consider the following SDE for the generative process in t ∈ [0, T ],

dỸt =
(
− f←t (Ỹt) +

(g←t )2 + (h←t )2

2
S←t (Ỹt)

)
dt+ h←t dWt, law(Ỹ0) = pT , (7)

which can be regarded as a perturbed equation (2) of Yt. Denote the distribution of Ỹt as q̃t. Note that
q̃T depends on both h← and ϵE←t (hidden inside S←t ≡ ∇ log p←t + ϵE←t ); however, when ϵ = 0,
by (3), q̃T ≡ qT ≡ p0 for any h←. We quantify the sample generation quality via

KL
(
p0||q̃T

)
=

∫
p0 log(p0/q̃T ).

Due to the presence of ϵE← with non-zero ϵ, in general KL
(
p0||q̃T

)
> 0.

Assumption 3.1. Throughout this section, we assume that:

(1) For the forward process, we assume ft(x) = − 1
2x, gt = 1 without loss of generality.

(2) The data distribution has the density p0.

(3) There exists cU ∈ R such that U0(x)− |x|2/2 ≥ cU , for any x ∈ Rd, where U0 := − log p0.

Recall that a generic gt is equivalent to the time re-scaling (Appx. B.2). So this choice of gt = 1
refers to the generic choice in VP-SDE [30]. The second assumption is also mild; in practice,
if p0 is a delta distribution, a common practice is that one tries to learn the mollified version
pσ(x) :=

∫
Rd

1
(2πσ2)d/2

exp
(
− (x−y)2/2σ2

)
p0(y)dy instead, as in the GAN [27] and early-stop

techniques [7, 10]. The third assumption is not restrict, for example, U0(x) = |x|2 and cU = 0. As
many realistic datasets are almost compactly supported, we expect that ρ0 = e−U0 decays faster than
a Gaussian, namely, ρ0(x) ≤ C̃e−|x|

2/2 for some C̃ > 0, which reduces to the third one.

3.2 Asymptotic expansion of the KL divergence with respect to ϵ

We introduce a time-dependent operator

L(h←)
t (µ)(x) := −∇ ·

((1
2
x+

1 + h←t
2

2
∇ log p←t (x)

)
µ(x)

)
+

h←t
2

2
∆µ(x), (8)

which is the generator in the Fokker-Planck equation of qt for (2). Define an operator Φ(h←)
s,t as

follows: given any function µ, define Φ
(h←)
s,t (µ) to be the solution at time t of the following Fokker-

Planck equation with r ∈ [s, t]: ∂rθr = L(h←)
r (θr), and with initial condition θs = µ. We define

Φ
(h←)
s,t (µ) := θt. Properties of this operator are collected in Appx. C.1.

We use the notation q̃ϵ to refer to q̃ since we need to calculate the its derivative for the small parameter
ϵ. The dependence of q̃ on h← is suppressed for short notations. We have the following asymptotic
result with the proof given in Appx. C.3.
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Proposition 3.2. Define vT := ∂ϵq̃
ϵ
T |ϵ=0 as the first-order perturbation of q̃ϵT . We have

KL
(
p0||q̃ϵT

)
= L(h←)ϵ2 +O

(
ϵ3
)
, (9)

where

L(h←) =
1

2

∫
Rd

v2T (x)

p0(x)
dx, vT = −1

2

∫ T

0

(1 + h←t
2)Φ

(h←)
t,T

(
∇ · (p←t E←t )

)
dt. (10)

3.3 The role of h← in the Fokker-Planck operator L(h←)
t

Let the potential Ut := − log pt, and by the notation of time-reversal, U←t ≡ UT−t. When h← > 0,
we can rewrite

L(h←)
t (µ) = h←t

2
/2
(
△µ+∇ · (∇V←t µ)

)
, V←t (x) := (1 + 1/h←t

2)U←t (x)− |x|2

2h←t
2 . (11)

We now introduce a probability distribution induced by the potential V←t :

ρ←t ∝ exp(−V←t ). (12)

By convection, we also have Vt = V←T−t and ρt = ρ←T−t. Note that V←t depends on h← and when

h← → ∞, we have V←,∞
t = U←t . The role of h← in L(h←)

t now can be viewed as the time
re-scaling and the effect of L(h←)

t at a local time t can be viewed as evolving the Fokker-Planck
equation associated with the overdamped Langevin dynamics in the time-dependent potential V←t
for O

(
h←t

2
/2
)

amount of time. When h← → ∞, L(h←)
t can be roughly viewed as constructing

an “almost quasi-static” thermodynamics [6] bridging the initial pT and the (quasi-)equilibrium
p0 = e−U

←
T : for any distribution µ←t (probably far away from ρ←t ), within a short time period ∆t

slightly larger than O
(
1/h←t

2
)
, we have µ←t+∆t ≈ ρ←t+∆t, provided that s 7→ µ←s evolves according

to L(h←)
s ; see Appx. C.2. This key finding will guide our analysis of the solution operator Φ(h←)

t,T .

3.4 Score function is perturbed by a pulse

From (10), we know that vT combines the averaged effect of Φ(h←)
t,T (∇ · (p←t E←t )) for various t. As

a first result, we consider E←t (x) = E(x)δt−s for a fixed time instance s ∈ [0, T ), where δt−s is the
Dirac function. In this case, vT no longer involves time integration and we have

vT = − (1 + h←s
2)

2
Φ

(h←)
s,T

(
∇ · (p←s E)

)
,

L(h←) =
(1 + h←s

2)2

8

∫
Rd

(
Φ

(h←)
s,T (∇ · (p←s E))

)2
p0

.

(13)

To proceed, we need to make additional assumptions:
Assumption 3.3.

(1) For any t ∈ [0, T ], Ut = − log pt is assumed to be strongly convex and the Hessian of Ut is
bounded by two positive numbers mt and Mt as below

mtId ⪯ ∇2Ut(x) ⪯ MtId, ∀x ∈ Rd. (14)

Moreover, assume that

mt ≥ 1, t ∈ [0, T ], and m0 > 1. (15)

(2) For all t ∈ [0, T ], we choose h←t = h as constant.

Introduce

κ←t := (1 + h−2)m←t − h−2 ≡ (1 + h−2)mT−t − h−2, (16)
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which characterizes the Hessian lower bound of V←t (11). Note κ←t ≈ m←t when h ≫ 1. We would
like to explain the reason behind the above assumptions, in particular, their practical relevance. Part
(1) Strong convexity: this is a common assumption for Langevin sampling analysis [11, 14]. As
the role of L(h←)

t is essentially simulating a Langevin dynamics with time-dependent potential, it
is reasonable to use this assumption as a starting point. Moreover, the algorithmic improvement
in gDDIM [10] is highly inspired by a form with assuming the data distribution as a Gaussian;
Fréchet inception distance (FID) [15], a widely used metric to evaluate the quality of generative
model, essentially treats the data (in the feature space) as Gaussians. Therefore, we believe that
this assumption can still capture some main features of realistic datasets. Part (2) mt ≥ 1 for any
t ∈ [0, T ]: The second assumption mt ≥ 1 means that pt is more localized (smaller variance) than
the standard Gaussian (unit variance), which is compatible with Assumption 3.1 (3). It can also
ensure that Vt is strongly convex with positive Hessian lower bounds, i.e., κ←t ≥ 1, for any t ∈ [0, T ]
and h ∈ (0,∞).
Proposition 3.4. Under Assumptions 3.1 and 3.3, suppose that E←t (x) = E(x)δt−s for some fixed

s ∈ [0, T ). If h ≥ hlb := max
{
1/2, h0(1/2),

√
max{0,− cU

ln(2) , supt∈[s,T ] C
←,(2)
t }

}
, we have the

upper bound of L(h) in (13):

L(h) ≤ Ch(1 + h2)2 exp
(
−

∫ T

s

(h2 − C←,(2)
r )κ←r − C←,(1)

r dr
)
, (17)

where Ch =
1
2

∫ (
∇·(p←s E)

)2

/ρ←s , C←,(2)
t =

20+30M←t
2

m←t
2 ; see Appx. E.1 for details about C←,(1)

t and

h0(1/2); cU ∈ R comes from Assumption 3.1. Moreover, limh→∞ Ch, limh→∞ C
←,(1)
t exist.

See Appx. E.1 for proofs. We remark that the above bound focuses on capturing the scaling with
respect to h2 but may not be tight for other parameters. It remains interesting to see how we can
improve the above upper bound. The main conclusion is that: if the error function E←t is a pulse
at time t = s, then for a large h, L(h) will decay to zero exponentially fast with respect to h. For
1D Gaussian case, we can clearly observe such an exponential decay in Fig. 2a, where we pick
E←t = It≤0.95T∇ log p←t . The intuition behind this exponential suppressed prefactor is that for large
h, Φ(h←)

s,T can be viewed as an almost quasi-static thermodynamics dragging any positive measure
towards ρ←T ≈ p0, as mentioned above in § 3.3. As ν = ∇ ·

(
p←s E

)
has measure zero, we can

split it into positive and negative parts: ν = ν+ − ν− ( assume
∫
ν± = 1 WLOG). Each term

Φ
(h←)
s,T

(
ν+

)
≈ ρ←T ≈ Φ

(h←)
s,T

(
ν−

)
, which explains that Φ(h←)

s,T (ν) ≈ 0 for large h.

0 1 2 3 4
h2

10−2

10−1

100

L(h)

σ0=0.4
σ0=0.6
σ0=0.8

(a) E←t = It≤0.95T∇ log p←t

0 25 50 75 100
h2

10−2

10−1

L(h)

σ0=0.1
σ0=0.2
σ0=0.3

(b) E←t = It≥0.995T∇ log p←t

0 25 50 75
h2

100

L(h)
σ0=0.2
σ0=0.4
σ0=0.6

(c) E←t = ∇ log p←t

Figure 2: 1D Gaussian p0 = N (0, σ2
0) (with different σ0 smaller than one) and T = 2. Panel (a)

validates the exponential decay of L(h) when the score function has no error near t ≈ T , similar to
Prop. 3.4. Panel (b) validates Prop. 3.5 that the ODE model (h = 0) outperforms the SDE model
when there is a large score error at t ≈ T . Panel (c) validates Prop. 3.6 that limh→∞ L(h) exists.

3.5 Score function is only perturbed near the end of the generative process

Proposition 3.5. Under Assumptions 3.1 and 3.3, suppose that E←t (x) = It∈[T−a,T ]E(x) where
a ≪ 1. Then when a ≪ 1 and h ≫ 1, asymptotically ,

L(0) ∼ a2

8

∫
Rd

(∇ · (p0E))2

p0
, L(h) ≲

(
1− e−a

h2

2 κ0
)2

2κ2
0

∫
Rd

(∇ · (p0E))2

p0
,
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with κ0 = (1 + 1/h2)m0 − 1/h2 as in (16). The upper bound of L(h) is tight asymptotically.

We remark that we made no assumption on how ah2 scales. If h ≫ 1, L(h)/L(0) ≲

4
(
1− e−ah

2κ0/2
)2
/a2κ2

0. Case (I): If ah2 ≫ 1, then L(h)/L(0) ≲ 4/a2κ2
0, which is large as a ≪ 1.

Case (II): If ah2 ≪ 1, then L(h)/L(0) ≲ h4, which is still large. In either case, L(h)/L(0) is expected
to be large for a general E and the ODE model is preferred in this case. The intuition is that there
is almost no time for the operator L(h←)

t to suppress the error E, so the prefactor 1 + (h←t )2 in vT
(10) dominates (which is the key difference compared with Prop. 3.4). The proof is postponed to
Appx. E.3. In Fig. 2b, we consider 1D Gaussian and only perturb the score function at the end of the
generative process (E←t = It≥0.995T∇ log p←t ); clearly, the SDE-based models have comparatively
larger error.

3.6 General error in score function

We can generalize Prop. 3.4 and Prop. 3.5 to a general error function E←, and observe that L(h) will
converge to a constant exponentially fast as h → ∞.

Proposition 3.6. Under Assumptions 3.1 and 3.3, we consider a general error function (t, x) 7→
E←t (x). Let γ = infh≥hlb inft∈[0,T ] κ

←
t . For any α ∈ (0, 1) and β ∈ (0, 2), when h ≫ 1,

L(h) ≲ (1 + α2)T + (1 + α−2) C γ−1(1 + h2) exp
(
− h2−βγ

)
,

L(h) ≳ (1− α2)T − (α−2 − 1)C γ−1(1 + h2) exp
(
− h2−βγ

)
,

where C is given in Appx. F.1 and T (only depending on p0 and E←T ) is upper bounded by

0 ≤ T ≲
1

2m2
0

∫
Rd

(
∇ · (p0E←T )

)2
p0

≡ 1

2m2
0

∫
Rd

(
∇ log p0 · E←T +∇ · E←T

)2

p0. (18)

In the limit h → ∞, (1− α2)T ≲ L(h) ≲ (1 + α2)T , where α ∈ (0, 1) is arbitrary. Hence, the tail
behavior is that L(h) converges to T exponentially fast as h → ∞. If we assume that E←T = ∇ log p0,
p0 = N (0, σ2

0Id) in d-dimension, then the above upper bound is simply T ≲ d, which is independent
of σ0 (see Appx. F.2). For 1D Gaussian in Fig. 2c, we can indeed observe that limh→∞ L(h) exists,
and is bounded above by d = 1; see Appx. G for more types of error functions.

The above upper bound has an interesting tight connection to the generator of (overdamped) Langevin
dynamics with drift −∇U0 ≡ ∇p0. If we adopt constrained score models [23, 25], namely, parame-
terizing log pt instead of the score function ∇ log pt during training, the error E←T = ∇φ for some
scalar-valued function φ. Then the above upper bound becomes

1

2m2
0

∫
Rd

(△φ−∇U0 · ∇φ)2e−U0 =
1

2m2
0

∫
Rd

(L∗φ)2e−U0 , (19)

where L∗(φ) := △φ−∇U0 · ∇φ whose adjoint operator L(µ) = ∇ · (∇U0µ) +△µ is the Fokker-
Planck generator of the following Langevin dynamics dXt = −∇U0(Xt) dt+

√
2 dWt where Wt

is the standard Brownian motion. We remark that this formula (19) is general for constrained score
models [23, 25]; see also F.2 for elaborations. An interesting open question is whether and how we
can take the above upper bound into consideration when designing the loss function.

3.7 An application: exploring the effect of training weight

The above theoretical discussions suggest that diffusion models with large diffusion coefficients are
more negatively affected by score error near data’s side, whereas the ODE model is more negatively
affected by the score error near the noise end. This leads us to conjecture that if we can control the
training (e.g., by optimizing the training weight ωt), so that the score error distribution near the noise
end is reduced and meanwhile the score-matching loss is not significantly impacted, then it will very
likely improve the ODE models. We report preliminary numerical experiments to support this idea in
Appx. I, whereas a comprehensive study will be left as future works.
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4 Numerical experiments

We present experiments on 2D Gaussian mixture model, Swiss roll, CIFAR10 to support our theoreti-
cal results: when numerical discretization error is not dominating, the sampling quality increases as h
increases, a reminiscent of Prop. 3.4. Experimental details are postponed to Appx. H, as well as more
numerical results (e.g., results about 1D Gaussian mixture and MNIST). Results by adopting various
weight functions, a technique arising from theoretical predictions, are postponed to Appx. I. Source
codes are available at https://github.com/yucaoyc/OptimalDiffusion.

Example 1: 2D 4-mode Gaussian mixture. We verify the theoretical results on 2D Gaussian
mixture with a specified score error. In Fig. 3, a clear trend is that a higher h produces generated
distributions that better match the marginal densities of p0, and it is numerically verified by the purple
line of Fig. 4a. In Fig. 4, with multiple settings of E←t and ϵ, we observe a consistent phenomenon
that as h increases, the KL divergence of true data and generated data converges exponentially fast,
thus validating Prop. 3.6. It worths noticing that in all three settings of E←t , by simply adopting a
larger diffusion coefficient h in (3), we can obtain better generative models without any extra training
costs.

−1 0 10

5

−1 0 10

5

h2=0.0 g2

−1 0 10

2

4

−1 0 10

2

4

h2=1.0 g2

−1 0 10

2

4

−1 0 10

2

4

h2=2.0 g2

−1 0 10

2

4

−1 0 10

2

4

h2=3.0 g2

−1 0 10

2

4

−1 0 10

2

4

h2=4.0 g2

Figure 3: Visualization of marginal densities of 2D 4-mode Gaussian mixture, where E←t = ∇ log p←t
and ϵ = 0.2. The top row shows the marginal distribution of the first coordinate and the bottom row
for the second coordinate. The red lines are the exact marginal distributions of p0 and the histograms
(blue) visualize the empirical densities of generated samples.
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(a) E←t = ∇ log p←t

0 1 2 3 4
h2/g2

10−3

10−2

KL divergence
ε= −0.2
ε= −0.1
ε=0.0
ε=0.1
ε=0.2

(b) E←t = 1+sin(2πt/T )
2

∇ log p←t

0 1 2 3 4
h2/g2

10−2

KL divergence
ε= −0.2
ε= −0.1
ε=0.0
ε=0.1
ε=0.2

(c) E←t = It<0.95T∇ log p←t

Figure 4: Numerical results of 2D 4-mode Gaussian mixture. The above panels show that the KL
divergences between the true distribution and the generated samples overall decay as h increases for
various types of error perturbation of score functions.

Example 2: Swiss roll. We consider Swiss roll, a more complex distribution without exact score
function available. We train the score function with the denoising score-matching objective [33]
(Appx. H). The first plot in Fig. 5a shows the difference between true data and generated data
measured by Wasserstein distance, which decays to zero exponentially fast, verifying Prop. 3.6. In
the second plot of Fig. 5a, we tested various h and time steps for the generative process. The ODE
model (h = 0) does not improve, as the number of time discretization steps increases, but near the
continuous-time limit, all SDE cases (h > 0) are better than the ODE model. It suggests that our
conclusions here is limited to the continuous-time setting. The exploration of time discretization
errors will be future works. The generated data results in Fig. 5b demonstrate that with increasing h,
the sample quality is improved; see Appx. H.6 for more results.
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(a) Improved model performance with larger h (b) Visualization results for selective h

Figure 5: Numerical results of Swiss roll. Panel (a) shows the decay of Wasserstein distance between
the true distribution and the generated samples with increasing h and 20,000 time-discretization steps,
and the decay of Wasserstein distance with the increasing number of time-discretization steps and
different h. Panel (b) shows generated samples with different h.

Example 3: CIFAR-10. When using a large amount of parameters for score matching in practice,
we observe that SDEs appear to perform better than ODEs as discretization error descreases, a result
similarly observed on Swiss roll. This implicates the practical applications on generating samples of
better quality under a given (pre-trained) score-matching model.

Table 1: CIFAR-10: We evaluate FIDs with different discretization steps and h2/g2 on a pre-trained
checkpoint entitled “vp/cifar10_ddpmpp_continuous” in [30]. We do not use any correctors and
evaluate FIDs on 104 samples, thus the results for h2/g2 = 0, 1 are different from the reported values.

Discretization steps 100 200 500 1000 2000 3000 4000
h2/g2 = 0 22.43 8.12 7.20 6.89 6.98 7.27 7.33
h2/g2 = 1 31.72 15.72 7.23 6.70 6.71 6.95 7.08
h2/g2 = 2 52.77 26.68 10.78 6.99 6.70 6.69 6.98
h2/g2 = 4 92.83 46.11 20.47 10.17 7.20 7.09 7.01

5 Summary and outlook

In this work, we study the effect of the diffusion coefficient on the quality of overall sample generation
in the generative process. Theoretically, we provide understandings of scenarios in which the ODE-
based model and the SDE-based model is superior than the other; see Prop. 3.4 and Prop. 3.5.
Numerically, these results are validated via toy examples as well as benchmark datasets.

There are many interesting directions for continuing works. (1) As we focus on the asymptotic case,
a time-dependent h←t with large magnitude (i.e., h←t ≫ 1 for all t) is essentially no different from a
constant h←t ≡ h with h ≫ 1. Whether it is possible to use time-dependent t 7→ h←t to combine the
advantages of ODE and large diffusion cases in dealing with different types of error of score functions
in the non-asymptotic region is still an open question. (2) Can we design a practical criterion that
directly learn the optimal magnitude of the noise-level function h←t by looking at the score-training
error distribution? Can we develop certain theoretical understanding of the empirical results in [19]?
(3) How can we find a stable and accurate numerical scheme to deal with the fast diffusion case?
(4) How can we generalize the above theoretical results by removing the convexity assumption, and
including the low-dimensional feature of datasets into the theory [8, 5, 18]?

Concerning the broad impact, though we don’t foresee any negative social impact of this work, the
potential improvement of generative model might relate to creation of “deep fakes”.
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Supplementary Material for “Exploring the Optimal Choice for Generative
Processes in Diffusion Models: Ordinary vs Stochastic Differential Equations"

A Notation Convention.

Table 2: Summary of important quantities in this paper

Quantity Notation Notes
Forward process Xt t = 0: data distribution
Backward/generative process Yt t = 0: noise distribution
Backward process with inexact score Ỹt

Distribution of forward process pt pt := law(Xt)
Distribution of backward process qt law(Yt) := qt ≡ pT−t ≡ p←t
Distribution of approximated backward
process

q̃t q̃t := law(Ỹt), q̃t = qt when
error ϵ = 0

Error function of the score ϵE←t 0 ≤ ϵ ≪ 1 and E←t = O(1)
The exact potential Ut pt := e−Ut

Modified potential V←t see (11)
Normalizing constants ZV :=

∫
e−V V is arbitrary

B Discussion and proof for § 2

B.1 Proof of (3)

We re-state the conclusion in (3) in the following lemma:
Lemma B.1. For any function h←t , if one chooses A← as in (3), then we have qt(x) = pT−t(x) for
any t ∈ [0, T ] and x ∈ Rd.

Proof. We can easily write down the Fokker-Planck equation of (1)

∂tpt(x) = −∇ ·
(
ft(x)pt(x)

)
+

g2t
2

△pt(x).

Since we need to ensure qt = pT−t, we require

∂tqt(x) = ∇ ·
(
f←t (x)qt(x)

)
− g←t

2

2
△qt(x)

= ∇ ·
(
f←t (x)qt(x)−

g←t
2 + h←t

2

2
∇qt(x)

)
+

h←t
2

2
△qt(x)

= ∇ ·
((

f←t (x)− g←t
2 + h←t

2

2
∇ log qt(x)

)
qt(x)

)
+

h←t
2

2
△qt(x)

= ∇ ·
((

f←t (x)− g←t
2 + h←t

2

2
∇ log p←t (x)

)
qt(x)

)
+

h←t
2

2
△qt(x)

= −∇ ·
(
A←t (x)qt(x)

)
+

h←t
2

2
△qt(x),

by noting that A←t (x) is specified in (3). This equation is exactly the Fokker-Planck equation of
(2).

B.2 The role of gt

The function t 7→ gt as the diffusion coefficient in the forward Fokker-Planck equation (1), in fact,
plays a role as time re-scaling as long as gt > 0 for any t. Indeed, if we have an SDE in the following
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form (the VP-SDE in [30])

dXt = −g2t
2
Xt dt+ gt dWt, t ∈ [0, T ],

then by introducing τ : R+ → R+ via the ODE τ ′(t) =
(
gτ(t)

)−2
, τ(0) = 0, we know that

Xt := Xτ(t) satisfies the following SDE [20]:

dXt = −1

2
Xt dt+ dWt, t ∈ [0, θ],

where θ := τ−1(T ) means the inverse function of τ at time T . The Brownian motion W in Xt is
not the same Brownian motion in Xt, i.e., the driven-noise in the last two equations are not the same
technically; we slightly abuse the notation for the simplicity of notations. By Lem. B.1, this SDE has
the backward process as follows:

dYt
(3)
=

(1
2

Yt +
1 + h←t

2

2
∇ log p←t (Yt)

)
dt+ h←t dWt t ∈ [0, θ]

=
(1
2

Yt +
1 + h2θ−t

2
∇ log pθ−t(Yt)

)
dt+ hθ−t dWt,

(20)

where pt is the density function of Xt by notation conventions in § 2. By Lem. B.1, so far we know
that

law(Yθ−t)
Lem. B.1
= law(Xt) = law(Xτ(t)).

Let fs := θ − (τ−1)(T − s) and Ys := Yfs
, where s ∈ [0, T ]. By straightforward computation, we

know

dYs = f ′s

(1
2

Yfs
+

1 + h2θ−fs
2

∇ log pθ−fs(Yfs
)
)
dt+

√
f ′s h2

θ−fs dWs

= f ′s

(1
2
Ys +

1 + h2θ−fs
2

∇ log pT−s(Ys)
)
dt+

√
f ′s h2

θ−fs dWs.

To get the second line, we used the fact that

pθ−fs = law
(
Xθ−fs

)
= law

(
Xτ−1(T−s)

)
= law(XT−s) ≡ pT−s.

By chain rules, it is easy to compute that

f ′s =
1

τ ′
(
τ−1(T − s)

) =
1(

gT−s
)−2 = g2T−s > 0.

Therefore, the above SDE for Ys has the form

dYs =
(g2T−s

2
Ys + g2T−s

1 + h2
θ−fs
2

∇ log p←s (Ys)
)
dt+ gT−shθ−fs dWs.

This matches the form in Lem. B.1 by choosing

h←s = gT−shθ−fs ≡ g←s hτ−1(T−s).

Hence, if we simply pick h = c as a constant function in (20), it has the same effect as choosing
h←s = cg←s where c ∈ R+. The former (h = c) is used in § 3 for simplicity in theoretical analysis,
and the latter (h←s = cg←s ) is used in numerical experiments in § 4 to match previous literature
in practice (namely, a general g). In conclusion, the above discussion justifies the consistency of
notation and set-up between our theoretical analysis and numerical experiments.

B.3 Existing analysis of sample generation quality

In practice, one simulates the following SDE:

dZt =
(
− f←t (Zt) +

(g←t )2 + (h←t )2

2
S←t (Zt)

)
dt+ h←t dWt, law(Z0) = N (0, Id). (21)
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From the analysis by Chen et al. [7, Theorem 2.1] for the case h← = g←, one has

KL
(
p0||q̂

)
≤ KL

(
pT ||N (0, Id)

)
+O

(
Tϵ2

)
+O

(
T 2d/N

)
,

where q̂ is the distribution of ZT after applying the exponential integrator to (21) and N is the
number of time-discretization steps. The first term KL

(
pT ||N (0, Id)

)
≤ (M2 + d)e−T , where

M2 = Ep0
|x|2 is the second moment of data distribution.

Therefore, to ensure that KL
(
p0||q̂

)
≤ δ, it is sufficient to choose

T = O
(
log

(
(M2+d)/δ)

)
.

The time-discretization error can be eliminated by choosing N → ∞. What is so far less clear in
literature is the term O

(
Tϵ2

)
.

B.4 Existing error bounds appear to fail to characterize the optimal h←

Note that the target dynamics qt in (2) and the approximated dynamics q̃t in (7) only differ in the
drift term. Recall that qT = p0, and to estimate KL

(
p0||q̃T

)
≡ KL

(
qT ||q̃T

)
, we can simply estimate

how the quantity KL
(
qt||q̃t

)
changes for t ∈ (0, T ). By [7, Lemma C.1], for any t ∈ R,

∂tKL
(
qt||q̃t

)
= −h←t

2

2
J

(
qt||q̃t

)
+

g←t
2 + h←t

2

2
E
[
⟨−ϵE←t (Yt),∇ log

qt(Yt)

q̃t(Yt)
⟩
]
, (22)

where the Fisher information J
(
p||q

)
:=

∫
dp

∣∣∣∇ log p
q

∣∣∣2. By Cauchy-Schwarz inequality,

∂tKL
(
qt||q̃t

)
≤− h←t

2

2
J

(
qt||q̃t

)
+

g←t
2 + h←t

2

2

(c2
2
E
[
∥ϵE←t (Yt)∥2

]
+

1

2c2
E

[∥∥∥∥∇ log
qt(Yt)

q̃t(Yt)

∥∥∥∥2
] )

=
(h←t

2 + g←t
2)2

8h←t
2 ϵ2E

[
∥E←t (Yt)∥2

]
,

(23)

where we chose c2 =
h←t

2+g←t
2

2h←t
2 in the last line. This bound captures the scaling extremely well

when h← = g←, which helps to establish the effectiveness of score-based diffusion method in [7].
However, this bound is not directly applicable for a general h←, as it is clear that this bound fails
to provide useful information when h← ≈ 0 (namely, the probability flow), as well as the large
diffusion case (h← → ∞). From directly optimizing the upper bound, i.e., minimizing (h←t

2+g←t
2)2

8h←t
2 ,

one ends up with the choice h← = g←, which has been used in many literature. We acknowledge
that h← = g← is an effective choice; however, as we show in § 4, this is not really the optimal case
in general, and the above argument cannot justify choosing the diffusion model over the probability
flow.

C Discussion for § 3 and proof of Prop. 3.2

C.1 The operator Φ
(h←)
s,t

Lemma C.1.

• Φ
(h←)

(·),(·) satisfies the following property, i.e., for any s, t, r ∈ R,

Φ
(h←)
t,r ◦ Φ(h←)

s,t = Φ
(h←)
s,r . (24)

Moreover, Φ(h←)
t,t = Id is an identity operator for any t.

• For any s, t ∈ R,

∂s
(
Φ

(h←)
s,t (µ)

)
= −Φ

(h←)
s,t

(
L(h←)
s µ

)
∂t
(
Φ

(h←)
s,t (µ)

)
= L(h←)

t

(
Φ

(h←)
s,t (µ)

)
. (25)
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Proof. The structure in (24) is easy to imagine and is thus omitted herein. Next, we shall only prove
the first result in (25) for illustration:

∂s
(
Φ

(h←)
s,t (µ)

)
= lim

δs→0+

Φ
(h←)
s+δs,t(µ)− Φ

(h←)
s,t (µ)

δs

(24)
= lim

δs→0+

Φ
(h←)
s,t Φ

(h←)
s+δs,s(µ)− Φ

(h←)
s,t (µ)

δs

= lim
δs→0+

Φ
(h←)
s,t

(
Φ

(h←)
s+δs,s − Id

)
(µ)

δs

= lim
δs→0+

Φ
(h←)
s,t

(
Id − δsL(h←)

s − Id
)
(µ)

δs

= −Φ
(h←)
s,t

(
L(h←)
s (µ)

)
.

Lemma C.2. Suppose (t, x) 7→ µt(x), (t, x) 7→ θt(x) are time-dependent functions. Suppose
∂tµt = L(h←)

t (µt) + θt with µ0 = 0, then

µT =

∫ T

0

Φ
(h←)
t,T (θt) dt.

Proof. Note that

∂t
(
Φ

(h←)
t,0 µt

) (25)
= Φ

(h←)
t,0 (−L(h←)

t µt) + Φ
(h←)
t,0 (L(h←)

t µt + θt) = Φ
(h←)
t,0 (θt).

Therefore,

Φ
(h←)
T,0 (µT ) =

∫ T

0

Φ
(h←)
t,0 (θt) dt.

By applying the operator Φ(h←)
0,T to both sides, we have

µT =

∫ T

0

Φ
(h←)
0,T ◦ Φ(h←)

t,0 (θt) dt
(24)
=

∫ T

0

Φ
(h←)
t,T (θt) dt.

C.2 Time re-scaling of L(h←) and connections to almost quasi-static Langevin process

By time re-scaling, it is immediate to obtain the following result:
Lemma C.3. Suppose h←t = h for any t ∈ [0, T ] for simplicity. For any probability distribution µ,
the probability distribution Φ

(h←)
s,t (µ) (with s < t) is the final state of the following PDE on the time

interval r̃ ∈
[
0, (t−s)h

2
/2
]
:

∂r̃µ̃r̃ = △µ̃r̃ +∇ ·
(
∇V←s+2r̃/h2 µ̃r̃

)
, µ̃0 = µ. (26)

It corresponds to the following Langevin with time-dependent potential:

dXr̃ = −∇V←s+2r̃/h2(Xr̃) dr̃ +
√
2 dWr̃, law(X0) = µ.

Proof. To obtain Φ
(h←)
s,t (µ), we simply solve the following PDE:

∂rµr
(11)
=

h2

2

(
△µr +∇ ·

(
∇V←r µr

)
µs = µ.

By change of variables r̃ = (r− s)h
2
/2 and µ̃r̃ := µr ≡ µs+2r̃/h2 , we immediately have (26), and the

corresponding Langevin dynamics easily follows.

When h → ∞, the potential in the Langevin dynamics r̃ 7→ V←s+2r̃/h2 evolves extremely slowly. From

(11), we also know that V←s+2r̃/h2 ≈ U←s when r̃ = 0 and is approximately U←t when r̃ = (t−s)h2
2 .

Therefore, the Langevin dynamics can be viewed as an almost quasi-static process [6] approximately
transforming the state p←s to the state p←t over an extremely long time period though.
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C.3 Proof of Prop. 3.2

Denote

vt(x) := ∂ϵq
ϵ
t (x)|ϵ=0, ζt(x) := ∂2

ϵ q
ϵ
t (x)|ϵ=0.

Namely, we expand q̃ϵt via the following

q̃ϵt (x) = q̃0t (x)︸ ︷︷ ︸
≡qt(x)

+ϵvt(x) +
ϵ2

2
ζt(x) +O

(
ϵ3
)
.

Recall that when ϵ = 0, q̃0t ≡ qt; in particular, q̃0T = qT
Lem. B.1
= p0. The cost function can be easily

expanded via Taylor’s formula:

KL
(
p0||q̃ϵT

)
= −ϵ

∫
Rd

vT (x) dx− ϵ2

2

∫
Rd

(
ζT (x)−

v2T (x)

p0(x)

)
dx+O

(
ϵ3
)
.

Since
∫
q̃ϵT ≡ 1, it is easy to know that

∫
vT =

∫
ζT = 0 and thus

KL
(
p0||q̃ϵT

)
=

ϵ2

2

∫
Rd

v2T (x)

p0(x)
dx+O

(
ϵ3
)
.

Next we need to study vT . Recall from (7) that the Fokker-Planck equation of q̃t is

∂tq̃
ϵ
t = L(h←)

t (q̃ϵt )− ϵ∇ ·
(1 + h←t

2

2
E←t q̃ϵt

)
.

By taking derivatives with respect to ϵ on both sides of this equation and then passing ϵ → 0,

∂tvt = L(h←)
t (vt)−∇ ·

(1 + h←t
2

2
E←t qt

)
.

By Lem. C.2,

vT = −1

2

∫ T

0

(1 + h←t
2)Φ

(h←)
t,T

(
∇ ·

(
qt︸︷︷︸
≡p←t

E←t
))

dt. (27)

D Preliminary results

We collect two lemmas which will be useful in proving Prop. 3.5 and Prop. 3.6 later.
Lemma D.1.

1. The operator K(f) := △f +∇·
(
∇V · f

)
is a Hermitian/self-adjoint operator in the space

⟨·, ·⟩L2(ρ−1) where ρ ∝ e−V . Therefore, K has the eigen-decomposition in this weighted
L2(ρ−1) space.

2. Assume that ∇2V (x) ≥ mId for any x ∈ Rd for some m > 0. Then the operator −K is a
positive operator on the space {f :

∫
f = 0} with spectrum gap at least m.

Proof. For any f, g, note that

⟨f,Kg⟩L2(ρ−1) = −
∫
Rd

∇(f/ρ) · ∇(g/ρ)ρ.

Therefore, K is a Hermitian operator. In the space {f :
∫
f = 0}, we know

−⟨f,Kf⟩L2(ρ−1) =

∫
Rd

|∇(f/ρ)|2ρ

Poincaré ineq.
≥ m

∫
Rd

(
f2/ρ2

)
ρ = m⟨f, f⟩L2(ρ−1).

The validity of Poincaré inequality under the strong convexity assumption is well-known in literature;
see, e.g., [2, 24] and [3, Corollary 4.8.2].
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Lemma D.2. Suppose the operator K is defined as K(f) := △f +∇ ·
(
∇V · (f)

)
with ∇2V (x) ≥

mId for any x ∈ Rd. Then for any c, a ∈ R+, and any function φ with
∫
φ = 0,∫

Rd

1

ρ

(∫ a

0

exp
(
ctK

)
(φ) dt

)2

=

∞∑
k=1

(1− e−acλk

cλk

)2
α2
k

≤
(1− e−acm

cm

)2
∫
Rd

φ2

ρ
,

where ρ ∝ e−V , {(λk, ϕk)}∞k=1 are eigen pairs for the operator −K, and φ =
∑∞

k=1 αkϕk.

Remark. Note that as K is an operator, exp
(
ctK

)
:=

∑∞
k=0

(ctK)k
k! is the operator exponential.

Proof. Let us first denote the eigenvalue decomposition of K as K(ϕk) = −λkϕk where λk ≥ m
for k ∈ N and ⟨ϕj , ϕk⟩L2(ρ−1) = δj,k for any j, k ∈ N by Lem. D.1. Then we can decompose φ by
φ =

∑
k αkϕk. It is not hard to verify that

exp
(
ctK

)
(φ) =

∞∑
k=1

e−ctλkαkϕk.

Then ∫ a

0

exp
(
ctK

)
(φ) dt =

∞∑
k=1

1− e−acλk

cλk
αkϕk.

Hence, ∫
Rd

1

ρ

(∫ a

0

exp
(
ctK

)
(φ) dt

)2

=

∫
Rd

1

ρ

( ∞∑
k=1

1− e−acλk

cλk
αkϕk

)2

=

∞∑
k=1

(1− e−acλk

cλk

)2
α2
k

≤
(1− e−acm

cm

)2 ∞∑
k=1

α2
k

=
(1− e−acm

cm

)2
∫
Rd

φ2

ρ
.

E Proof of Prop. 3.4, Prop. 3.5, and a discussion on the pulse-shape error

E.1 Proof of Prop. 3.4

For convenience, we summarize some notations below; see also Appx. A.

• Denote the global minimum of U←t as X←t and denote the global minimum of V←t as Y←t .
When h → ∞, we know

lim
h→∞

Yt → Xt.

• Denote the normalizing constant ZV :=
∫
e−V for an arbitrary potential V .

• Recall that the distribution of the exact dynamics Yt is qt ≡ pT−t ≡ p←t and the distribution
of the approximated dynamics Ỹt is q̃t.

• Recall that pt := e−Ut and ρt ∝ e−Vt in (12).
Lemma E.1. Under Assumption 3.3, we have:

(i) Assumption 3.1 (3) is valid, i.e., the existence of cU .
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(ii) For any t ∈ [0, T ], the probability distribution ρt defined in (12) satisfies the Poincaré inequality
with constant κt (16):∫

Rd

|∇φ|2 dρt ≥ κt

∫
Rd

φ2 dρt, ∀φ with
∫
Rd

φρt = 0. (28)

(iii) ZV0
:=

∫
Rd e

−V0 is both upper and lower bounded: for any δ ∈ (0, 1), there exists h0(δ) > 0
such that whenever h ≥ h0(δ),

1− δ ≤ ZV0 ≤ e−h
−2cU .

and

ρ0
p0

≤ e−h
−2cU

1− δ
.

(iv) If we pick δ = 1/2, for h ≥ max{h0(1/2),
√
max{0,− cU

ln(2)}, the function ρ0/p0 is uniformly

bounded:
ρ0
p0

≤ 4. (29)

Proposition E.2. For any h ≥ 1/2, we have∣∣∣∣∫
Rd

φ2 d

dt
ρ←t

∣∣∣∣ ≤ C
←,(1)
t

∫
Rd

φ2 ρ←t + C
←,(2)
t

∫
Rd

|∇φ|2ρ←t , ∀φ ∈ C2
0 (Rd).

where 

C
←,(1)
t := ξ←t + 2ς←t |Y←t −X←t |2 + 20dM←t ς←t

m←t
2 ,

C
←,(2)
t :=

8ς←t
m←t

2 ≡ 20 + 30M←t
2

m←t
2 ,

ξ←t :=
∣∣∂t logZV←t

∣∣+ 5d(1 +M←t )

2
+

5

2
|X←t |2,

ς←t := 5
(1
2
+

3M←t
2

4

)
.

(30)

ZV←t
=

∫
e−V

←
t , M←t and m←t are shown in Assumption 3.3, and X←t and Y←t are the global

minimum points of functions x 7→ U←t (x) and x 7→ V←t (x), respectively.
Remark. A similar result holds for any h > 0; we choose h ≥ 1/2 in order to simplify the above
constants (30).

Note that the constant C←,(2)
t is independent of h. We remark that when h ≫ 1, C←,(1)

t approxi-
mately behaves as follows:
Lemma E.3. When h → ∞, we have

lim
h→∞

C
←,(1)
t =

5d(1 +M←t )

2
+

5

2
|X←t |2 +

(
50 + 75M←t

2
)
dM←t

m←t
2 .

We now proceed to finish the proof of Prop. 3.4. The detailed proofs of Lem. E.1, Prop. E.2, and
Lem. E.3 are postponed to Appx. E.2.

Proof of Prop. 3.4. By Lem. E.1,

L(h)
(13)
=

(1 + h2)2

8

∫
Rd

(
Φ

(h←)
s,T (∇ · (p←s E))

)2

ρ0

ρ0
p0

(29)
≤ 1

2
(1 + h2)2

∫
Rd

(
Φ

(h←)
s,T (∇ · (p←s E))

)2

ρ0
.

(31)
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To simplify notations, let

Λ←t := Φ
(h←)
s,t

(
∇ · (p←s E)

)
, J(h, t) :=

∫
Rd

Λ←t
2

ρ←t
, t ∈ [s, T ].

After taking the time-derivative and using Lemma C.1 (in the first line below), and expressions (11)
in the second line below, and integration by parts in the third line, the expression of ρ←t (12) in the
fourth line, we have

d

dt
J(h, t) =2

∫
Rd

Λ←t L(h←)
t (Λ←t )

ρ←t
−
∫
Rd

Λ←t
2(

ρ←t
)2 d

dt
ρ←t

(11)
= h2

∫
Rd

Λ←t
ρ←t

(
△Λ←t +∇ ·

(
∇V←t Λ←t

))
−
∫
Rd

Λ←t
2(

ρ←t
)2 d

dt
ρ←t

=− h2
∫
Rd

∇Λ←t
ρ←t

·
(
∇Λ←t +∇V←t Λ←t

)
−
∫
Rd

Λ←t
2(

ρ←t
)2 d

dt
ρ←t

=− h2
∫
Rd

∣∣∣∣∇Λ←t
ρ←t

∣∣∣∣2 ρ←t −
∫
Rd

Λ←t
2(

ρ←t
)2 d

dt
ρ←t .

(32)

The major challenge is to estimate
∫
Rd

Λ←t
2(

ρ←t

)2
d
dtρ
←
t . By Prop. E.2,

d

dt
J(h, t) ≤− (h2 − C

←,(2)
t

) ∫
Rd

∣∣∣∣∇Λ←t
ρ←t

∣∣∣∣2 dρ←t + C
←,(1)
t

∫
Rd

(Λ←t
ρ←t

)2
dρ←t

(28)
≤

(
− (h2 − C

←,(2)
t )κ←t + C

←,(1)
t

) ∫
Rd

(Λ←t
ρ←t

)2
dρ←t .

To verify the condition in Prop. E.2, we can readily confirm that∫
Λ←t
ρ←t

ρ←t =

∫
Λ←t =

∫
Φ

(h←)
s,t

(
∇ · (p←s E)

)
=

∫
∇ · (p←s E) = 0,

where the third equality in the last equation comes the fact that the Fokker-Planck solution operator
Φ

(h←)
s,t preserves the total mass. Note that we need h2 − C

←,(2)
t ≥ 0 in order to ensure the correct

direction when applying the Poincaré inequality above, which explains the lower bound that h needs
to satisfy in Prop. 3.4.

By Gröwnwall’s inequality, for any t ≥ s,

J(h, t) ≤ J(h, s) exp
(
−

∫ t

s

(
(h2 − C←,(2)

r )κ←r − C←,(1)
r

)
dr

)
. (33)

Finally, by (31), we have

L(h) ≤ (1 + h2)2

2
J(h, T ) ≤ Ch(1 + h2)2 exp

(
−
∫ T

s

(
(h2 − C←,(2)

r )κ←r − C←,(1)
r

)
dr

)
,

where

Ch =
1

2
J(h, s) =

1

2

∫
Rd

(
∇ · (p←s E)

)2
ρ←s

. (34)

Recall that C←,(2)
t (30) is independent of h. By Lem. E.3, we already discussed that limh→∞ C

←,(1)
t

exists. When h → ∞, we know that ρ←s → p←s (11)(12), and thus,

lim
h→∞

Ch =
1

2

∫
Rd

(
∇ · (p←s E)

)2
p←s

.

This completes the proof of Prop. 3.4.
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E.2 Proof of Lem. E.1, Prop. E.2, and Lem. E.3

Proof of Lem. E.1.

(i) From m0 > 1 in Assumption 3.3, x 7→ U0(x) − x2/2 is strongly convex and thus is surely
bounded from below by some cU ∈ R.

(ii) The second result is a classical result by Bakry-Emery criterion [2, 3], as V←t (12) is strongly
convex with Hessian lower bound κ←t (16).

(iii) To prove the third one, note that

ZV0
:=

∫
Rd

e−V0
(11)
=

∫
Rd

e−(1+h−2)U0(x)+h−2|x|2/2 dx

=

∫
Rd

e−U0(x)e−h
−2(U0(x)−|x|2/2) dx

≤ e−h
−2cU

∫
Rd

e−U0 = e−h
−2cU .

To prove the lower bound,

ZV0 ≥
∫
Rd

e−(1+h−2)U0(x) dx = e−(1+h−2)U0(X0)

∫
Rd

e−(1+h−2)
(
U0(x)−U0(X0)

)
dx. (35)

Recall from the beginning of this Appendix, X0 is defined as the global minimum of x 7→ U0(x).

Then, U0(x) ≥ U0(X0) for any x and we know h 7→ e−(1+h−2)
(
U0(x)−U0(X0)

)
is monotone

increasing. By monotone convergence theorem,

lim
h→∞

∫
Rd

e−(1+h−2)
(
U0(x)−U0(X0)

)
dx =

∫
Rd

lim
h→∞

e−(1+h−2)
(
U0(x)−U0(X0)

)
dx

=

∫
Rd

e−U0(x)+U0(X0) dx = eU0(X0).

Thus, the limit of the right-hand side of (35) is 1 when h → ∞. Hence, the lower bound of ZV0

follows immediately. Finally, when h ≥ h0(δ),

ρ0
p0

(x) =
e−(1+h−2)U0(x)+h−2|x|2/2

ZV0
e−U0

≤ e−h
−2cU

1− δ
. (36)

(iv) When we pick δ = 1/2 and choose h as specified, we can immediately obtain (29).

Before we prove Prop. E.2, we need the following three lemmas.
Lemma E.4. Under Assumption 3.3, we have

|∂tUt(x)| ≤
d(1 +Mt)

2
+

|x|2

4
+

3M2
t

4
|x−Xt|2.

Proof. Since pt follows the Fokker-Planck equation ∂tpt = ∇·
(
1
2xpt)+

1
2 △pt, then Ut = − log pt

satisfies ∂tUt(x) = − 1
2

(
d− x · ∇Ut(x)−△Ut(x) + |∇Ut(x)|2

)
. Then by Assumption 3.3,

|∂tUt(x)| ≤
d

2
+

1

2
|x · ∇Ut(x)|+

1

2
△Ut(x) +

1

2
|∇Ut(x)|2 (triangle inequality)

≤ d

2
+

1

4

(
|x|2 + |∇Ut(x)|2) +

1

2
△Ut(x) +

1

2
|∇Ut(x)|2 (Cauchy inequality)

≤ d

2
+

1

4
|x|2 + 3

4
|∇Ut(x)−∇Ut(Xt)|2 +

dMt

2
(by ∇Ut(Xt) ≡ 0)

≤ d(1 +Mt)

2
+

|x|2

4
+

3M2
t

4
|x−Xt|2.

Recall that Xt is defined as the global minimum of Ut and thus ∇Ut(Xt) = 0.
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Lemma E.5. When h ≥ 1
2 , ∣∣ d

dtρ
←
t

∣∣
ρ←t

(x) ≤ ξ←t + ς←t |x−X←t |2, (37)

where 
ξ←t :=

∣∣∂t logZV←t

∣∣+ 5d(1 +M←t )

2
+

5

2
|X←t |2,

ς←t := 5
(1
2
+

3M←t
2

4

)
.

Proof. By direct calculation from the definitions of ρ←t in (12) and V←t in (11),

∂tρ
←
t = −(∂t logZV←t

)ρ←t − (1 + h−2)ρ←t ∂tU
←
t .

Hence, by Lem. E.4 and h ≥ 1
2 ,

|∂tρ←t |
ρ←t

(x) ≤
∣∣∂t logZV←t

∣∣+ (1 + h−2)
(d(1 +M←t )

2
+

|x|2

4
+

3M←t
2

4
|x−X←t |2

)
≤
(∣∣∂t logZV←t

∣∣+ 5d(1 +M←t )

2

)
+ 5

( |X←t |2

2
+

|x−X←t |2

2
+

3M←t
2

4
|x−X←t |2

)
=ξ←t + 5

(1
2
+

3M←t
2

4

)
|x−X←t |2.

Lemma E.6. Assume that ρ ∝ e−V and φ decays fast enough such that∫
B0(R)

∇ ·
(
φ2∇ρ

)
→ 0,

as the radius R → ∞ (B0(R) is the ball centered at 0 with radius R), e.g., φ ∈ C2
0 (Rd). Then∫

Rd

|∇V |2φ2ρ ≤ 4

∫
Rd

|∇φ|2ρ+ 2

∫
Rd

φ2 △V ρ. (38)

Proof. The identity ∇ ·
(
φ2∇ρ

)
= ∇φ2 · ∇ρ + φ2 △ρ and the trivial facts ∇ρ = −ρ∇V , △ρ =

(|∇V |2 −△V )ρ show that

0 =

∫
∇φ2 · ∇ρ+ φ2 △ρ

= −2

∫
(∇V · ∇φ)φρ+

∫
φ2(−△V + |∇V |2)ρ

Cauchy ineq.
≥− 1

2

∫
|∇V |2φ2ρ− 2

∫
|∇φ|2ρ−

∫
φ2 △V ρ+

∫
|∇V |2φ2ρ

=
1

2

∫
|∇V |2φ2ρ− 2

∫
|∇φ|2ρ−

∫
φ2 △V ρ.

Therefore, ∫
|∇V |2φ2ρ ≤ 4

∫
|∇φ|2ρ+ 2

∫
φ2 △V ρ.
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Proof of Prop. E.2. The above three lemmas show that∣∣∣∣∫
Rd

φ2 d

dt
ρ←t

∣∣∣∣ (37)
≤

∫
Rd

φ2(ξ←t + ς←t |x−X←t |2)ρ←t

= ξ←t

∫
Rd

φ2 ρ←t + ς←t

∫
Rd

φ2|x− Y←t + Y←t −X←t |2ρ←t
Cauchy ineq.

≤
(
ξ←t + 2ς←t |Y←t −X←t |2

) ∫
Rd

φ2ρ←t + 2ς←t

∫
Rd

φ2|x− Y←t |2ρ←t
(14)
≤

(
ξ←t + 2ς←t |Y←t −X←t |2

) ∫
Rd

φ2ρ←t +
2ς←t
m←t

2

∫
Rd

φ2|∇V←t (x)−∇V←t (Y←t )|2ρ←t

=
(
ξ←t + 2ς←t |Y←t −X←t |2

) ∫
Rd

φ2ρ←t +
2ς←t
m←t

2

∫
Rd

φ2|∇V←t (x)|2ρ←t
(38)
≤

(
ξ←t + 2ς←t |Y←t −X←t |2

) ∫
Rd

φ2ρ←t +
2ς←t
m←t

2

(
4

∫
Rd

|∇φ|2ρ←t + 2

∫
Rd

φ2 △V←t ρ←t
)

(14)
≤

(
ξ←t + 2ς←t |Y←t −X←t |2

) ∫
Rd

φ2ρ←t +
2ς←t
m←t

2

(
4

∫
Rd

|∇φ|2ρ←t + 10M←t d

∫
Rd

φ2ρ←t
)

=
(
ξ←t + 2ς←t |Y←t −X←t |2 + 20M←t dς←t

m←t
2

) ∫
Rd

φ2ρ←t +
8ς←t
m←t

2

∫
Rd

|∇φ|2ρ←t .

To get the fifth line, we used the definition of Y←t : Y←t is the global minimum of V←t so that
∇V←t (Y←t ) ≡ 0. To get the second last line, we used the fact that

△V←t = (1 + h−2)△U←t − h−2 ≤ (1 + h−2) dM←t − h−2
(by h ≥ 1/2)

≤ 5dM←t .

Proof of Lem. E.3. Note that ς←t does not depend on h. When h → ∞, as V←t → U←t (11), we
know ZV←t

converges to ZU←t
≡ 1 by the definition of pt := e−Ut , we immediately know that

lim
h→∞

∣∣∂t logZV←t

∣∣ = 0.

Then

lim
h→∞

ξ←t =
5d(1 +M←t )

2
+

5

2
|X←t |2.

Moreover, Yt → Xt as h → ∞, we have

lim
h→∞

C
←,(1)
t = lim

h→∞
ξ←t + 2 lim

h→∞
ς←t |Y←t −X←t |2 + 20dM←t ς←t

m←t
2 ,

=
5d(1 +M←t )

2
+

5

2
|X←t |2 +

(
50 + 75M←t

2
)
dM←t

m←t
2 .

E.3 Proof of Prop. 3.5

Case I: h = 0. For this ODE case, (8) becomes

L(0)
t (µ)(x) =

1

2
∇ ·

(
∇
(
U←t (x)− |x|2/2

)
µ(x)

)
, (39)

and the formula of leading order term L(0) is

L(0) =
1

2

∫
Rd

v2T (x)

p0(x)
dx, vT

(10)
= −1

2

∫ T

T−a
Φ

(0)
t,T (∇ · (p←t E)) dt,
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since we perturb the E←t only when t ≈ T , that is, E←t (x) = It∈[T−a,T ]E(x) for a small positive a.
Then we know that

vT ∼ −1

2

∫ T

T−a
∇ · (p0E)) dt = −a

2
∇ · (p0E).

Recall that p0 = p←T ≈ p←t when t ≈ T ; moreover, Φ(0)
t,T ≈ Φ

(0)
T,T ≡ Id. Therefore, the leading order

term of L(0) when a ≪ 1 is

L(0) ∼ a2

8

∫
Rd

(∇ · (p0E))2

p0
.

Case II: h → ∞. For the SDE case,

vT
(10)
= −1 + h2

2

∫ T

0

Φ
(h)
t,T

(
∇ · (p←t E←t )

)
dt

∼ −1 + h2

2

∫ T

T−a
Φ

(h)
t,T

(
∇ · (p0E)

)
dt (by a ≪ 1)

∼ −1 + h2

2

∫ T

T−a
e(T−t)

h2

2 K
←
T
(
∇ · (p0E)

)
dt (by a ≪ 1)

= −1 + h2

2

∫ a

0

et
h2

2 K
←
T
(
∇ · (p0E)

)
dt,

where

K←t (µ) := △µ+∇ · (∇V←t µ). (40)

Then when we further assume h ≫ 1,

1

2

∫
Rd

(vT )
2

p0
≲

1

2

∫
Rd

(vT )
2

ρ0
(by Lem. E.1 (iii))

≲
(1 + h2)2

8

(1− e−a
h2

2 κ0

h2

2 κ0

)2
∫
Rd

(∇ · (p0E))2

ρ0
(by Lem. D.2)

∼ (1 + h2)2

h4

(
1− e−a

h2

2 κ0
)2

2κ2
0

∫
Rd

(∇ · (p0E))2

ρ0

∼
(
1− e−a

h2

2 κ0
)2

2κ2
0

∫
Rd

(∇ · (p0E))2

ρ0

∼
(
1− e−a

h2

2 κ0
)2

2κ2
0

∫
Rd

(∇ · (p0E))2

p0
.

To apply Lem. D.2 in the second line, we remark that K←T (µ) = △µ + ∇ · (∇V←T µ), V←T has
Hessian lower bound κ←T ≡ κ0 (16).

E.4 Discussion on the pulse-shape error

Though the error of the score function is time-dependent, we can always divide the error function
into a linear combination of step functions:

E←t (x) ≈
∑
j

ϕj(x)χ[tj ,tj+1](t),

where χ is the indicator function and ϕj is the function value of E←t on the time interval [tj , tj+1].
Without loss of generality, assume that the time-discretization is uniform, i.e., tj+1 − tj = ∆t for any
j. If we don’t worry about ill-behaved functions, this decomposition can be made arbitrarily accurate
by choosing a smaller time interval; it is not difficult to make this approximation mathematically
rigorous. It is hard to assume that this error function at time e.g., t = 0.1 has some subtle connection
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with its error at e.g., t = 0.8 in general; how the error function exactly looks like depend on a
vast amount of hyper-parameters in training. Therefore, we might as well treat each ϕj as “mostly
independent” in order to handle the worst case situation. If we consider how each ϕj contributes to
the final sample generation error (quantified via KL divergence), then we might as well study each
one independently. We remark that this is simply a reasonable assumption in order to treat generic
error types.

More specifically, recall that in Prop. 3.2, vT linearly depends on each ϕj

vT = −1

2

∫ T

0

(1 + (h←t )2)Φ
(h←)
t,T

(
∇ · (p←t E←t )

)
dt

≈ −1

2

∑
j

(1 + (h←tj )
2)Φ

(h←)
tj ,T

(
∇ ·

(
p←tj ϕj

))
∆t,

and recall that the leading order term (10) is simply

L(h←) =
1

2

∫
Rd

v2T (x)

p0(x)
dx.

Therefore, after plugging the decomposition of E←t into L(h←), we have

L(h←) =
(1 + h2)2

8
(∆t)2

∑
j,k

∫
Rd

Φ
(h←)
tj ,T

(
∇ ·

(
p←tj ϕj

))
Φ

(h←)
tk,T

(
∇ ·

(
p←tkϕk

))
p0

.

We had chosen h←t = h for all t ∈ [0, T ] for simplicity. Either by Cauchy-Schwartz inequality, or by
assumptions on the independence of each ϕj as discussed above, the main feature is the following
term

(1 + h2)2

8
∆t

∫
Rd

1

p0

[
Φ

(h←)
tj ,T

(
∇ ·

(
p←tj ϕj

))]2
.

Therefore, it makes sense to study how this quantity scales for each j, and for two asymptotic regions
h = 0 and h → ∞. For each fixed j, we can easily observe that the above quantity arises from
choosing the error function as a pulse-shape error, i.e., ϕk = 0 if k ̸= j (with certain normalization
rescaling).

F Proof of Prop. 3.6 and the discussion of the large diffusion limit

F.1 Proof of Prop. 3.6

Let us pick an a = h−β ≪ 1. We split vT (10) into two parts:

vT =− 1 + h2

2

∫ T

0

Φ
(h←)
t,T

(
∇ · (p←t E←t )︸ ︷︷ ︸

=:Γ←t

)
dt

=− 1 + h2

2

∫ T

T−a
Φ

(h←)
t,T

(
Γ←t

)
dt− 1 + h2

2

∫ T−a

0

Φ
(h←)
t,T

(
Γ←t

)
dt.
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Upper bound

By Cauchy-Schwartz inequality ((x+ y)2 = x2 + y2 + 2xy ≤ (1 + α2)x2 + (1 + α−2)y2 for any
x, y and α > 0),

L(h) =
1

2

∫
v2T
p0

≤ (1 + α2)

(
1 + h2

)2
8

∫
Rd

( ∫ T

T−a Φ
(h←)
t,T (Γ←t )dt

)2
p0︸ ︷︷ ︸

=:T1

+ (1 + α−2)

(
1 + h2

)2
8

∫
Rd

( ∫ T−a
0

Φ
(h←)
t,T (Γ←t )dt

)2
p0︸ ︷︷ ︸

=:T2

.

For the second term T2,

T2 =
(1 + h2)2

8

∫
Rd

( ∫ T−a
0

Φ
(h←)
t,T (Γ←t )dt

)2
p0

Cauchy ineq.
≤ (1 + h2)2(T − a)

8

∫ T−a

0

( ∫
Rd

Φ
(h←)
t,T (Γ←t )2

p0

)
dt

(29)
≤ (1 + h2)2T

2

∫ T−a

0

( ∫
Rd

Φ
(h←)
t,T (Γ←t )2

ρ0

)
dt

(33)
≤ (1 + h2)2T

2

∫ T−a

0

( ∫
Rd

Γ←t
2

ρ←t

)
exp

(
−
∫ T

t

(
(h2 − C←,(2)

r )κ←r − C←,(1)
r

)
dr

)
dt

≤ (1 + h2)2T

2
sup

t∈[0,T ]

( ∫
Rd

Γ←t
2

ρ←t

)
exp

( ∫ T

0

C←,(2)
r κ←r + C←,(1)

r dr
) ∫ T−a

0

e−h
2γ(T−t) dt

≤ (1 + h2)T

2h2
sup

t∈[0,T ]

( ∫
Rd

Γ←t
2

ρ←t

)
exp

( ∫ T

0

C←,(2)
r κ←r + C←,(1)

r dr
) (1 + h2)e−ah

2γ

γ
,

which decays exponentially fast as h → ∞ as long as h2 ≫ a−1 ≫ 1. To get the second line above,
we used Cauchy-Schwarz inequality and Fubini’s theorem. Recall the definition of γ ∈ R+ in the
statement of Prop. 3.6.

Overall, when a = h−β ≪ 1,

L(h) ≤ (1 + α−2) C
(1 + h2) exp

(
− h2−βγ

)
γ

+ (1 + α2)T1,

where

C =
(1 + h2)

2h2
T sup

t∈[0,T ]

( ∫
Rd

Γ←t
2

ρ←t

)
exp

( ∫ T

0

C←,(2)
r κ←r + C←,(1)

r dr
)

≲
T

2
sup

t∈[0,T ]

( ∫
Rd

Γ←t
2

p←t

)
exp

( ∫ T

0

C←,(2)
r m←r + ( lim

h→∞
C←,(1)

r )dr
)
.

Please refer to Lem. E.3 for limh→∞ C
←,(1)
r .

Lower bound

The lower bound can be proved in the same way: by Cauchy-Schwarz inequality again,

L(h) ≥ (1− α2)T1 + (1− α−2)T2

≥ (1− α2)T1 − (α−2 − 1)C
(1 + h2) exp

(
− h2−βγ

)
γ

.

The remaining task is to estimate T1.
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Asymptotic limit of T1

We only provide an asymptotic result below. As a ≪ 1,

T1 :=
(1 + h2)2

8

∫
Rd

( ∫ T

T−a Φ
(h←)
t,T (Γ←t )dt

)2
p0

∼ (1 + h2)2

8

∫
Rd

1

p0

(( ∫ T

T−a
Φ

(h←)
t,T dt

)
(Γ←T )

)2

∼ (1 + h2)2

8

∫
Rd

1

p0

(∫ T

T−a
exp

(h2
2
(T − t)K←T

)
Γ←T dt

)2

∼ (1 + h2)2

8

∫
Rd

1

ρ0

(∫ T

T−a
exp

(h2
2
(T − t)K←T

)
Γ←T dt

)2

,

where we used Γ←t ≈ Γ←T , when t ≈ T in the second line; we used L
(h←)

t

h2/2 ≈ L(h←)

T

h2/2 when t ≈ T in

the third line; L(h←)
T = h2/2 K←T (40) herein. In the last line, we used the fact that ρ0 ∼ p0 when

h → ∞.

By Lem. D.2,

T1 ∼ (1 + h2)2

8

∞∑
k=1

(1− e−a
h2

2 λ
(h)
k

h2

2 λ
(h)
k

)2(
α
(h)
k

)2
∼1

2

∞∑
k=1

(α(h)
k

λ
(h)
k

)2
(by a = h−β , h ≫ 1),

where (λ
(h)
k , ϕ

(h)
k ) are eigen pairs of K←T and Γ←T =

∑∞
k=1 α

(h)
k ϕ

(h)
k . When h → ∞, we know that

the eigenvalues of K←T , which depends on h and has the form

K←T (µ)(x) = △µ(x) +∇ · (∇U0(x)µ(x)) + h−2∇ ·
((

∇U0(x)− x
)
µ
)
,

should converge to K∞, defined as

K∞(µ) := △µ+∇ · (∇U0µ).

Therefore, in the limit,

lim
h→∞

T1 =
1

2

∞∑
k=1

(
α

(∞)
k /λ(∞)

k

)2
,

where (λ
(∞)
k , ϕ

(∞)
k ) are eigen pairs of K∞ and Γ←T =

∑∞
k=1 α

(∞)
k ϕ

(∞)
k .

Upper bound of T1

By the upper bound in Lem. D.2 (together with a = h−β and h ≫ 1) or by applying λ
(h)
k ≥ κ0

directly to the asymptotic of T1, when h ≫ 1,

T1 ≲
1

2κ2
0

∫
Rd

Γ←T
2

ρ0
=

1

2κ2
0

∫
Rd

(∇ · (p←T E←T ))2

ρ0
∼ 1

2m2
0

∫
Rd

(∇ · (p0E←T ))2

p0
.

The term T in Prop. 3.6 is simply the limit of T1.

F.2 Remark on the large diffusion limit

Score function parameterization in constrained score models

We would like to remark on the parameterization of score function. It is common in literature
to directly parameterize St (4) via some neural network. However, in general, this practice can
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rarely guarantee that St (which is supposed to approximate ∇ log pt) has the gradient form as well
[23, 25]. If we instead parameterize log pt(x) ≈ Nt(x; θ), where N·(·; θ) is some (scalar-valued)
neural network with parameter θ, we can simply use the following ansatz in training

St(x) = ∇Nt(x; θ).

Consequently, the error of score function estimate also has a gradient form:

ϵE←t (x)
(6)
= S←t (x)−∇ log p←t (x)

= ∇N←t (x; θ)−∇ log p←t (x)

= ∇
(
N←t (x; θ)− log p←t (x)

)︸ ︷︷ ︸
=:φ

.

This validates the discussion in § 3.6. Apart from the apparent benefit in preserving the gradient form,
this ansatz can help us identify some interesting structure for the the upper bound of limh→∞ L(h) in
(18), discussed in § 3.6.

More discussion on the upper bound

Because the score error E←T comes from approximating ∇ log p0, it is reasonable to consider the case
φ = log p0, the upper bound (18), or equivalently (19), becomes

T ≲
1

2m2
0

∫
Rd

(
|∇U0|2 −△U0

)2
e−U0 . (41)

This quantity heuristically characterizes how difficult the probability distribution p0 can be learn by
score-based diffusion models with large diffusion coefficient.

It is of interest to further explore how to utilize the above upper bound to improve the training of
score function, or provide theoretical understanding about what types of probability distributions are
easy/difficult to learn via score-based SDEs. We shall leave an extensive study of these important and
interesting questions for future work. Below, we shall provide a simple example.

Example: d-dimensional Gaussian

When p0 = e−U0 = N (µ, σ2
0), the quantity m0 (14) is m0 = 1

σ2
0

. Then this upper bound (18) is

σ4
0

2

∫
Rd

(∣∣∣∣x− µ

σ2
0

∣∣∣∣2 − d

σ2
0

)2
e−U0 = d.

This is compatible with the insight that it is more difficult to learn a high dimensional probability
distribution.

G Numerical experiment: 1D Gaussian case

We demonstrate and validate main findings via a simple 1D Gaussian. Suppose ft(x) = − 1
2x, gt = 1,

and the exact data distribution is a Gaussian p0 = N (0, σ2
0). The error is quantified by KL

(
p0||q̃T

)
.

We investigate this error as a function of the magnitude of h← (which is chosen as a constant function
h←t = h for any t ∈ [0, T ]).

G.1 Explicit formulas for 1D Gaussian case

From solving the SDE for the forward process, we know that

pt = N (0, σ2
t ), σ2

t = σ2
0e
−t + 1− e−t, ∇ log pt(x) = − x

σ2
t

. (42)

The backward dynamics (7) on t ∈ [0, T ] isdỸt =
(1
2
Ỹt +

1 + h←t
2

2

(
− Ỹt

σ2
T−t

+ ϵE←t (Ỹt)
))

dt+ h←t dWt,

law(Ỹ0) = pT .
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In this example, there is only one source of error, which is E←, as we know explicitly the distribution
pT and we can choose the time step small enough such that numerical discretization error is negligible.
Due to the structure of the score function, it is reasonable to consider the following ansatz

E←t (x) = αtx. (43)

This example has explicit formulas: ỸT is a Gaussian distribution with E[ỸT ] = 0 and

Var(ỸT ) = G−2T Var(Ỹ0) +

∫ T

0

G−2T G2
th
←
t

2 dt,

where

Gt := exp
(
−
∫ t

0

1

2
+

1 + h←s
2

2
(− 1

σ2
T−s

+ ϵαs)ds
)
.

The sample generation error quantified by KL divergence also has an explicit formula:

KL
(
p0||q̃T

)
=

1

2
log

(Var(ỸT )

σ2
0

)
+

σ2
0

2Var(ỸT )
− 1

2
.

G.2 Experiment 1: Fix error magnitude ϵ and consider various error types

We choose T = 2, h←t = h for all t ∈ [0, T ], and the error function is chosen as

ϵ = 0.02, E←t (x) = ∇ log p←t (x)×



1 case 1;
−1 case 2;

1 + sin(2πt/T )

2
case 3;

It<0.95T case 4;
It>0.99T case 5.

(44)

For these choices, we only perturb the true score function by a bounded prefactor. We can observe
that the error KL

(
p0||q̃T

)
is a complicated function of h in general in Fig. 6. When we only perturb

the score function during the initial period of the generative process (case 4), we can clearly observe
that the sampling error decays exponentially fast with respect to h2, which numerically validates
Prop. 3.4. When we only perturb the score function near the end of the generative process (case 5),
increasing the diffusion coefficient h will actually increase the error, which is predicted by Prop. 3.5.
For a general error (case 1, 2, 3), overall we can still expect that increasing diffusion coefficient h
will generally suppress the error when σ0 is small.

Table 3: Approximated value of L(h) when h2 ≈ 20. We can observe that in each column (referring
to a specific error type) the value is almost independent of the σ0 in particular when σ0 < 1.

σ0 Case 1 Case 2 Case 3
0.2 0.2567 0.3032 0.0658
0.4 0.2569 0.3028 0.0636
0.6 0.2570 0.3018 0.0597
0.8 0.2569 0.3023 0.0544
1.5 0.2570 0.3017 0.0321
2.0 0.2564 0.3022 0.0198
3.0 0.2566 0.3020 0.0121

G.3 Experiment 2: consider L(h) for various error types

We further numerically approximate L(h) ≡ L(h,E←, p0) by linear regression and study how σ0

(i.e., the data distribution p0), error type E←, and diffusion coefficient h affect the leading order
term L(h,E←, p0). Recall that we use L(h) as a simplified notation when E← and p0 are clear from
context; see § 3. As a remark, to approximate L(h), we used the leading-order approximation that
KL

(
p0||q̃T

)
= L(h)ϵ2 +O

(
ϵ3
)
: we choose a few ϵ values and use linear regression to estimate L(h).
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In Fig. 7, we can clearly observe that L(h) converges to a constant extremely fast when h increases
for cases σ0 < 1. The value of E←T for the case 3 is only 1/2 of that for case 1 and case 2. By
Prop. 3.6, we know that limh→∞ L(h) for the case 3 should be approximated 1/4 of that for cases 1
and 2. This is also (approximately) numerically observed in Table 3.
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Figure 6: We show log10
(
KL

(
p0||qT

))
as a function of h2 for the 1D Gaussian model. T = 2,

different σ0 and error functions in (44) are considered.

H More details about numerical experiments in § 4

In this section, we discuss datasets, network architectures, evaluation metrics, numerical schemes
(exponential integrator), and the default weight in denoising score matching.

H.1 Datasets

• 1D 2-mode Gaussian mixture: p0(x) =
∑2

i=1 0.5N
(
x; (−1.0)i, 0.01

)
.

• 2D 4-mode Gaussian mixture: p0(x) =
∑2

i,j=1 0.25N
(
x; ((−1.0)i, (−1.0)j), 0.052I2

)
.

• Swiss roll: Swiss roll generates samples by (x, y) =
(
t sin(t), t cos(t)

)
with t drawn from

the uniform distribution U( 3π2 , 9π
2 ).
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as a function of h2 for the 1D Gaussian model. T = 2, different σ0

and error functions in (44) are considered.
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• MNIST: MNIST [34] contains 60,000 28 × 28 gray-scale images with hand-written digits.
• CIFAR-10: CIFAR-10 [22] contains 60,000 32 × 32 RGB images with ten categories.

H.2 Network architectures and other parameters

For experiments on 1D/2D Gaussian mixtures, the exact scores can be obtained analytically if we
use VP-SDE. We set T = 4 and gt = 1 for t ∈ [0, T ]. For the time discretization when solving the
reverse SDE with Euler-Maruyama method, we apply 40,000 steps and 80,000 steps for 1D and 2D
Gaussian mixtures, respectively.

For experiments on Swiss roll, we apply a three-layer neural network for score matching, where the
width of each layer is set as 50, 50, and 2 and we apply ReLU as the nonlinear activation for two
hidden layers. We set T = 1 and gt =

√
0.1(1− t) + 20t for t ∈ [0, T ]. The learning rate is set as

0.01 and decays by 0.5 every 8,000 steps. The batch size is set as 400. We train the neural network
for 20,000 steps. For the time discretization when solving the reverse SDE with Euler-Maruyama
method, we apply 20,000 steps.

For experiments on MNIST, we apply the net architecture in [17] for score matching, where we use
two resolution blocks in U-net and set the multipliers of channels to be one and two. We set T = 1.4

and gt =
√

0.1(1− t) + 20t for t ∈ [0, T ]. The number of iteration is 20, 000, the batch size is set
as 64. We solve the reverse SDE with exponential integrator; see also Appx. H.4.

For experiments on CIFAR-10, we apply the DDPM++ cont. in [30] as the net architecture, and
use their pretrained checkpoint in for score estimation. We use the same setting as [30], i.e., T = 1

and gt =
√
0.1(1− t) + 20t for t ∈ [0, T ]. For the time discretization when sampling with Euler-

Maruyama method, we apply 100, 200, 500, 1000, 2000, 3000 and 4000 steps.

H.3 Evaluation metrics

For experiments of 1D/2D Gaussian mixtures and Swiss roll, we apply approximated divergences for
evaluating the performances. Specifically, we discretize the space into 100 bins in each dimension,
then obtain the empirical densities of 10,000 true samples and 10,000 generated samples, and use
Jensen-Shannon divergence, Kullback-Leibler divergence and Wasserstein distance between both
empirical densities as the metrics for evaluation.

H.4 Exponential integrator

We shall explain the exponential integrator for (2) with t ∈ [0, T ], i.e., the following equation

dYt = −f←t (Yt) dt+
(g←t )2 + (h←t )2

2
∇ log p←t (Yt) dt+ h←t dW t

=
1

2
g←t

2Yt dt+
(g←t )2 + (h←t )2

2
∇ log p←t (Yt) dt+ h←t dW t .

Then for any time t ∈ [tk, tk+1], and given Ŷtk , we approximate the above dynamics by

dŶt ≈
1

2
g←t

2Ŷt dt+
(g←t )2 + (h←t )2

2
∇ log p←tk (Ŷtk) dt+ h←t dW t .

This dynamics is a linear SDE and we can solve it exactly

Ŷtk+1
= e

1
2

∫ tk+1
tk

g←s
2 dsŶtk +

[ ∫ tk+1

tk

e
1
2

∫ tk+1
t g←s

2 ds g
←
t

2 + h←t
2

2
dt
]
Sk︸ ︷︷ ︸

=:T1

+

∫ tk+1

tk

e
1
2

∫ tk+1
t g←s

2 dsh←t︸ ︷︷ ︸
:=T2

dWt,

Sk := ∇ log p←tk (Ŷtk).

32



Therefore,

Ŷtk+1
= T1 +

√∫ tk+1

tk

(
T2

)2
dt Zk, Zk ∼ N (0, Id).

If we pick{
h←t = αg←t , α ∈ R+,

gt =
√
β0 + (β1 − β0)t which implies that g←t =

√
β0 + (β1 − β0)(T − t),

then after straightforward calculations,

Ŷtk+1
= γkŶtk + (1 + α2)

(
γk − 1

)
Sk +

√
α2

(
γ2
k − 1

)
Zk,

where δk := tk+1 − tk and γk := exp
( δk

(
2β0+(2tk−2T+δk)(β0−β1)

)
4

)
.

H.5 Default training weight

Given the fixed X0, we can explicitly solve (1) (with the choice ft(x) = − g2
t

2 x):

Xt = (Gt)
−1X0 +

∫ t

0

G−1t Gsgs dWs,

where Gt = exp
( ∫ t

0
g2
s

2 ds
)
. The standard deviation of the Brownian motion term above is

ϖt :=

√∫ t

0

G−2t G2
s g

2
s ds.

When gt =
√
β0 + (β1 − β0)t as used in many literature [30, 17], we can explicitly solve for ϖt:

ϖt =

√
1− exp

(
−1

2
t2(β1 − β0)− tβ0

)
.

In literatures, to balance the noise over time in training the score function, a common practice is to
use the default weight ωt = ϖ2

t (5) in the (denoising) score-matching loss function (4).

H.6 Additional numerical results for experiments in § 4

We present more numerical results on 1D Gaussian mixture, Swiss roll, and MNIST to further verify
theoretical results.

1D Gaussian mixture

We evaluate the performances of generative models under different values of h for 1D Gaussian
mixture, and present the visualization and numerical results in Fig. 8 and Fig. 9, respectively. In Fig. 8,
a clear trend shows that with increasing h, the empirical density of generated samples better matches
the true density function. This trend is more quantitatively captured in Fig. 9, from which we
clearly observe that the distance between the empirical and the true density function decreases to the
numerical threshold exponentially fast. Numerical threshold means the error of various distances
when ϵ = 0; due to the space discretization when computing various distances, the numerical values
of various distances are not exactly zero even when we use the exact score function. However,
increasing h can help us to almost reach this limit and this phenomenon is theoretically described in
Prop. 3.4.
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(a) ϵ = −0.2.
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(b) ϵ = −0.1.
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(c) ϵ = 0.0.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

h2=0.0 g2

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

h2=1.0 g2

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

h2=2.0 g2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

h2=3.0 g2

−1.5 −1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

h2=4.0 g2

(d) ϵ = 0.1.
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(e) ϵ = 0.2.

Figure 8: Visualization of 1D GMM, where E←t (x) = ∇ log p←t (x). We can observe that increasing
h can help to generate samples with a distribution closer to the true p0.

34



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

h2/g2

10−3

10−2

10−1

KL divergence
ε= −0.2
ε= −0.1
ε=0.0
ε=0.1
ε=0.2

(a) E←t = ∇ log p←t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

h2/g2

10−3

10−2

KL divergence
ε= −0.2
ε= −0.1
ε=0.0
ε=0.1
ε=0.2

(b) E←t = 1+sin(2πt/T )
2

∇ log p←t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

h2/g2

10−3

10−2

KL divergence
ε= −0.2
ε= −0.1
ε=0.0
ε=0.1
ε=0.2

(c) E←t = It<0.95T∇ log p←t

Figure 9: Numerical results of 1D 2-mode Gaussian mixture. We can observe that the distance
between the empirical density and the true density function decreases as h increases, when E←T is not
extremely large.

Swiss roll

In Fig. 10, we provide additional figures to discuss the effect of time-discretization. When the
numerical error is negligible, we can observe that the generative process with a larger h can provide a
clearer picture of Swiss roll, as shown in Fig. 10c. However, when the discretization error cannot
be ignored, the conclusion may be reversed. Therefore, it is necessary to design and employ more
accurate numerical methods for models with large h in order to fully benefit from diffusion models
with a large diffusion coefficient.

In Fig. 11, we display JS and KL divergences between the true density p0 and the generated samples.
Since the data distribution of Swiss roll is highly localized (data is concentrated on a curve embed in
2D), accurately computing the KL divergence poses a significant numerical challenge. That is why
we use Wasserstein distance instead in Fig. 5a. Based on more robust symmetric metrics (i.e., the
JS and Wasserstein distance herein), we can observe that a larger h can indeed diminish the error in
sample generation.

(a) discretization steps = 100

(b) discretization steps = 1,000

(c) discretization steps = 10,000

Figure 10: Visualization results of Swiss roll with different number of time steps.
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Figure 11: Numerical results of Jensen-Shannon divergence and Kullback-Leibler divergence of
Swiss roll.

MNIST

We conduct further experiments to explore the effect of h← and the time discretization steps. It is
important to note that if one has an extremely well trained score function, then the effect of h← is
indeed negligible, as shown in (3). To somewhat magnify the score training error for MNIST (but
with a reasonable score function), we increase the time T and use a smaller architecture with fewer
parameters; the reason of the occasional failure to generate clear MNIST images in later figures
comes from this deliberate experimental design.

For an existing pre-trained score function with non-negligible error, we notice that increasing h←

can almost ubiquitously improve the quality of sample generation; see Fig. 12 (as well as Fig. 15
and Fig. 16 under different training setup). This improvement is supported by our theoretical results,
particularly Prop. 3.4. Notably, even when choosing h← = 0 (ODE) and h← = g← (the default
diffusion model in many studies) occasionally fail to generate an image, simply by increasing the
magnitude of h← (possibly at the cost of more computational resources), we have a larger chance of
generating an image with reasonable quality; for instance, see the last row in Fig. 12 (particularly see
the last row in Fig. 15). The ODE-based model sometimes fails to generate hand-writing digits even
when the step number is 103, whereas the diffusion model (with large h←) does not encounter this
issue. This conclusion might be reversed when the time step size is large, which is similarly observed
in the Swiss roll.

The computational cost of SDE-based models with large diffusion (h← > g←) is relatively high
due to the necessity of a larger number of time steps: a larger h← has the similar effect as running
Langevin for a larger time horizon as discussed in § 3.3 and a longer time simulation is expected
to be more expensive and also its accuracy largely relies on a well-chosen time step. However, this
can be offset by the ability to use a lightweight architecture that possibly speeds up the generative
process. A detailed comparison of various diffusion-based models with the same computational
budget constraint is challenging and is slightly beyond the scope of this work, and we will leave this
task to future work.
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Figure 12: Visualization of sample generation in MNIST where we used default weight ω (5). We
use different random seed to ensure robustness and this is the result for trial 1. Results for trial 2 is
not included in this work as the overall tendency remains the same.
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I Numerical experiments for adopting different weight in training

We have two reasons to explore the effects of various weight functions in training.

The first reason is that theoretically, any positive scalar-valued functions ωt on (0, T ) is a valid
candidate. This prompts the question of whether such a default weight function (5) is optimal in
designing the loss function. We fully acknowledge that the default choice adopted in most literatures
is a very effective one. However, the mathematical reason behind it is still not satisfactory in our
opinion. This motivates us to ask whether the default choice is really the optimal one, at least in
certain circumstances.

The second (and actually the primary reason) comes from our theoretical predictions discussed in
§ 3.7. As there is a tight connection between the optimal reverse-time generative process and the
time-distribution of the score error (see Prop. 3.4, Prop. 3.5 and Prop. 3.6), if we are willing to
train or re-train the score function and are interested in using the ODE-based model (for fast sample
generation), it appears that we should focus more on the noise’s end comparatively. To achieve this
goal, namely, to control the distribution of score error, we adopt different weight schemes in the loss
function only for training: default weight in (5), a data-driven case (more weight in the data side) and
a noise-driven case (more weight in the noise side):

ωt =


ϖ3

t noise-driven, or simply referred as “noise”;
ϖ2

t

0.25 +ϖt
data-driven, or simply referred as “data”.

(45)

There is no theoretical reasons behind the noise-driven and data-driven choices in the last equation.
We merely experiment with two reasonable choices and at the same time they are expected to help us
control the time distribution of the score error.

After the initial camera-ready version of this work, we notice that such a weight design (in particular
the noise-driven weight) has also been studied in [12]. Their experiments seem to provide further
evidence about the validity of our arguments. However, we would like to emphasize that the
approaches and perspectives towards proposing such a weight design are different: in [12], their
conjecture is based on an insightful perception argument, whereas we take a mathematical approach
and come up with the design based on the above error accumulation analysis.

I.1 Our guess

Based on our theoretical results, we guess that if a different weight function can really achieve
our expected goal (namely, control the time distribution of the score function), the noise-driven
case should be more suitable for ODE models, and the data-driven weight should give us the worst
performance for ODE models.

We remark that this conjecture is surely not universal, and its validity remains to be fully validated by
more benchmark experiments. Nevertheless, our numerical experiments below suggest its potential
usefulness and it prompts an interesting question to explore and design the optimal score-matching
loss function, which is rarely studied in literature. In what follows, we report numerical experiments
for MNIST and CIFAR-10.

I.2 MNIST

We used different weights to train the score function and then visualize their generated samples in
Fig. 13. We can clearly observe that the score function trained by the noise-driven weight produces
comparatively better samples in ODE models. We plot the denoising score-matching loss for score
functions obtained from training with various weights in Fig. 14:

• to make the comparison more straightforward, we visualize the time-distribution of relative
score-matching loss rather than the absolute value, namely, we demonstrate:

t 7→
EX0∼p0EXt∼pt|0(·|X0)

[∥∥(S(i))t(Xt)−∇ log pt|0(Xt|X0)
∥∥2]

EX0∼p0EXt∼pt|0(·|X0)

[∥∥(S(default))t(Xt)−∇ log pt|0(Xt|X0)
∥∥2] , i ∈

{
noise, data

}
,

(46)
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and S(i) refers to the score function obtained from training using weight i and we use test datasets
to approximately represent p0;

• to ensure robustness, we independently conduct two trials with different neural network initializa-
tions: For each trial, the initial neural network is the same and the only difference in training is to
adopt different weights in the loss function.

In Fig. 14, we can clearly observe that adopting different weights indeed help us to control how the
score error is distributed over time as we expect (e.g., noise-driven weight helps us reduce the error
near t ≈ T and has an opposite effect near t ≈ 0); as shown in Fig. 13, their numerical performances
in terms of sample generation also match our guess above.

We further visualize how the diffusion coefficient h and time step size affect the sample generation
quality for score functions obtained by data-driven weight (see Fig. 15) and noise-driven weight
(see Fig. 16). The conclusion is the same as in the default weight case. This further validates our
theoretical results in § 3.

weight type = data weight type = default weight type = noise

(a) Trial number 1

weight type = data weight type = default weight type = noise

(b) Trial number 2

Figure 13: We show generated samples trained for MNIST using three different weight functions
in the loss function: we use h2

/g2 = 0 (ODE), time step is 1000, the trial number is the index for
independent random initialization.
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Figure 14: Score-matching loss for data-driven and noise-driven case on MNIST, compared with the
default case
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Figure 15: Visualization of sample generation in MNIST where we used data-driven weight ω (45).
We use different random seed to ensure robustness and this is the result for trial 1. Results for trial 2
is not included in this work as the overall tendency remains the same.
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Figure 16: Visualization of sample generation in MNIST where we used noise-driven weight ω (45).
We use different random seed to ensure robustness and this is the result for trial 1. Results for trial 2
is not included in this work as the overall tendency remains the same.
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I.3 CIFAR-10

We carry out a similar experiment for CIFAR-10 to test the effect of training weights ωt: we used the
same initialization (referred to as the trial number below) and all other hyper-parameters, except that
we employ different weights in score-matching loss (4). The same architecture is used as in [17] for
CIFAR-10 and the detailed hyper-parameters can be found in source codes.

In Fig. 17, we observe that overall over the whole training period, the noise-driven weight leads into a
score function estimate no worsen than that by the default weight: due to stochastic fluctuations and
other uncertainties (in particular if we adopt the mixed precision training), there is no guarantee that
the noise-driven one is always better, but the overall tendency is still observable and clear. In Fig. 18,
the noise-driven one actually has a slightly larger score-matching loss (SML) than the default one
(which could be possibly explained by how we measure the SML in Fig. 18). What is interesting is
that score functions trained by the noise-driven weight and the data-driven weight have a similar SML,
which both decay at the similar pace; however, the FID values for the score function estimate by
noise-driven weight are much smaller than that by the data-driven weight. This apparent gap clearly
explains that apart from the total score-matching loss (which does matter), the time distribution
of the score error plays an important role in determining the final sampling error, echoing our
theoretical results in § 3.

For instance, in Fig. 17, if we consider the first experiment (i.e., trial=0) with float16 mixed-precision
training (i.e., mixed=True), we notice that relatively near 80k and 120k training iterations, the
performance of noise-driven one is much better than the default one, which is consistent with Fig. 19
that the relative loss near t ≈ T is more minimised for iterations 80k and 120k, compared with
other iteration stages. Moreover, for the same experiment in Fig. 17, the data-driven one has a much
worsen FID value at iteration 200k, which is compatible with the increasing relative error near the
noise’s end (i.e., t ≈ T ) in the last row of Fig. 19. For the remaining three experimental setup
(either different initialization or training precision), we notice a similar consistency between how
the time-distribution of the SML behaves and how FID values change. This relation, so far, still
cannot be used as a rigorous quantitative indicator to predict one based on the other quantity, but
qualitatively, the above explained relationship does appear to be numerically valid and theoretically
sound.

In summary, if we have two score functions S1 and S2 from training:

• If the SML for S1 is much larger than the SML for S2, then we can probably confidently expect
that S2 is a more accurate estimate.

• However, when the total SML (4) for both are close, then the time-distribution of the score-
matching loss together with which generative dynamics is chosen will play a significant role in
determining the final sample generation quality, which is probably largely overlooked in current
literature as far as we know. A full investigation and in particular whether it is possible to adapt
this observation to achieve the state-of-art models will be left to the next stage of research.

43



40k 80k 120k 160k 200k

102

2×101

3×101

4×101

6×101
FI
D

trial=0, mixed=True

40k 80k 120k 160k 200k

102

2×101

3×101

4×101

6×101

FI
D

trial=0, mixed=False

40k 80k 120k 160k 200k

3×101

4×101

6×101

FI
D

trial=1, mixed=True

40k 80k 120k 160k 200k
2×101

3×101

4×101

6×101

FI
D

trial=1, mixed=False

data
noise
default

Figure 17: We visualize FIDs of score-training estimates by various weights with respect to the
number of training iteration. We consider ODE models (i.e., h = 0) when computing FIDs. Trial = 0,
1 refers to different neural network initialization; mixed=True means we use float16 mixed-precision
for training; mixed=False means we use 32-bit precision.
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Figure 18: We visualize score-matching loss (4) for score function trained using various weights with
respect to the number of training iteration’s. Trial = 0, 1 refers to different training initialization;
mixed=True means we use float16 mixed-precision for training; mixed=False means we use 32-bit
precision. When we compare SML for different score functions above, we consistently use the
“default” weight for fairer comparison, even though some score functions are trained using different
weight functions; we also use the test dataset to approximately represent p0.
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Figure 19: The first independent experiment with the float16 mixed precision training: We
visualize the relative time distribution of the SML (46) (on the left) and the time distribution of SML
(on the right) for various training weights and for various training stages (each row).
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Figure 20: The first independent experiment with the full 32-bit precision training: We visualize
the relative time distribution of the SML (46) (on the left) and the time distribution of SML (on the
right) for various training weights and for various training stages (each row).
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Figure 21: The second independent experiment with the float16 mixed precision training: We
visualize the relative time distribution of the SML (46) (on the left) and the time distribution of SML
(on the right) for various training weights and for various training stages (each row).
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Figure 22: The second independent experiment with the full 32-bit precision training: We
visualize the relative time distribution of the SML (46) (on the left) and the time distribution of SML
(on the right) for various training weights and for various training stages (each row).
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